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Abstract. We consider the problem of efficiently solving Sylvester and Lyapunov equations
of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and
the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data,
recently studied in [A. Haber and M. Verhaegen, Automatica J. IFAC, 73 (2016), pp. 256--268;
D. Palitta and V. Simoncini, Numerical Methods for Large-Scale Lyapunov Equations with Symmet-
ric Banded Data, preprint, arxiv, 1711.04187, 2017], which often arise in the discretization of elliptic
PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be
numerically present in the solution, and explicit novel estimates of the numerical rank of the off-
diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical
matrices are described, and several numerical experiments confirm the applicability and efficiency of
the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and
a ready-to-use interface for the solvers. The performances of the different approaches are compared,
and we show that the new methods described are efficient on several classes of relevant problems.
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off-diagonal singular values, \scrH -matrices

AMS subject classifications. 15A06, 15A24, 65D32, 65F10, 93C20

DOI. 10.1137/17M1157155

1. Introduction. We consider the problem of solving Sylvester equations of the
form

(1) AX +XB = C,

where A \in \BbbR nA\times nA , B \in \BbbR nB\times nB , C \in \BbbR nA\times nB , and A, B are symmetric positive
definite and rank-structured. More precisely, we assume that the matrices A, B, and
C are quasiseparable, i.e., their off-diagonal blocks have low rank. For the sake of
simplicity, throughout the paper we assume C to be square, that is, nA = nB \equiv n,
but our results can be easily extended to the case of different nA and nB .

Sylvester equations arise in different settings, such as problems of control [1, 9],
discretization of PDEs [16, 34], block-diagonalization [20, Chapter 7.1.4], and many
others. The Lyapunov equation, that is, (1) with B = A, is of particular interest
due to its important role in control theory [1]. The symmetric and positive definite
constraint is not strictly necessary in our analysis, and some relaxations involving the
field of values will be presented.

Even in the case of sparse A, B, and C, the solution X to (1) is, in general, dense,
and it cannot be easily stored for large-scale problems. To overcome this numerical
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SOLVING RANK-STRUCTURED SYLVESTER EQUATIONS 1565

difficulty, the right-hand side is often supposed to be low rank, i.e., C = C1C
T
2 with

C1, C2 \in \BbbR n\times k, k \ll n. In this case, under some suitable assumptions on the spectra of
A and B, it is possible to prove that the solutionX is numerically low rank [2, 7, 21, 36]
so that it can be well approximated by a low-rank matrix X \approx UV T . The low-rank
property ofX justifies the solution of these kinds of equations by the so-called low-rank
methods, which directly compute and store only the factors U , V . A large amount
of work in this direction has been carried out in recent years; see, e.g., [42] and the
references therein. However, in many cases the known term C is not low rank. It is
very easy to construct a simplified example to show that low-rank methods have no
hope of being effective in this more general context. Consider (1) with A = B = I and
C = 2I where I denotes the identity matrix. It is immediate to check that the solution
is X = I, and therefore every approximation UV T \approx X which is not full rank needs
to satisfy \| UV T  - X\| 2 \geqslant 1. Obviously, this example has no practical relevance from
the computational point of view, since a Lyapunov equation with diagonal data needs
to have a diagonal solution, which can be computed in O(n) time and represented in
O(n) storage. Nevertheless, it shows that even if all the coefficients and the solution
X are full rank, they can indeed be very structured. One might wonder if also banded
structures are preserved. This is not true, in general, since banded matrices are not an
algebra (in contrast to what is true for diagonal ones), but approaches which exploit
the banded properties of A, B, C and, to a certain extent, of the solution X, have
been recently proposed by Haber and Verhaegen in [25] and by Palitta and Simoncini
in [35]. The preservation of a banded structure in the solution is strictly connected
with the conditioning of A and B. Unless they are both ill-conditioned, the solution
X of (1) is well approximated by a banded matrix \widetilde X. Otherwise, it has been shown
that X can be represented by a couple (XB , Sm), X \approx XB + SmST

m, where XB is
banded and Sm is low rank so that a low memory allocation is still required; see [35].

In this work, we consider a more general structure, the so-called quasiseparability,
which is often numerically present in X when we have it in A, B, and C, so that a
low memory requirement is demanded for storing the solution. Informally, a matrix
is said to be quasiseparable if its off-diagonal blocks are low-rank matrices, and the
quasiseparable rank is defined as the maximum of the ranks of the off-diagonal blocks.
We say that a matrix is numerically quasiseparable when the above property holds
only up to a certain \epsilon , i.e., only few singular values of each off-diagonal block are
above a fixed threshold.

A simple yet meaningful example arises from the context of PDEs: consider the
differential equation

(2)

\Biggl\{ 
 - \Delta u = log (\tau + | x - y| ) , (x, y) \in \Omega ,

u(x, y) \equiv 0, (x, y) \in \partial \Omega ,
\Delta u =

\partial 2u

\partial x2
+

\partial 2u

\partial y2
,

where \Omega is the rectangular domain [0, 1] \times [0, 1] and \tau > 0. The discretization by
centered finite differences of (2) with n nodes in each direction, (xi, yj), i, j = 1, . . . , n,
yields the following Lyapunov equation:

AX +XA = C, A,C \in \BbbR n\times n,

Ci,j = log (\tau + | xi  - yj | ) ,

h := 1
n - 1 ,

A =
1

h2

\left[       
2  - 1
 - 1 2  - 1

. . .
. . .

. . .

 - 1 2  - 1
 - 1 2

\right]       .

The fact that A is banded implies that it is quasiseparable, and also C shares this

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1566 S. MASSEI, D. PALITTA, AND L. ROBOL

10 - 12 10 - 4 104 1012
0

10

20

\tau 

Q
S
ra
n
k

QS rank of C

0 20 40
10 - 18

10 - 12

10 - 6

100

\ell 
\sigma 
\ell 

\sigma l(YX)

\sigma l(YC)
Unit roundoff

Fig. 1. On the left, the maximum numerical ranks of the off-diagonal blocks of the right-hand
side C for different values of \tau and n = 300, using a threshold of 10 - 14 for truncation. On the
right, we set \tau = 10 - 4, and the singular values of the off-diagonal blocks YC := C(n

2
+ 1 : n, 1 : n

2
)

and YX := X(n
2
+ 1 : n, 1 : n

2
) rescaled by the 2-norm of the two blocks, respectively, are reported.

The black dashed line indicates the machine precision 2.22 \cdot 10 - 16.

property. Indeed, this follows from the fact that the modulus function it is not regular
in the whole domain, but it is analytic when the sign of x - y is constant. This happens
in the subdomains corresponding to the off-diagonal blocks. Separable approximation
(and thus low rank) can be obtained by expanding the source log(\tau + | x+ y| ) in the
Chebyshev basis. The approximation of these kinds of functions has been previously
investigated in [28, Chapter 9]. In Figure 1 (on the right) we have reported the decay
of the singular values of one off-diagonal block of C and X for the case of \tau = 10 - 4

and n = 300. In this case the numerical quasiseparable rank of the right-hand side C
and the solution X does not exceed 20 and 30, respectively. This property holds for
any \tau > 0: in Figure 1 (on the left) we have checked the quasiseparable rank of the
matrix C for various values of \tau , and one can see that it is uniformly bounded. The
rank is higher when \tau is small, because the function is ``less regular,"" and tends to 1
as \tau \rightarrow \infty , because the off-diagonal blocks tend to a constant in this case.

The problem of solving linear matrix equations whose coefficients are represented
as \scrH -matrices has already been addressed in [21, 22]. In [5], the authors consider
the case of Lyapunov equations with \scrH -matrix coefficients and low-rank right-hand
side. Recently, in [10, 11] the use of hierarchical matrices in the cyclic reduction
iteration for solving quadratic matrix equations has been deeply studied. We will
exploit the framework of \scrH -matrices to store quasiseparable matrices and to perform
matrix operations at an almost linear cost (up to logarithmic factors).

In this paper, we compare the use of hierarchical matrices in the matrix sign
iteration and in the estimation of an integral formula for solving (1). The latter
approach, suggested but not numerically tested in [21, 22], relies on evaluating the
closed formula [40]

(3) X =

\int +\infty 

0

e - AtCe - Btdt

by combining a numerical integrating scheme and rational approximations for the
matrix exponential. We employ (3) for our purpose, but different closed forms of X
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SOLVING RANK-STRUCTURED SYLVESTER EQUATIONS 1567

are available in the literature. See, e.g., [42]. Starting with \scrH -matrix representations
of A, B, and C, formula (3) can be efficiently approximated exploiting \scrH -arithmetic.
To the best of our knowledge, this technique has been exploited only theoretically for
computing X in the \scrH -matrix framework. On the other hand, exponential sums are
widely used as an approximation tool in the solution of tensor Sylvester equations
[14, 15].

The representation (3) has already been used in [21, 22] as a theoretical tool to
estimate the quasiseparable rank of the solution, but the derived bounds may be very
pessimistic and are linked with the convergence of the integral formula, which cannot
be easily made explicit. We improve these estimates by developing a theoretical
analysis which relies on some recent results [7], exploited also in [11], where the
numerical rank of the solution X is determined by estimating the exponential decay
in the singular values of its off-diagonal blocks.

