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Abstract. The numerical solution of large-scale Lyapunov matrix equations with symmetric
banded data has so far received little attention in the rich literature on Lyapunov equations. We
aim to contribute to solving this open problem by introducing two efficient solution methods which
respectively address the cases of well conditioned and ill conditioned coefficient matrices. The pro-
posed approaches conveniently exploit the possibly hidden structure of the solution matrix so as to
deliver memory and computation-saving approximate solutions. Numerical experiments are reported
to illustrate the potential of the described methods.
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1. Introduction. We are interested in the numerical solution of the large-scale
Lyapunov equation

(1.1) AX +XA =D,

where A ∈ \BbbR n×n is symmetric positive definite (SPD),D ∈ \BbbR n×n is symmetric, and both
are large and banded matrices with bandwidth \beta A, \beta D, respectively. These hypotheses
will be assumed throughout the manuscript. Lyapunov matrix equations play an
important role in signal processing and control theory; see, e.g., [1, 22, 18]. However,
they also arise in different contexts such as in the discretization of certain elliptic
partial differential equations (see, e.g., [35]), or as intermediate steps in nonlinear
equation solvers, like for the algebraic Riccati equation [14].

With the given hypotheses the solution matrix X to (1.1) is symmetric, and it
is positive (semi-)definite if D is positive (semi-)definite. In general, the matrix X is
dense and for large scale problems it cannot be explicitly stored. A special situation
arises when D is low rank, that is, D = BBT , B ∈ \BbbR n×s, s ≪ n. In this case, and
under certain assumptions on the spectrum of A, X can be well approximated by a
low-rank matrix, that is, X ≈ ZZT with Z ∈ \BbbR n×t, t≪ n, so that only the tall matrix
Z needs to be stored. A rich literature is available for this setting, and successful ``low-
rank"" algorithms for large dimensions have been developed. Very diverse algorithms
belong to this family such as projection methods [37, 20], low-rank ADI [8, 7], and
sign function methods [5, 6]. We refer the reader to [39] for a full account of low-rank
techniques.

Numerical methods for (1.1) with large, banded, and not necessarily low rank D
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A3582 DAVIDE PALITTA AND VALERIA SIMONCINI

have not been given attention so far, in spite of possible occurrences of this setting in
practical applications; see, e.g., [25, 35, 28].

Our aim is to significantly contribute to this open problem by introducing solution
methods for generally banded data. In particular, a new general purpose algorithm
to handle an ill conditioned coefficient banded matrix A is proposed.

If A is well conditioned, the entries of X present a decay in absolute value as they
move away from the banded pattern of D. Therefore, a banded approximation \bigg\backslash X ≈X
can be sought. This idea was exploited in [25], where two algorithms for computing
\bigg\backslash X were proposed. We show that if A is well conditioned, a matrix-oriented formu-
lation of the conjugate gradient (CG) method provides a quite satisfactory banded
approximation at a competitive computational cost.

For general symmetric banded data, the decay pattern of X fades as the condi-
tioning of A worsens, to the point that for ill conditioned matrices, no appreciable
(exponential) decay can be detected in X. Nevertheless, we show that X can be split
into two terms, which can be well approximated by a banded matrix and by a low-
rank matrix, respectively. This observation leads to an efficient numerical procedure
for solving (1.1) in terms of both CPU time and memory requirements.

In principle one could apply the general purpose greedy algorithm proposed by
Kressner and Sirkovi\'c in [30]. To be efficient, however, the method in [30] requires that
the solutionX admits a low-rank approximation; unfortunately, this is not guaranteed
in the case of a full-rank D.