The paper is organized as follows; in section 2 we introduce the notion of qua-
siseparability and we deliver the technical tools for analyzing the preservation of the
structure in the solution X. In particular, we provide bounds for the off-diagonal
singular values of X and we show some numerical experiments in order to validate
them. In section 3, hierarchically off-diagonal low-rank (HODLR) matrices are intro-
duced and their impact on the computational effort for handling matrix operations is
described. The two algorithms for solving (1) are presented in section 4. In particu-
lar, in section 4.1 we recall the sign function method presented in [22], whereas the
procedure used for the numerical approximation of (3) is illustrated in section 4.2.
Both approaches are based on the use of HODLR arithmetic. We address the solution
of certain generalized Lyapunov and Sylvester equations in section 5. In section 6 we
perform numerical tests on instances of (1) coming from both artificially crafted mod-
els and real-world problems where the quasiseparable structure is present. Finally, in
section 7 we draw some concluding remarks.

2. Quasiseparable structure in the solution. The main purpose of this sec-
tion is to prove that, under some reasonable assumptions on the spectrum of A and
B, the solution X to the matrix equation (1) needs to be quasiseparable if A, B, and
C are quasiseparable. Throughout the paper we indicate with \sigma 1(M) \leq \sigma 2(M) \leq . . .
the ordered singular values of the matrix M .

2.1. Quasiseparability structures. The literature on quasiseparable (or
semiseparable) matrices---see Figure 2---is rather large, and the term is often used
to denote slightly different objects. Therefore, also in the spirit of making this pa-
per as self-contained as possible, we recall the definition of quasiseparable matrices
that we will use throughout the paper. We refer the reader to [19, 46, 47, 48] and
the references therein for a complete survey about quasiseparable and semiseparable
structures.

Definition 2.1. A matrix A is quasiseparable of order k if the maximum of the
ranks of all its submatrices contained in the strictly upper or lower part is less than
or equal to k.

Example 2.2. A banded matrix---see Figure 3---with bandwidth k is quasisepara-
ble of order (at most) k. In particular, diagonal matrices are quasiseparable of order
0, tridiagonal matrices are quasiseparable of order 1, and so on.

2.2. Zolotarev problems and off-diagonal singular values. We are inter-
ested in exploiting the quasiseparable rank in numerical computations. In many cases,
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1568 S. MASSEI, D. PALITTA, AND L. ROBOL

Fig. 2. Pictorial description of the quasiseparable structure; the off-diagonal blocks can be
represented as low-rank outer products.

Fig. 3. Graphic description of the quasiseparability of banded matrices; in grey, the nonzero
entries.

the request of the exact preservation of a certain structure is too strong, and it cannot
be guaranteed. However, for computational purposes, we are satisfied if the property
holds in an approximate way, i.e., if our data are well approximated by structured
ones. This can be rephrased by asking that the off-diagonal blocks of the solution X
of (1) have a low numerical rank. More precisely, given a generic off-diagonal block
of the sought solution X, we want to prove that only a limited number of its singular
values are larger than \epsilon \cdot \| X\| 2, where \epsilon is a given threshold. This kind of analysis
has been already performed in [10, 11, 33] for studying the numerical preservation
of quasiseparability when solving quadratic matrix equations and computing matrix
functions. See also the Ph.D. thesis [32] for more details.

In order to formalize this approach, we extend a result that provides bounds
for the singular values of the solution of (1) when the right-hand side has low rank.
The latter is based on an old problem considered by Zolotarev at the end of the
19th century [50], which concerns rational approximation in the complex plane. The
following version can be found, along with the proof, in [7, Theorem 2.1] or in a similar
form in [11, Theorem 4.2].

Theorem 2.3. Let X be an n\times n matrix that satisfies the relation AX+XB = C,
where C is of rank k and A,B are normal matrices. Let E,F be two disjoint sets
containing the spectra of A and  - B, respectively. Then, the following upper bound on
the singular values of X holds:

\sigma 1+k\ell (X)

\sigma 1(X)
\leqslant Z\ell (E,F ) := inf

r(x)\in \scrR \ell ,\ell 

maxx\in E | r(x)| 
miny\in F | r(y)| 

, \ell \geqslant 1,

where \scrR \ell ,\ell is the set of rational functions of degree at most (\ell , \ell ).

Theorem 2.3 provides useful information only if one manages to choose the sets
E and F as well separated. In general it is difficult to explicitly bound Z\ell (E,F ), but
some results exist for specific choices of domains, especially when E and F are real
intervals; see, for instance, [7, 23]. The combination of these results with Theorem 2.3
proves the well-known fact that a Sylvester equation with positive definite coefficients
and with a low-rank right-hand side has a numerically low-rank solution.
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Lemma 2.4. Let A,B be symmetric positive definite matrices with spectra con-
tained in [a, b], 0 < a < b. Consider the Sylvester equation AX +XB = C, with C of
rank k. Then the solution X satisfies

\sigma 1+k\ell (X)

\sigma 1(X)
\leqslant 4\rho  - 2\ell ,

where \rho = exp( \pi 2

2\mu ( b
a )
) and \mu (\cdot ) is the Gr\"otzsch ring function

\mu (\lambda ) :=
\pi 

2

K(
\surd 
1 - \lambda 2)

K(\lambda )
, K(\lambda ) :=

\int 1

0

1

(1 - t2)(1 - \lambda 2t2)
dt.

Proof. Applying Theorem 2.3 with E = [a, b] and F = [ - b, - a], we get

\sigma 1+k\ell (X)

\sigma 1(X)
\leqslant Z\ell (E,F ).

Using Corollary 3.2 in [7] for bounding Z\ell (E,F ), we get the claim.

Remark 2.5. A slightly weaker bound which does not involve elliptic functions is
the following [7]:

Z\ell ([a, b], [ - b, - a]) \leqslant 4\rho  - 2\ell , \rho = exp

\Biggl( 
\pi 2

2 log
\bigl( 
4 b
a

\bigr) \Biggr) , 0 < a < b <\infty .

It is easy to see that in case of Lyapunov equations with symmetric positive
definite coefficients we can replace the quantity b

a with the condition number of A.

Corollary 2.6. Let A be a symmetric positive definite matrix with condition
number \kappa A, and consider the Lyapunov equation AX +XA = C, with C of rank k.
Then the solution X satisfies

\sigma 1+k\ell (X)

\sigma 1(X)
\leqslant 4\rho  - 2\ell ,

where \rho = exp( \pi 2

2\mu (\kappa A) ) and \mu (\cdot ) is defined as in Lemma 2.4.

We are now interested in proving that the solution of a Sylvester equation with
low-order quasiseparable data is numerically quasiseparable. An analogous task was
addressed in [21]. The approach developed by the authors can be used for estimating
either the rank of X in the case of a low-rank right-hand side or the rank of the off-
diagonal blocks of X when the coefficients are hierarchical matrices. In particular, it
has been shown that if the coefficients are efficiently represented by means of the hi-
erarchical format, then the solution also shares this property. The estimates provided
in [21] exploit the convergence of a numerical integrating scheme for evaluating the
closed integral formula (3). These bounds are however quite implicit and are more
pessimistic than the estimates provided in [36] and in [43] for the case of a low-rank
right-hand side (which is the setting where all the previous results are applicable).

Here, we directly characterize the off-diagonal singular values of the solution ap-
plying Theorem 2.3 blockwise.

Theorem 2.7. Let A and B be symmetric positive definite matrices of quasisep-
arable rank kA and kB, respectively, and suppose that the spectra of A and B are both
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1570 S. MASSEI, D. PALITTA, AND L. ROBOL

contained in the interval [a, b]. Then, if X solves the Sylvester equation AX +XB =
C, with C of quasiseparable rank kC , a generic off-diagonal block Y of X satisfies

\sigma 1+k\ell (Y )

\sigma 1(Y )
\leqslant 4\rho  - 2\ell ,

where k := kA + kB + kC , \rho = exp( \pi 2

2\mu ( b
a )
), and \mu (\cdot ) is defined as in Lemma 2.4.

Proof. Consider the following block partitioning for the Lyapunov equation:\biggl[ 
A11 A12

A21 A22

\biggr] \biggl[ 
X11 X12

X21 X22

\biggr] 
+

\biggl[ 
X11 X12

X21 X22

\biggr] \biggl[ 
B11 B12

B21 B22

\biggr] 
=

\biggl[ 
C11 C12

C21 C22

\biggr] 
,

where the off-diagonal blocks---in each matrix---do not involve any elements of the
main diagonal and all the dimensions are compatible. Without loss of generality we
can consider the case Y = X21. Observe that, writing the above system blockwise,
we get the following relation:

A21X11 +A22X21 +X21B11 +X22B21 = C21.

In particular, the block X21 solves the Sylvester equation

A22X21 +X21B11 = C21  - A21X11  - X22B21,

in which the right-hand side has (standard) rank bounded by k. Since A22 and
B11 are principal submatrices of symmetric positive definite matrices, they are again
symmetric positive definite and such that \kappa 2(A22) \leqslant b

a , and \kappa 2(B11) \leqslant b
a . Therefore,

using Lemma 2.4, we get the claim.

Remark 2.8. In the case where A, B, and C are banded with bandwidth kA,
kB , and kC , respectively, one can refine the bound given in Theorem 2.7 by using
k := max\{ kA+kB , kC\} . Indeed, A21 being the off-diagonal block of a banded matrix,
it has a row generator with nonzero entries only in the first kA rows. Analogously, the
nonzero entries of the column generator corresponding to B21 are located in its last
kB rows. Finally, nonzero entries of C21 are in the kC diagonals located in the upper
right corner. Therefore, the matrix C21  - A21X11  - X22B21 has nonzero elements
only on the first kA rows, in the last kB columns, and in the kC upper right corner
diagonals; see Figure 4. This provides the upper bound max\{ kA + kB , kC\} for its
rank.

In Figure 5 we compare the bound given in Theorem 2.7 with the off-diagonal
singular values of the solution. In this experiment, the matrix C \in \BbbR n\times n, n = 300, is
diagonal with random entries andA = B = MMT whereM \in \BbbR n\times n is bidiagonal with
ones on the main diagonal and random elements---chosen in (0, 1)---in the subdiagonal.
The theoretical bound manages to describe the superlinear decay of the off-diagonal
singular values. On the other hand, there is a significant gap between this estimate
and the real behavior of the singular values. This is due to the fact that we are
bounding the quantity Z\ell (E,F ) where E and F are the convex hull of the spectra of
A and  - B, respectively, instead of considering the Zolotarev problem directly on the
discrete spectra. This is done in order to find explicit bounds, but it can cause an
overestimation as outlined in [6].

A key property in the proof of Theorem 2.7 is the fact that submatrices of positive
definite matrices are better conditioned than the original ones. This is an instance of
a more general situation, which we can use to characterize the solution of Sylvester
equations with nonnormal coefficients.
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C21  - A21X11  - X22B21 =

Fig. 4. Sparsity structure of the equation for the off-diagonal block X21 when A, B, and C
are banded matrices. As described in Remark 2.8 the rank of the right-hand side is bounded by
max\{ kA + kB , kC\} .
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Off-diagonal singular values of X
Bound from Theorem 2.7

Fig. 5. Off-diagonal singular values in the solution X to (1) where C is a random diagonal
matrix and A = B = MMT with M bidiagonal matrix with ones on the main diagonal and random
elements---chosen in (0, 1)---in the subdiagonal. The dimension of the matrices is n\times n with n = 300.
The blue dots represent the most significant singular values of the off-diagonal block X(n

2
+1 : n, 1 :

n
2
). The red squares represent the theoretical bound given by Theorem 2.12. (Color available online.)

Definition 2.9. Given an n\times n square matrix A, we say that its field of values
is the subset of the complex plane defined as follows:

\scrW (A) :=

\biggl\{ 
xHAx

xHx

\bigm| \bigm| \bigm| x \in \BbbC n\setminus \{ 0\} 
\biggr\} 
.

One can easily check that for a normal matrix, being unitarily diagonalizable, the
field of values is just the convex hull of the eigenvalues. For a general matrix, we
know that the spectrum is contained in \scrW (A), but the latter can be strictly larger
than the convex hull of the former.

Lemma 2.10. Let P be an orthogonal projection, i.e., an n\times k matrix, k < n, with
orthonormal columns. Then, for any matrix A, \scrW (PHAP ) \subseteq \scrW (A). In particular,
the field of values of any principal submatrix of A is contained in \scrW (A).

Proof. The result directly comes by observing that

max
y\in \BbbC k

yHPHAPy

yHy
= max

y\in \BbbC k

yHPHAPy

yHPHPy

x=Py\underbrace{}  \underbrace{}  
\leqslant max

x\in \BbbC n

xHAx

xHx
.

Lemma 2.11 (Crouzeix [18]). Let A be any n \times n matrix, and let f(z) be a
holomorphic function defined on \scrW (A). Then,

\| f(A)\| 2 \leqslant \scrC max
z\in \scrW (A)

| f(z)| ,
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where \scrC is a universal constant smaller than or equal to 1 +
\surd 
2.

The above result is conjectured to be true with \scrC = 2 and in this form is often
referred to as the Crouzeix conjecture [17]. Lemmas 2.10--2.11 can be exploited to
obtain a generalization of Theorem 2.7.

Theorem 2.12. Let A,B be matrices of quasiseparable rank kA and kB, respec-
tively, and such that \scrW (A) \subseteq E and \scrW ( - B) \subseteq F . Consider the Sylvester equation
AX +XB = C, with C of quasiseparable rank kC . Then a generic off-diagonal block
Y of the solution X satisfies

\sigma 1+k\ell (Y )

\sigma 1(Y )
\leqslant \scrC 2 \cdot Z\ell (E,F ), k := kA + kB + kC .

Other similar extensions of this result can be obtained using the theory of K-
spectral sets [3].

2.3. Quasiseparable approximability. In the previous section we showed that,
when the coefficients of the Sylvester equation are quasiseparable, the off-diagonal
blocks of the solution X have quickly decaying singular values. We want to show that
this property implies the existence of a quasiseparable approximant.

In order to do that, we first introduce the definition of an \epsilon -quasiseparable matrix.

Definition 2.13. We say that A has \epsilon -quasiseparable rank k if, for every off-
diagonal block Y , \sigma k+1(Y ) \leqslant \epsilon . If the property holds for the lower (resp., upper)
off-diagonal blocks, we say that A has lower (resp., upper) \epsilon -quasiseparable rank k.

Remark 2.14. Notice that, if a matrix A has \epsilon -quasiseparable rank k, then the
same property is true for any of its principal submatrices A\prime . In fact, any off-diagonal
block Y of A\prime is also an off-diagonal block of A, and therefore \sigma k+1(Y ) \leqslant \epsilon .

The next step is showing that an \epsilon -quasiseparable matrix admits a quasiseparable
approximant. First, we need the following technical lemma, where \oplus denotes the
direct sum.

Lemma 2.15. Let A be a matrix with \epsilon -quasiseparable rank k, and let Q be any
(k+1)\times (k+1) unitary matrix. Then, (In - k - 1\oplus Q)A also has \epsilon -quasiseparable rank
k.

Proof. We prove the result for the lower off-diagonal blocks; the proof for the
upper part follows along the same lines. Observe that we can verify the property for
every maximal subdiagonal block Y ; that is, Y involves the first subdiagonal and the
lower left corner. If Y is contained in the last k rows, its rank is at most k. Otherwise,
if Y includes elements from the last j > k rows, we can write Y = (Ij - k - 1 \oplus Q)\widetilde Y ,

where \widetilde Y is the corresponding subblock of A (these two situations are depicted in

Figure 6). Therefore, \sigma k+1(Y ) = \sigma k+1(\widetilde Y ) \leqslant \epsilon .

Theorem 2.16. Let A be of \epsilon -quasiseparable rank k for \epsilon > 0. Then, there exists
a matrix \delta A of norm bounded by \| \delta A\| 2 \leqslant 2

\surd 
n \cdot \epsilon so that A+ \delta A is k-quasiseparable.

Proof. We first show that there exists a perturbation \delta A\ell of norm bounded by\surd 
n \cdot \epsilon that makes every lower off-diagonal block of A of rank k.
We prove the result by induction on the dimension of A. If n \leqslant 2k + 1, there

is nothing to prove, since A has all the off-diagonal blocks of rank at most k. If
n \geqslant 2k + 2, consider the following block partitioning of A:

A =

\biggl[ 
A11 A12

A21 A22

\biggr] 
, A11 \in \BbbC (n - k - 1)\times (n - k - 1), A22 \in \BbbC (k+1)\times (k+1).
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Q

A =

Fig. 6. Off-diagonal blocks in the matrix (In - k - 1 \oplus Q)A. From the picture one sees that the
Q acts on the tall block without changing its singular values and that the small one has small rank
thanks to the small number of rows.

Since \sigma k+1(A21) \leqslant \epsilon , multiplying on the left by a unitary matrix In - k - 1\oplus QT , where
Q contains the first k left singular vectors of A21, yields

\widetilde A := (In - k - 1 \oplus QT )A =

\biggl[ \widetilde A1 v
wT d

\biggr] 
, w =

\biggl[ 
w1

w2

\biggr] 
, \| w1\| 2 \leqslant \epsilon , w2 \in \BbbC k, d \in \BbbC .

Observe that, in view of Lemma 2.15, \widetilde A still has \epsilon -quasiseparable rank k, and, ac-
cording to Remark 2.14, the same holds for \widetilde A1. Therefore, thanks to the induction
step, there exists \delta \widetilde A\ell ,1 such that \widetilde A1 + \delta \widetilde A\ell ,1 has lower quasiseparable rank k and

\| \delta \widetilde A\ell ,1\| 2 \leqslant 
\surd 
n - 1 \cdot \epsilon .

Define \delta A\ell and \delta \widetilde A\ell as follows:

\delta A\ell := (In - k - 1 \oplus Q)

\biggl[ 
\delta \widetilde A\ell ,1 0
 - zT 0

\biggr] 
\underbrace{}  \underbrace{}  

\delta \widetilde A\ell 

, z =

\biggl[ 
w1

0

\biggr] 
.

Notice that \| \delta \widetilde A\ell \| 2 \leqslant 
\sqrt{} 
\| \delta \widetilde A\ell ,1\| 22 + \| z\| 22 \leqslant 

\surd 
n\epsilon . We claim that A + \delta A\ell is lower

k-quasiseparable. With a direct computation we get

A+ \delta A\ell = (In - k - 1 \oplus Q)

\biggl[ \widetilde A1 + \delta \widetilde A\ell ,1 v
wT  - zT d

\biggr] 
\underbrace{}  \underbrace{}  \widehat A

.