Moreover, since data in (1.1) are banded, they can be viewed as \scrH -matrices, and
the algorithm derived in [24] could be adapted for solving (1.1). In this more general
setting, the authors of [24] show that the solution X to the Riccati equation (of which
the Lyapunov equation is the linear counterpart) can be well approximated by an \scrH -
matrix, and a sign function method equipped with \scrH -matrices arithmetic is proposed
for its computation. The application of this sophisticated procedure to the linear
setting with simple banded structure appears to be unnecessarily cumbersome. On
the other hand, algorithms directly applicable to banded matrices may be appealing to
practitioners. We thus refrain from implementing an ad-hoc version of the algorithm
in [24] for our purposes.1

The following is a synopsis of the paper. In section 2 the matrix-oriented CG
method is recalled and some of its sparsity pattern properties highlighted, to be used
for A well conditioned. The case of ill conditioned A is addressed in section 3, while
the detailed procedure is illustrated in sections 3.1--3.4. Section 3.5 discusses some
crucial issues associated with parameter selections of the new method, together with
an automatic strategy for one of them. The procedures presented in sections 2 and
3 are then generalized to the case of Sylvester equations with banded data and SPD
coefficient matrices in section 4. Results of our numerical experience are reported in
section 5 while our conclusions are given in section 6.

Throughout the paper we adopt the following notation. The (i, j)th entry of the
matrix X is denoted by (X)i,j while (x)k is the kth component of the vector x. Given
a symmetric matrix T , \beta T denotes its bandwidth, that is, (T )i,j = 0 for \bigcup i − j\bigcup > \beta T .
For instance, if T is tridiagonal, \beta T = 1. If T is symmetric, \lambda max(T ) and \lambda min(T )
are its largest and smallest eigenvalues, respectively. The matrix inner product is
defined as \coprod X,Y \widetilde F ∶= trace(Y TX) so that the induced norm is \prod X\prod 2F = \coprod X,X\widetilde F .
The matrix norm induced by the Euclidean vector norm is denoted by \prod ⋅ \prod 2 while
we define \prod T \prod max ∶= maxi,j \bigcup (T )i,j \bigcup . Moreover, \kappa (T ) = \prod T \prod 2\prod T

−1\prod 2 is the spectral

1We thank Lars Grasedyck for helpful remarks on the topic.
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LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3583

condition number of the invertible matrix T . The Kronecker product is denoted by ⊗
while In denotes the identity matrix of order n, and ei its ith column. The subscript
is omitted whenever the dimension of I is clear from the context. All of our numerical
experiments were performed in MATLAB [34].

2. The case of well conditioned \bfitA . In the case when A is well conditioned,
it is possible to fully exploit the banded structure of the data, and to substantially
maintain it in a suitably constructed approximate solution. To this end, advantage
can be taken of recently developed results on the entry decay of functions of matrices
(see, e.g., [10, 11, 15, 19]) by using the Kronecker form of the problem, that is,

\scrA x = vec(D), x = vec(X), \scrA ∶= A⊗ I + I ⊗A,(2.1)

where vec(X) ∈ \BbbR n
2

is the vector obtained by stacking the n columns of X one on top
of each other. Bounds for the entries of the inverse of \scrA (viewed as a banded matrix
with bandwidth n\beta A) have been employed to estimate the decay in the entries of the
solution X to (1.1).

Theorem 2.1 (see [25]). Consider (1.1). Let

\tau ∶=
1

2\bigcup \lambda max(A)\bigcup 
max

\bigr) \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigr] 

1,
(1 +

\biggl\lceil 
\kappa (A))

2

2\kappa (A)

\bigl[ \bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil 
\bigl\lceil 
\bigr\rceil \bigr\rceil \bigr\rceil \bigr\rceil \bigl\lfloor 

and \rho ∶=
⎛

⎝

\biggl\lceil 
\kappa (A) − 1

\biggl\lceil 
\kappa (A) + 1

⎞

⎠

1
n\beta A

;

then the solution matrix X satisfies

(2.2) \bigcup (X)i,j \bigcup ≤ \tau 
n

∑
k=1

n

∑
\ell =1

\bigcup (D)k,\ell \bigcup \rho 
\bigcup (\ell −j)n+k−i\bigcup .

By exploiting the Kronecker structure of \scrA , sharper bounds for (\scrA −1)
i,j

can be

derived (see, e.g., [15]) leading to different, and possibly more accurate, estimates for
\bigcup (X)i,j \bigcup .