The matrix \widehat A is lower k-quasiseparable. In fact, every subdiagonal block of \widehat A is equal
to a subblock of \widetilde A1+\delta \widetilde A\ell ,1, possibly with an additional last row. If the subblock does
not involve the last k + 1 columns, the additional row is zero, and so the rank does
not increase. Otherwise, the smallest dimension of the block is less than or equal to
k, so its rank is at most k. Applying Lemma 2.15 once more with \epsilon = 0, we get that
A + \delta A\ell is lower k-quasiseparable. Notice that it is not restrictive to assume \delta A\ell is
lower triangular. In fact, if this is not the case, one can consider tril(\delta A\ell ) which still
has the same property and has a smaller norm.

Repeating the process with AT , we obtain an upper triangular matrix \delta Au, of
norm bounded by

\surd 
n \cdot \epsilon , such that A+ \delta Au is upper k-quasiseparable. Therefore, we

have that A+ \delta A with \delta A := \delta A\ell + \delta Au is k-quasiseparable, and \| \delta A\| 2 \leqslant \| \delta A\ell \| 2 +
\| \delta Au\| 2 \leqslant 2

\surd 
n \cdot \epsilon .

Remark 2.17. Notice that, for n \leqslant 2k + 1, the claim of Theorem 2.16 holds
by choosing \delta A = 0. This means that the constant 2

\surd 
n can be replaced with

2
\sqrt{} 
max\{ n - 2k  - 1, 0\} .
The above result shows that a matrix with \epsilon -quasiseparable rank of k can be well

approximated by a matrix with exact quasiseparable rank k.
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Fig. 7. We compute Xi \in \BbbR n\times n, n = 300, as the solution of AXi + XiA = Ci for i = 1, 2,
respectively. A is symmetric and tridiagonal with eigenvalues in [0.2,+\infty ) (positive definite and well-
conditioned). C1 is tridiagonal symmetric while C2 is a dense random symmetric quasiseparable
matrix of rank 1.

2.4. Preservation of the quasiseparable and banded structures. The re-
sults of the previous section guarantee the presence of a numerical quasiseparable
structure in the solution X to (1) when the spectra of A and  - B are well separated
in the sense of the Zolotarev problem.

The preservation of a banded pattern in the solution has already been treated
in [25, 35] in the case of Lyapunov equations with banded data and well-conditioned
coefficient matrix. Moreover, in [35], it has been shown that if A is ill-conditioned,
the solution X can be written as the sum of a banded matrix and a low-rank one,
so that X is quasiseparable. It is worth noticing that the results concerning the
preservation of the banded and the banded plus low-rank structures do not require
the separation property on the spectra of the coefficient matrices. This means that
there are cases---not covered by the results of section 2.2---where the quasiseparability
is still preserved.

In order to validate this consideration, we set up some experiments concerning the
solution to (1) varying the structure of the coefficients and of the right-hand side. In
particular, the features of the solution we are interested in are the distribution of the
singular values \sigma \ell of the off-diagonal block X(n2 + 1 : n, 1 : n

2 )
1 and the decay in the

magnitude of the elements getting far from the main diagonal. The latter quantity is
represented with the distribution of the maximum magnitude along the subdiagonal
\ell as \ell varies from 1 to n. In all the performed tests we set n = 300, and the solution
X is computed by the Bartels--Stewart algorithm [4].
Test 1. We compute Xi as the solution of AXi+XiA = Ci for i = 1, 2. The matrix A

is chosen symmetric tridiagonal with eigenvalues in [0.2,+\infty ); in particular A
is positive definite and well-conditioned. The right-hand side C1 is taken tridi-

1Notice that, in order to obtain a good hierarchical representation of the given matrices, the same
structure needs to be present also in the upper off-diagonal block, and in the smaller off-diagonal
blocks obtained in the recursion. Here we check just the larger off-diagonal block for simplicity; in
the generic case, one may expect the quasiseparable rank to be given by the rank of this block.
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Fig. 8. We compute the solution X of AX + XA = C and we analyze the off-diagonal block
X(n

2
+1 : n, 1 : n

2
). A = trid( - 1, 2, 1) - 1.99 \cdot I (indefinite and ill-conditioned) while C is a random

diagonal matrix.
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\sigma \ell (dense quasisep. RHS)

decay in the band (dense quasisep. RHS)

Fig. 9. We compute Xi \in \BbbR n\times n, n = 300, as the solution of AXi  - XiB = Ci for i = 1, 2,
respectively. A and B are symmetric and tridiagonal with eigenvalues in [0.2, 14] and [0.5, 14] (well
conditioned but without separation of the spectra). C1 is tridiagonal symmetric while C2 is a dense
random symmetric quasiseparable matrix of rank 1.

agonal symmetric with random entries while C2 is a random dense symmetric
matrix with quasiseparable rank 1. In the first case, results from [25, 35] en-
sure that---numerically---the banded structure is maintained in the solution,
and this is shown in Figure 7. Notice that the decay in the off-diagonal sin-
gular values is much stronger than the decay in the bandwidth so that, in
this example, it is more advantageous to look at the solution as a quasisepa-
rable matrix instead of a banded one. Theorem 2.7 guarantees the solution
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Fig. 10. We compute the solution X \in \BbbR n\times n, n = 300, of AX +XA = C. A = trid( - 1, 2, 1)
(positive definite and ill-conditioned) while C is a random diagonal matrix.

to be quasiseparable also in the second case, whereas the banded structure is
completely lost.

Test 2. We compute the solutionX ofAX+XA = C. We considerA = trid( - 1, 2, 1) - 
1.99\cdot I, so that it is indefinite and ill-conditioned, and we set C equal to a ran-
dom diagonal matrix. As highlighted in Figure 8, neither the quasiseparable
nor the band structure is present in the solution X.

Test 3. We compute Xi as the solution of AXi+XiB = Ci for i = 1, 2. The matrices
A and  - B are chosen symmetric and tridiagonal with eigenvalues in [0.2, 14]
and [0.5, 14], so both are well conditioned but with interlaced spectra. The
right-hand side C1 is chosen tridiagonal symmetric while C2 is set equal to
a random dense symmetric matrix with quasiseparable rank 1. The results
in Figure 9 suggest that both the structures are preserved in the first case
and lost in the second case. Once again, in the case of preservation, the
decay in the off-diagonal singular values is stronger than the decay in the
bandwidth. Notice that, when present, the quasiseparability of the solution
cannot be predicted by means of Theorem 2.7, but results from [25, 35] can be
employed to estimate the banded structure of the solution. This test shows
how the banded structure is a very particular instance of the more general
quasiseparable one.

Test 4. We compute the solution X of AX+XA = C. We choose A = trid( - 1, 2, 1),
so it is positive definite and ill-conditioned, and we set C equal to a random
diagonal matrix. Figure 10 clearly shows that quasiseparability is preserved
while the banded structure is not present in the solution X. In this case, the
quasiseparability of the solution can be shown by Theorem 2.7. Equivalently,
one can exploit arguments in [35], where it has been shown that the solution
can be represented as the sum of a banded matrix and a low-rank one so that
X is quasiseparable.

To summarize, the situations where we know that the quasiseparable structure is
present in the solution of (1) are as follows:
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(i) A, B, and C are quasiseparable and the spectra of A and  - B are well sepa-
rated;2

(ii) A, B, and C are banded and well-conditioned.
On the other hand, to use the computational approach of section 4 we need the spectra
of A and  - B to be separated by a line.

3. HODLR matrices. An efficient way to store and operate on matrices with
an off-diagonal data-sparse structure is to use hierarchical formats. There is a vast
literature on this topic. See, e.g., [12, 26, 28] and the references therein. In this work,
we rely on a particular subclass of the set of hierarchical representations sometimes
called hierarchically off-diagonal low-rank (HODLR), which can be described as fol-
lows: letting A \in \BbbC n\times n be a k-quasiseparable matrix, we consider the 2 \times 2 block
partitioning

A =

\biggl[ 
A11 A22

A21 A22

\biggr] 
, A11 \in \BbbC n1\times n1 , A22 \in \BbbC n2\times n2 ,

where n1 := \lfloor n2 \rfloor and n2 := \lceil n2 \rceil . Since the antidiagonal blocks A12 and A21 do not
involve any element of the main diagonal of A, they have rank at most k, so they are
represented as low-rank outer products. Then, the strategy is applied recursively on
the diagonal blocks A11 and A22. The process stops when the diagonal blocks reach
a minimal dimension nmin, at which they are stored as full matrices. The procedure
is graphically described in Figure 11. If nmin and k are negligible with respect to n,
then the storage cost is linear-polylogarithmic with respect to the size of the matrix,
as briefly summarized in Table 1. HODLR matrices are equivalent to hierarchical
matrices with weak admissibility in the classification used in [27].

It is natural to compare the storage required by the HODLR representation and
the truncation of banded structures when they are both present in the solution. Con-
sider the following test: we compute the solution X of a Lyapunov equation with a
tridiagonal well-conditioned coefficient matrix A and a diagonal right-hand side with
random entries. As discussed in the previous section, the solution has a fast decay in
the magnitude of the entries as we get far from the main diagonal. We compare the
accuracy obtained when the solution X is stored in the HODLR format with different
thresholds in the low-rank truncation of the off-diagonal blocks, and when a fixed
number of diagonals is memorized. In particular, the accuracy achieved keeping 5k
diagonals and truncating the SVD of the off-diagonal blocks using thresholds 10 - k,
for k = 0, . . . , 16, is illustrated in Figure 12. We can see that the two approaches
have comparable performances for this example. The experiment is repeated using
A = trid( - 1, 2, - 1), highlighting the nonfeasibility of the sparse format in this case
as the banded structure is not preserved in the solution.

The HODLR format has been studied intensively in the last decade and algorithms
with almost linear complexity for computing matrix operations are available; see,
e.g., Chapter 3 in [27]. Intuitively, the convenience of using this representation in a
procedure is strictly related to the growth of the numerical rank of the off-diagonal
blocks in the intermediate results. This can be formally justified with an argument
based on the Eckart--Young best approximation property; see Theorem 2.2 in [11].

We relied on hm-toolbox for our experiments, which is available at https://github.
com/numpi/hm-toolbox and implements HODLR arithmetic.

2We consider the spectra to be well separated if Theorem 2.7 can be used to prove the quasisep-
arability. As we have seen, this also includes cases where the spectra are close, such as when they
are separated by a line.
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Fig. 11. The behavior of the block partitioning in the HODLR matrix representation. The
blocks filled with grey are low rank matrices represented in a compressed form, and the diagonal
blocks in the last step are stored as dense matrices.

102 103
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100

Kilobytes

\| \widetilde X - 
X
\| 2
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\| X
\| 2

Sparse
HODLR

102 103
10 - 15

10 - 7

101

Kilobytes

\| \widetilde X - 
X
\| 2
/
\| X
\| 2

Sparse
HODLR

Fig. 12. We show the accuracy obtained approximating the solution X to a Lyapunov equation
keeping a certain number of diagonals and by truncating the HODLR representations with nmin =
50. The plot reports the accuracy obtained with respect to the memory consumption when A is
banded and well conditioned (left), and for A = trid( - 1, 2, - 1) (right). The matrices have dimension
n = 2048; the storage cost for the dense matrix X is 32678 KB.

4. Solving the Sylvester equation. In this section we show how to deal with
the issue of solving (1) taking advantage of the quasiseparable structure of the data.
We first discuss the matrix sign iteration and then we show how to efficiently evaluate
the integral formula (3). Both these algorithms are implemented in the hm-toolbox.

4.1. Matrix sign function. Here, we briefly recall the matrix sign function
iteration, first proposed in the \scrH -format by Grasedyck, Hackbusch, and Khoromskij
in [22]. We use HODLR arithmetic in the iteration scheme proposed by Roberts
in [39], which relies on the following result.

Theorem 4.1. Let A,B \in \BbbC n\times n be positive definite; then the solution X of (1)
verifies

(4) X =
1

2
N12,

\biggl[ 
N11 N12

0 N22

\biggr] 
:= sign

\biggl( \biggl[ 
A C
0  - B

\biggr] \biggr) 
,

and, given a square matrix M , we define sign(M) := 1
\pi \bfi 

\int 
\gamma 
(zI  - M) - 1dz with \gamma , a

path of index 1 around the eigenvalues of M with positive real part.

The sign function of a square matrix S := sign(M) can be approximated applying
the Newton method to the equation X2  - I = 0 with starting point S0 = M . This
requires computing the sequence

(5) S0 = M, Si+1 =
1

2
(Si + S - 1

i ),
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Table 1
Computational complexity of the HODLR matrix arithmetic. The integer k is the maximum of

the quasiseparable ranks of the inputs while n is the size of the matrices.

Operation Computational complexity

Matrix-vector multiplication O(kn log(n))
Matrix-matrix addition O(k2n log(n))

Matrix-matrix multiplication O(k2n log2(n))
Matrix inversion O(k2n log2(n))

Solve linear system O(k2n log2(n))

which converges to S, provided that M has no eigenvalues on the imaginary axis [22].
Rewriting (5) blockwise yields

(6) Ai+1 =
1

2
(Ai +A - 1

i ), Bi+1 =
1

2
(Bi +B - 1

i ), Ci+1 =
1

2
(A - 1

i CiB
 - 1
i + Ci),

where A0 = A,B0 = B, C0 = C, and Ci+1 \rightarrow 2X. As stopping criterion we used the
condition

\| Ai+1  - Ai\| F + \| Bi+1  - Bi\| F + \| Ci+1  - Ci\| F \leqslant 
\surd 
\epsilon ,

where \epsilon is the selected accuracy. This can be heuristically justified by saying that
since Newton is quadratically convergent, if the above quantity is a good estimate
of the error of the previous step, then we have already obtained the solution at the
required precision.

We implemented the algorithm in [22] that performs the iteration using hierar-
chical matrix arithmetic. When an appropriate scaling of A and B is performed,
convergence is reached in a few steps [30]. The scaling strategy is crucial to keeping
the number of iterations of the Newton scheme low, and the scaling parameter \alpha > 0
can be optimally chosen at every iteration, as shown in [30]. When the spectra of A

and B are real, the optimal choice is \alpha i =
\sqrt{} 
\| S - 1

i \| 2/\| Si\| 2. However, if hierarchical

matrix arithmetic is employed, the scaling strategy may introduce a nonnegligible
error propagation, as outlined in [22]. We found out that a good trade-off is to scale
only in the first iteration. This does not affect the accuracy of the iterative steps if the
matrix S0 can be exactly represented in the hierarchical format [22, Remark 5.3] and
allows us to keep the number of iterations proportional to log(max\{ \kappa (A), \kappa (B)\} ) [22].
For instance, in the case of A = B being the discrete Laplacian operator, which has
a condition number that grows as \scrO (n2), the latter choice makes the computational
cost of the approach \scrO (n log3(n)).

4.2. Solution by means of the integral formula. We now propose applying
a quadrature scheme for evaluating the semi-infinite integral in (3). We perform the

change of variable x = f(\theta ) := L \cdot cot
\bigl( 
\theta 
2

\bigr) 2
, where \theta is the new variable and L is a

parameter chosen to optimize the convergence. This is a very common strategy for
the approximation of integral over infinite domain, which is discussed in detail by
Boyd in [13]. We transform (3) into

(7) X = 2L

\int \pi 

0

sin(\theta )

(1 - cos(\theta ))2
e - Af(\theta )Ce - Bf(\theta )d\theta ,

which can be approximated by a Gauss--Legendre quadrature scheme. Other quadra-
ture formulas, such as Clenshaw--Curtis rules, can be employed. However, as discussed
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1580 S. MASSEI, D. PALITTA, AND L. ROBOL

by Trefethen in [45], the difference between Gauss--Legendre and Clenshaw--Curtis for-
mulas is small. Moreover, in most of our tests, Gauss--Legendre schemes showed some
slight computational advantages over Clenshaw--Curtis rules as the cost of computing
the integration points is negligible.3

The quadrature scheme yields an approximation of (7) of the form

(8) X \approx 
m\sum 
j=1

\omega j \cdot e - Af(\theta j)Ce - Bf(\theta j),

where \theta j are the Legendre points and \omega j = 2Lwj \cdot sin(\theta j)
(1 - cos(\theta j))2

and wj are the Legendre

weights.
Finally, we numerically approximate the quantities e - Af(\theta j) and e - Bf(\theta j), which

represent the dominant cost of the algorithm. For this task, we have investigated two
rational approximations, which have been implemented in our toolbox.
Pad\'e. The matrix exponential eA can be well approximated by a diagonal Pad\'e

approximant of degree (d, d) if \| A\| is small enough.4 We thus satisfy this

condition by using the relation eA = (e2
 - kA)2

k

, a tecnhique typically called
``scaling and squaring."" The Pad\'e approximant is known explicitly for all
d. See, e.g., [30, Chapter 10]. In this case the evaluation of the matrix
exponential requires 2d+3+k matrix multiplication and one inversion where
k = \lceil log2\| A\| \rceil . This strategy is also implemented in the MATLAB function
expm.

Chebyshev. Since A is supposed to be positive definite, the matrix exponential
e - tA can be approximated by a rational Chebyshev function that is uniformly
accurate for every positive value of t, as described by Popolizio and Simoncini
in [37]. The rational function is of the form

ex \approx r1
x - s1

+ \cdot \cdot \cdot + rd
x - sd

.

Given the poles and the weights in the above expansion, this strategy re-
quires d inversions and additions. See, e.g., [35] for a numerical procedure to
compute the poles and weights si, ri.

Remark 4.2. In our tests, evaluating the matrix exponential e - f(\theta )A by means
of the Pad\'e approximant performs better when f(\theta )A has a moderate norm. When
f(\theta )\| A\| 2 is large the squaring phase becomes the bottleneck of the computation. In
this case we rely on the rational Chebyshev expansion, which has a cost independent
of \| A\| 2.

The procedure is summarized in Algorithm 1. The evaluations of the matrix
exponentials expm( - f \cdot A), expm( - f \cdot B) are performed according to the strategy
outlined in Remark 4.2.

5. Solving certain generalized equations. The solution of certain general-
ized Sylvester equations can be recast in terms of standard Sylvester ones. The results
in section 2 thus suggest the presence of a quasiseparable structure also in the solu-
tion of these kinds of equations. For the sake of simplicity, we focus on generalized

3In practice we have precomputed the points for the usual cases so that an explicit computation
of them is never carried out in the numerical experiments.

4The exact choice of the ball where Pad\'e is accurate enough depends on the desired accuracy
and the value of d.
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Algorithm 1 Solution of a Sylvester equation by means of the integral formula.

1: procedure lyap integral(A,B,C,m)  \triangleleft Solves AX +XB = C with m
integration points

2: L\leftarrow 100  \triangleleft This can be tuned to optimize the accuracy
3: [w, \theta ]\leftarrow GaussLegendrePts(m)  \triangleleft Integration points and weights on [0, \pi ]
4: X \leftarrow 0n\times n

5: for i = 1, . . . ,m do
6: f \leftarrow L \cdot cot( \theta i2 )2
7: X \leftarrow X + wi

sin(\theta i)
(1 - cos \theta i)2

\cdot expm( - f \cdot A) \cdot C \cdot expm( - f \cdot B)

8: end for
9: X \leftarrow 2L \cdot X

10: end procedure

Lyapunov equations, but the approach we are going to present can be easily extended
to the Sylvester case as well. We consider equations of the form

(9) AX +XA+

s\sum 
j=1

MjXMT
j = C, A,X,C,Mj \in \BbbR n\times n,

where A is symmetric positive definite, both A and C are quasiseparable, and Mj is
low rank for j = 1, . . . , s. We generalize Theorem 2.7 to this framework.

Corollary 5.1. Let A be a symmetric positive definite matrix of quasiseparable
rank kA, and let \kappa A be its condition number. Moreover, consider the generalized
Lyapunov equation AX+XA+

\sum s
j=1 MjXMT

j = C, with Mj of rank rj, j = 1, . . . , s,
and C of quasiseparable rank kC . Then a generic off-diagonal block Y of the solution
X satisfies

\sigma 1+k\ell (Y )

\sigma 1(Y )
\leqslant 4\rho  - 2\ell ,

where k := 2kA + kC +
\sum s

j=1 rj, \rho = exp( \pi 2

2\mu (\kappa A) ), and \mu (\cdot ) is defined as in Lemma
2.4.

Proof. The solution X satisfies AX+XA = C - \sum s
j=1 MjXMT

j , where the right-

hand side has quasiseparable rank kC +
\sum s

j=1 rj . By applying Theorem 2.7 to the
latter we get the claim.

Equation (9) can be rephrased as an n2 \times n2 linear system by Kronecker trans-
formations

(\scrL +\scrM ) vec(X) = vec(C), \scrL := I \otimes A+A\otimes I, \scrM :=

s\sum 
j=1

Mj \otimes Mj .

We assume that \scrL is invertible, and such that Mj = UjV
T
j with Uj , Vj \in \BbbR n\times rj ,

j = 1, . . . , s. In particular, the matrix \scrM \in \BbbR n2\times n2

is of rank r :=
\sum s

j=1 r
2
j , and it

can be factorized as

\scrM = UV T =

\left[  U1 \otimes U1 . . . Us \otimes Us

\right]  \cdot 
\left[  V1 \otimes V1 . . . Vs \otimes Vs

\right]  T

.
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1582 S. MASSEI, D. PALITTA, AND L. ROBOL

Plugging this factorization into the Sherman--Morrison--Woodbury formula, we get

(10) vec(X) = \scrL  - 1vec(C) - \scrL  - 1U
\bigl( 
Ir + V T\scrL  - 1U

\bigr)  - 1
V T\scrL  - 1vec(C).

See, e.g., [8]. As shown in [38, section 4], the solution of (9) by (10) requires the
inversion of an r \times r linear system and the solution of r + 1 Lyapunov equations of
the form

AZ + ZA = C, AZij + ZijA = \widetilde Uij for i = 1, . . . , s, j = 1, . . . , r2i ,

where \widetilde Uij = vec - 1((Ui \otimes Ui)(:, j)) has rank 1. Since A and C are quasiseparable, the
matrix Z can be computed by one of the methods presented in the previous sections,
whereas well-established low-rank methods can be employed in computing the Zij 's.
In our tests we have used the method based on extended Krylov subspaces discussed
in [41]. The procedure is illustrated in Algorithm 2.

Algorithm 2 Solution of a generalized Lyapunov equation (low-rank\scrM ) by (10).

1: procedure SMW Gen Lyap(A,C,Ui, Vi)  \triangleleft Solve
AX +XA+

\sum s
i=i UiV

T
i XViU

T
i = C

2: \widehat X \leftarrow A \widehat X + \widehat XA = C
3: for h = 1 : s do
4: \widehat Xh \leftarrow V T

h
\widehat XVh

5: end for
6: for h = 1 : s, i, j = 1 : rh do
7: Uh

ij \leftarrow Uh(:, i)Uh(:, j)
T

8: Zk \leftarrow AZk + ZkA = Uh
ij  \triangleleft k := j + (i - 1)rh +

\sum h - 1
t=1 r2t

9: for m = 1 : s do
10: Wmk \leftarrow V T

mZkVm

11: end for
12: [Z1+

\sum h - 1
t=1 r2t

, . . . , Z\sum h
t=1 r2t

] = Z
(u)
h Z

(v)T
h

13: end for

14: R\leftarrow 
\Biggl( 
Ir +

\Bigl[ 
vec(Wmk)

\Bigr] 
m=1,...,s
k=1,...,r

\Biggr)  - 1

15: \widehat Z \leftarrow R \cdot [vec( \widehat X1); . . . ; vec( \widehat Xs)]

16: S \leftarrow \sum s
h=1 Z

(u)
h \cdot \widehat Zrh \cdot Z

(v)T
h  \triangleleft \widehat Zrh := reshape( \widehat Z(1 +

\sum h - 1
i=1 r2i :

\sum h
i=1 r

2
i ), rh, rh)

17: X \leftarrow \widehat X  - S
18: return X
19: end procedure

Another interesting class of generalized Lyapunov equations consists of (9) with
\rho (\scrL  - 1\scrM ) < 1, where \rho (\cdot ) denotes the spectral radius. For these kinds of problems,
the matrices Mj do not need to be low rank, but we suppose they all have a small
quasiseparable rank. In this case, one can consider the Neumann series expansion of
(\scrL +\scrM ) - 1 as done in [31]. More precisely, it holds that

(\scrL +\scrM ) - 1 = (I + \scrL  - 1\scrM ) - 1\scrL  - 1 =

\infty \sum 
j=0

( - 1)j(\scrL  - 1\scrM )j\scrL  - 1,
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so that the solution X to (9) verifies

(11) X =

\infty \sum 
i=0

Zi, where

\Biggl\{ 
AZ0 + Z0A = C,

AZi+1 + Zi+1A =  - \sum s
j=1 MjZiM

T
j .

A numerical solution can thus be computed by truncating the series in (11), that

is, X \approx X\ell :=
\sum \ell 

i=0 Zi, where the number of terms \ell is related to the accuracy
of the computed solution. If \ell is moderate, that is, \rho (\scrL  - 1\scrM ) \ll 1, X\ell is the sum
of a few quasiseparable matrices Zi, and it is thus quasiseparable. Notice that the
quasiseparability of the Mj 's is necessary to maintain a quasiseparable structure in
the right-hand sides  - \sum s

j=1 MjZiM
T
j , i = 0, . . . , \ell  - 1.

6. Numerical experiments. An extensive computational comparison among
different approaches for quasiseparable Sylvester equations, as well as their implemen-
tation, is still lacking in the literature, and in this section we perform some numerical
experiments trying to fill this gap. To this end, we employ the MATLAB hm-toolbox

that we have developed while writing this paper. The toolbox, which includes all the
tested algorithms, is now freely available at https://github.com/numpi/hm-toolbox.
All the timings reported are relative to MATLAB 2016a run on a machine with a
CPU running at 3066 MHz, 12 cores,5 and 192GB of RAM.

Each of the following sections contains a specific example. Some of these are
artificially constructed to describe particular cases; others present real or realistic
applications, arising from PDEs. We start by describing the classical Laplacian case
and then proceed, comparing our results with a two-dimensional (2D) heat equation
arising from practical applications. Eventually, we show how to solve some partial
integro-differential equations.

To test the accuracy of our approach we report the relative residual on the lin-
earized system of the computed solution. If \scrS is the coefficient matrix of the linearized
system, we measure the relative residual,

r(\scrS , X) :=
\| \scrS \cdot x - c\| 2
\| \scrS \| F \cdot \| x\| 2

, x = vec(X), c = vec(C),

which can be easily shown to be the relative backward error in the Frobenius norm [29].
When we deal with (standard) Sylvester problems, we have \scrS = I \otimes A+ B \otimes I with
A and B symmetric. This allows us to use the---easier to compute---bound

\| \scrS \| 2F \geqslant n(\| A\| 2F + \| B\| 2F ),

so that

r(\scrS , X) =
\| \scrS \cdot x - c\| 2
\| \scrS \| F \cdot \| x\| 2

=
\| AX +XB  - C\| F

\| I \otimes A+B \otimes I\| F \cdot \| X\| F
\leqslant 

\| AX +XB  - C\| F\sqrt{} 
n(\| A\| 2F + \| B\| 2F ) \cdot \| X\| F

,

and we actually compute and check the right-hand side in the above expression.
In case of a generalized Lyapunov equation, the system matrix is of the form

\scrS := I \otimes A + B \otimes I +M \otimes M , and the relative residual norm is bounded using the
inequality \| \scrS \| F \geqslant \| I\otimes A+B\otimes I\| F  - \| M\| 2F . Notice that this never requires forming
the large system matrix \scrS and can be evaluated using the arithmetic of hierarchical
matrices when considering large scale problems.

5All the available cores have only been used to run the parallel implementation of the solver
based on the integral formula. None of the other solvers exploited the parallelism in the machine.
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1584 S. MASSEI, D. PALITTA, AND L. ROBOL

6.1. The Laplace equation. We consider the 2D Laplace equation on the unit
square \Omega = [0, 1]2:\Biggl\{ 

 - \Delta u = f(x, y), (x, y) \in \Omega ,

u(x, y) = 0, (x, y) \in \partial \Omega ,
\Delta u =

\partial 2u

\partial x2
+

\partial 2u

\partial y2
.

We construct the matrix A representing the finite difference discretization of
the second-order derivative in the above equation on an n \times n grid using centered
differences, so that we obtain the equation AX +XA = C, with

A =
1

h2

\left[      
2  - 1
 - 1 . . .

. . .

. . .
. . .  - 1
 - 1 2

\right]      , h =
1

n - 1
,

and C contains the samplings of the function f(x, y) on our grid. We consider the
case where f(x, y) = log(1 + | x - y| ). As already discussed, the latter choice provides
a right-hand side which is numerically quasiseparable. This is due to the fact that
in the subdomains corresponding to the off-diagonal blocks, f is analytic and it is
well approximated by a sum of a few separable functions. One can also exploit this
property in order to retrieve the HODLR representation of C; the sampling of a
separable function g(x) \cdot h(y) on a square grid provides a matrix of rank 1, and the
sampling of g and h yields its generating factors. The computation of the expansion
of f in the subdomains has been performed by means of Chebfun2 [44].

Using hm-toolbox, the equation can be solved with a few MATLAB instructions,
as shown in Figure 13 for the case n = 2048. The function hmoption can be used
to set some options for the toolbox. In this case we set the relative threshold for
the off-diagonal truncation to 10 - 12 and the minimum size of the blocks to 256. The
class hm implements the hierarchical structure, and here we initialize it using a sparse
tridiagonal matrix. Invoking the lyap function uses our implementation specialized
for \scrH -matrices.

In this example, we used the sign iteration, which is the default method for the
implementation of lyap. The quasiseparable rank of the solution (obtained using the
function hmrank) is 13, which is reasonably small compared to the size of the problem.

In Table 2 and Figure 14 we show the timings for the solution of this problem for
different grid sizes. We stress that, since full matrices are never represented, a large
amount of RAM is not needed to run the solver. Nevertheless, this is needed when
using lyap from the MATLAB Control Toolbox, so we have comparisons with the
latter only for n \leqslant 4096.

The results in Table 2 show that the timings are just a little more than linear in
the size of the problem. Figure 14 illustrates that the complexity is in fact \scrO (n log2 n)
for the methods that evaluate the integral formula (3).

The approach based on the sign iteration is faster than the one that exploits the
integral formula. Nevertheless the latter has a slightly better asymptotic cost since it
requires \scrO (n log2(n)) flops instead of \scrO (n log3(n)). Another advantage of the integral
formula is the easy parallelization. In fact, the evaluation of the integrand at the
nodes can be carried out in a parallel fashion on different machines or cores. In our
tests we used 32 integration nodes, so the maximum gain in the performances can be
obtained using 32 cores. The results reported in Table 2 confirm the acceleration of
the parallel implementation when using 12 cores.
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>> n = 2048;

>> hmoption(’threshold’, 1e-12);

>> hmoption(’block-size’, 256);

>> f = @(x,y) log(1 + abs(x - y));

>> A = (n-1)ˆ2 * spdiags(ones(n,1) * [ -1 2 -1 ], -1:1, n, n);

>> H = hm(’tridiagonal’, A);

>> C = hm(’chebfun2’, f, [-1,1], [-1,1], n);

>> X = lyap(H, C, ’method’, ’sign’);

>> hmrank(X)

ans =

13

Fig. 13. Example MATLAB session where the hm-toolbox is used to compute the solution of
a Lyapunov equation involving the 2D Laplacian and a numerically quasiseparable right hand-side.

Table 2
Timings and features of the solution of the Laplacian equation for different grid sizes. For

the methods based on the HODLR arithmetic the minimum block size is set to 256 and the relative
threshold in truncation is ε = 10−12. For small problems we also report the timings of the lyap func-
tion included in the Control Toolbox in MATLAB. The relative residuals of the Lyapunov equation
are reported as well for the different methods. The residuals for the parallel version of the method
based on the exponential have been omitted since they coincide with the ones of the sequential one.
In fact, the two algorithms perform exactly the same computations.

n TSign ResSign QS rk TExp TParExp ResExp QS rk Tlyap

512 0.71 2.97 · 10−12 13 3.69 1.52 3.92 · 10−9 13 0.85
1,024 1.73 4.33 · 10−12 14 9.37 3.21 8.71 · 10−10 14 7.52
2,048 4.76 2.03 · 10−11 13 22.78 6.34 7.21 · 10−10 14 80.15
4,096 13.33 5.19 · 10−11 15 57.15 14.51 5.73 · 10−11 12 523.16
8,192 35.93 3.65 · 10−11 13 136.42 31.82 9.23 · 10−12 11
16,384 92.83 1 · 10−10 14 334.75 70.28 3.14 · 10−12 11
32,768 245.82 1.55 · 10−10 16 790.28 154.65 1.42 · 10−12 11
65,536 609.86 1.33 · 10−10 15 1,825.2 351.82 8.86 · 10−13 10

1.31 · 105 1,474.56 1.58 · 10−10 17 4,122.17 763.05 2.03 · 10−12 9

6.2. The 2D heat equation. We consider now a case of more practical interest,
which has been described and studied by Haber and Verhaegen in [24, 25]. They study
a particular discretization for the 2D heat equation that gives rise to a Lyapunov
equation with banded matrices. Let Sm = trid(1, 0, 1) be the m×m matrix with 1 on
the super and subdiagonal and zeros elsewhere, and let 1m ∈ Cm be the vector with
all the entries equal to 1. The resulting Lyapunov equation involves the coefficient
matrices

A = Im ⊗ (aI6 + eS6) + eSm ⊗ I, C = Im ⊗ (0.2 · 161
T
6 + 0.8I) + 0.1Sm ⊗ (161

T
6 ).

For the details on how these matrices are obtained from the discretization phase we
refer to [24]. The parameters a and e are set to a = 1.36 and e = −0.34. These two
matrices are banded, with bandwidth 6 and 11, respectively. However, a careful look
shows that the quasiseparable rank of A is 6, but the one of C is 1: the quasiseparable
representation can exploit more structure than the banded one in this problem.

We have solved this problem for different values ofm, fromm = 128 tom = 32768.
For each m, the size of the associated matrices A and P is 6m × 6m. We have also

Fig. 13. Example MATLAB session where the hm-toolbox is used to compute the solution of
a Lyapunov equation involving the 2D Laplacian and a numerically quasiseparable right-hand side.

Table 2
Timings and features of the solution of the Laplacian equation for different grid sizes. For

the methods based on the HODLR arithmetic the minimum block size is set to 256 and the rela-
tive threshold in truncation is \epsilon = 10 - 12. For small problems we also report the timings of the
lyap function included in the Control Toolbox in MATLAB. The relative residuals of the Lyapunov
equation are reported as well for the different methods. The residuals for the parallel version of the
method based on the exponential have been omitted since they coincide with those of the sequential
one. In fact, the two algorithms perform exactly the same computations.

n TSign ResSign QS rk TExp TParExp ResExp QS rk Tlyap

512 0.71 2.97 \cdot 10 - 12 13 3.69 1.52 3.92 \cdot 10 - 9 13 0.85

1,024 1.73 4.33 \cdot 10 - 12 14 9.37 3.21 8.71 \cdot 10 - 10 14 7.52

2,048 4.76 2.03 \cdot 10 - 11 13 22.78 6.34 7.21 \cdot 10 - 10 14 80.15

4,096 13.33 5.19 \cdot 10 - 11 15 57.15 14.51 5.73 \cdot 10 - 11 12 523.16

8,192 35.93 3.65 \cdot 10 - 11 13 136.42 31.82 9.23 \cdot 10 - 12 11

16,384 92.83 1 \cdot 10 - 10 14 334.75 70.28 3.14 \cdot 10 - 12 11

32,768 245.82 1.55 \cdot 10 - 10 16 790.28 154.65 1.42 \cdot 10 - 12 11

65,536 609.86 1.33 \cdot 10 - 10 15 1,825.2 351.82 8.86 \cdot 10 - 13 10

1.31 \cdot 105 1,474.56 1.58 \cdot 10 - 10 17 4,122.17 763.05 2.03 \cdot 10 - 12 9

6.2. The 2D heat equation. We consider now a case of more practical interest,
which has been described and studied by Haber and Verhaegen in [24, 25]. They study
a particular discretization for the 2D heat equation that gives rise to a Lyapunov
equation with banded matrices. Let Sm = trid(1, 0, 1) be the m\times m matrix with 1 on
the super- and subdiagonal and zeros elsewhere, and let 1m \in \BbbC m be the vector with
all the entries equal to 1. The resulting Lyapunov equation involves the coefficient
matrices

A = Im \otimes (aI6 + eS6) + eSm \otimes I, C = Im \otimes (0.2 \cdot 161
T
6 +0.8I) + 0.1Sm \otimes (161

T
6 ).

For the details on how these matrices are obtained from the discretization phase we
refer the reader to [24]. The parameters a and e are set to a = 1.36 and e =  - 0.34.
These two matrices are banded, with bandwidth 6 and 11, respectively. However, a
careful look shows that the quasiseparable rank of A is 6, but the one of C is 1: the
quasiseparable representation can exploit more structure than the banded one in this
problem.

We have solved this problem for different values ofm, fromm = 128 tom = 32768.
For each m, the size of the associated matrices A and P is 6m \times 6m. We have
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Fig. 14. Timings for the solution of the Laplacian equation for different grid sizes. The perfor-
mances of the different algorithms are reported. The dashed line reports the theoretical complexity
of \scrO (n log2(n)).

Table 3
Timings and features of the solution of the heat equation for different grid sizes. For the methods

based on the HODLR arithmetic the minimum block size is set to 256 and the relative threshold in
truncation is \epsilon = 10 - 12. In this example the quasiseparable rank of the solution coincides for the
implementation based on the sign function and on the integral formula, so we have only reported it
once.

n TSign ResSign TParExp ResParExp QS rk TSparseCG ResSparseCG

768 1.06 8.95 \cdot 10 - 13 1.96 9.44 \cdot 10 - 12 13 1.18 2.96 \cdot 10 - 11

1,536 2.74 1.42 \cdot 10 - 12 4.99 4.92 \cdot 10 - 12 12 2.49 2.81 \cdot 10 - 11

3,072 8.29 9.73 \cdot 10 - 12 13.12 1.53 \cdot 10 - 11 12 4.79 2.67 \cdot 10 - 11

6,144 19.3 4.94 \cdot 10 - 12 32.21 1.08 \cdot 10 - 11 10 9.23 2.57 \cdot 10 - 11

12,288 48.44 4.76 \cdot 10 - 12 79.46 1.36 \cdot 10 - 11 10 18.25 2.41 \cdot 10 - 11

24,576 117.32 4.71 \cdot 10 - 12 189.84 1.80 \cdot 10 - 11 10 36.96 3.22 \cdot 10 - 11

49,152 277.8 1.09 \cdot 10 - 11 445.03 1.62 \cdot 10 - 11 10 67.18 3.03 \cdot 10 - 11

98,304 589.51 3.87 \cdot 10 - 11 1,092.1 2.69 \cdot 10 - 11 10 121.31 2.87 \cdot 10 - 11

1.97 \cdot 105 1,312.6 1.05 \cdot 10 - 10 2,677.1 8.16 \cdot 10 - 11 9 213.08 2.75 \cdot 10 - 11

also compared our implementation to the (sparse) conjugate gradient implemented
in matrix form, as proposed in [35]. One can see that, at the kth iteration of the
conjugate gradient method, the solution in matrix form has a bandwidth propor-
tional to k; when the method converges in a few steps, this can provide an accurate
banded approximation to the solution in linear time. In fact, this problem is well-
conditioned independently of n and therefore is the ideal candidate for the application
of this method (as shown in [35]). Additionally, the sparse arithmetic implemented in
MATLAB is very efficient, and the computational cost is linear without any logarith-
mic factor. Table 3 and Figure 15 confirm the predicted \scrO (n log2 n) complexity for
the methods that we propose. The timings of the conjugate gradient are comparable
to the sign iteration for small dimensions, but then the absence of the log2(n) factor
in the complexity is a big advantage for the former method.

All the proposed approaches seem to work better in terms of CPU time than the
one reported by Haber and Verhaegen in [25], which uses a comparable (although
slightly older) CPU. Moreover, their approach delivers only about two digits of accu-
racy with the selected parameter, while we get solutions with a relative error of about

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SOLVING RANK-STRUCTURED SYLVESTER EQUATIONS 1587

n MemHODLR MemSparse

768 1,464.8 6,015.8
1,536 3,169.8 13,122
3,072 6,915.6 26,637
6,144 14,023 52,400
12,288 29,967 1.02 \cdot 105
24,576 63,774 1.90 \cdot 105
49,152 1.35 \cdot 105 3.64 \cdot 105
98,304 2.86 \cdot 105 6.91 \cdot 105

1.97 \cdot 105 5.72 \cdot 105 1.31 \cdot 106 103 104 105

100

101

102

103

104

105

n
T
im

e
(s
)

Sign
ParExp

SparseCG

\scrO (n log2 n)

Fig. 15. On the left, the memory consumption in storing the solution of the heat equation com-
puted with ParExp and SparseCG, respectively. The first exploits the HODLR representation while
the second makes use of the sparse format. The numerical values reported are in KB (Kilobytes).
On the right, timings for the solution of the heat equation.

10 - 10 in the Frobenius norm.
The table in Figure 15 reports the memory usage when the solution is stored in

the HODLR and in the sparse formats. We can see that the method using HODLR
matrices, although slower, is more memory efficient compared to the SparseCG of a
factor of about 2.

6.3. Partial integro-differential equation. Here, we consider a generalized
Sylvester equation that has the structure described by Corollary 5.1 and arises from
the discretization of the following PDE:

(12)  - \Delta u(x, y) + q(x, y)

\int 
[0,1]2

r(x, y)u(x, y) dx dy = f(x, y), (x, y) \in (0, 1)2,

where q(x, y) = q1(x)q2(y) and r(x, y) = r1(x)r2(y) are separable functions, and we
assume zero Dirichlet boundary conditions. The discrete operator can be expressed
in terms of the matrix equation AX + XA + M1XMT

2 = C, where A = (n  - 1)2 \cdot 
trid( - 1, 2, - 1), C is the sampling of f over the uniform grid xj = yj = j - 1

n - 1 , j =
1 . . . , n, and

M1 =
1

n - 1

\left[       
q1(x1)
q1(x2)

...
q1(xn - 1)
q1(xn)

\right]       

\left[       
1
2r2(x1)
r2(x2)

...
r2(xn - 1)
1
2r2(xn)

\right]       
T

, M2 =
1

n - 1

\left[       
q2(x1)
q2(x2)

...
q2(xn - 1)
q2(xn)

\right]       

\left[       
1
2r1(x1)
r1(x2)

...
r1(xn - 1)
1
2r1(xn)

\right]       
T

.

In this experiment we consider f(x, y) = log(1+ | x - y| ), and qj(x) = rj(x) \equiv sin(3x),
j = 1, 2, so that M1 = M2. We test Algorithm 2, and the results are reported in
Figure 16. The results report the timings of Algorithm 2 using the sign iteration for
solving the first quasiseparable Lyapunov equation, and one can see that the timings
of the overall procedure are just slightly larger than those reported for the example
in section 6.1. Indeed, step 2 of Algorithm 2 is the dominating cost of the whole
computation.
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n TSign ResSign QS rk

512 0.89 4.20 \cdot 10 - 12 12
1,024 2.27 5.18 \cdot 10 - 12 10
2,048 5.33 1.11 \cdot 10 - 11 10
4,096 14.82 4.62 \cdot 10 - 11 11
8,192 37.93 3.09 \cdot 10 - 11 11
16,384 99.63 6.49 \cdot 10 - 11 12
32,768 268.37 1.19 \cdot 10 - 10 14
65,536 656.41 1.43 \cdot 10 - 10 14

1.31 \cdot 105 1,565 1.52 \cdot 10 - 10 14 103 104 105

100

101

102

103

104

n

T
im

e
(s
)

SWM Sign

\scrO (n log3 n)

Fig. 16. On the left, timings and features of the solution of the partial integro-differential
equation for different grid sizes. The minimum block size is set to 256 and relative threshold in
truncation is \epsilon = 10 - 12. On the right, we plot timings for the solution of the generalized Lyapunov
equation coming from the partial integro-differential equation.

7. Final remarks. We have compared and analyzed two different strategies for
the solution of some linear matrix equations with rank-structured data. We have
presented some theoretical results that justify the feasibility of the approaches relying
on tools from rational approximation. The techniques that we developed can be
applied to treat the case of banded matrix coefficients in a natural way, thus providing
an alternative approach to the ones presented in [25, 35]. Moreover, our methods still
perform well when the conditioning of the coefficients increases. This allows us to
cover a wider set of problems related to PDEs, such as those including the Laplacian
operator.

Numerical tests confirm the scalability of the approach in treating large-scale
instances. Our experiments show that the sign iteration is usually the fastest and
most accurate method, although the procedure based on the integral formula can be
more effective in parallel environments.

In the case of the asymptotically ill-conditioned coefficients in the matrix equation
(such as for the 2D Laplacian), the complexity of the sign iteration is slightly worse
than that of the integration formula (\scrO (n log3 n) instead of \scrO (n log2 n)). This can
make the latter method the most attractive choice for very large-scale problems.
Moreover, relying on the arithmetic of hierarchically semiseparable matrices (HSS)
[49], in place of HODLR, would likely further improve the proposed approach. This
will be subject to future investigation. The main difficulty lies in creating a fast and
reliable procedure for the computation of the inverse in HSS format.

Acknowledgments. We thank Daniel Kressner for useful discussions and sug-
gestions. All the authors are members of the INdAM Research group GNCS, whose
support is gratefully acknowledged.
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