Theorem 2.2. Consider (1.1). Define \lambda 1 = \lambda 1(\omega ) ∶= \lambda min(A) + i\omega , \lambda 2 = \lambda 2(\omega ) ∶=

\lambda max(A)+i\omega , and R ∶= \alpha +
\biggr\rfloor 
\alpha 2 − 1, where \alpha ∶= (\bigcup \lambda 1\bigcup + \bigcup \lambda 2\bigcup ) \Uparrow \bigcup \lambda 2−\lambda 1\bigcup . Then the solution

matrix X satisfies

(2.3) \bigcup (X)i,j \bigcup ≤
n

∑
k=1

n

∑
\ell =1

\theta k,\ell \bigcup (D)k,\ell \bigcup ,

where we have the following:
● If k ≠ i and \ell ≠ j, then

\theta k,l =
64

2\pi \bigcup \lambda max(A) − \lambda min(A)\bigcup 2 ∫
∞

−∞
( R2

(R2 − 1)2 )
2

( 1

R
)
\bigcup k−i\bigcup 
\beta A

+ \bigcup \ell −j\bigcup 
\beta A

−2
d\omega .

● If either k = i or \ell = j, then

\theta k,l =
8

2\pi \bigcup \lambda max(A) − \lambda min(A)\bigcup ∫
∞

−∞
1\biggl\lceil 

\lambda min(A)2 + \omega 2

R2

(R2 − 1)2 (
1

R
)
\bigcup k−i\bigcup 
\beta A

+ \bigcup \ell −j\bigcup 
\beta A

−1
d\omega .D
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A3584 DAVIDE PALITTA AND VALERIA SIMONCINI

● If both k = i and \ell = j, then

\theta k,\ell =
1

2\lambda min(A)
.

Proof. The statement directly comes from [38, Theorem 3.3] summing up the
entries of D.

We emphasize that since D is banded, only a few (D)k,\ell are nonzero, so that only
a few terms in the summation (2.3) are actually computed.

0 100 200 300 400 500 600 700 800 900 1000

i

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

(X)
i,500

, i=1, ,6n

Bound (2.1)

Bound (2.2)

Fig. 2.1. Example 2.3. Magnitude of (X)i,500, i = 1, . . . ,6n, and its estimates (2.2) and (2.3),
with logarithmic scale.

Example 2.3. To illustrate the quality of the new bound compared with that in
Theorem 2.1, we consider the data generated in Example 2.8 later in this section. For
6n = 1020, in Figure 2.1 we report the magnitude in logarithmic scale of the entries of
the 500th column of the solution X, log10(\bigcup X \bigcup i,500), i = 1, . . . ,6n (solid line), together
with the corresponding computed bounds in (2.2) (dashed line) and in (2.3) (dashed
and dotted line). The new bound correctly captures the decay of the entries, while
(2.2) predicts a misleading almost flat slope.

Since A and \scrA are both SPD, (1.1) can be solved by CG applied to its Kronecker
form (2.1). In fact, the matrix-oriented CG method can be implemented by directly
employing n×n matrices, in agreement with similar matrix-oriented strategies in the
literature; see, e.g., [27] for an early presentation.

An implementation of the procedure is illustrated in Algorithm 1.
Several properties of Algorithm 1 can be observed. For instance, since D is

symmetric, it is easy to show that all the iterates, Wk,Xk, Pk,Rk, are symmetric
for all k if a symmetric X0 is chosen. This implies that only one matrix-matrix
multiplication by A in line 2 is needed. Indeed, if Sk ∶= APk−1, then Wk = APk−1 +
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LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3585

Algorithm 1: CG for the Lyapunov matrix equation.

input : A ∈ \BbbR n×n, A SPD, D,X0 ∈ \BbbR n×n with banded storage, \epsilon res > 0, mmax

output: Xk ∈ \BbbR n×n

\bfone Set R0 =D −AX0 −X0A, P0 = R0

for k = 1,2, . . . ,mmax do
\bftwo Wk = APk−1 + Pk−1A

\bfthree \alpha k =
\prod Rk−1\prod 2F

\coprod Pk−1,Wk\widetilde F
\bffour Xk =Xk−1 + Pk−1\alpha k
\bffive Rk = Rk−1 −Wk\alpha k
\bfsix if \prod Rk\prod F \Uparrow \prod R0\prod F < \epsilon res then
\bfseven Stop

end

\bfeight \beta k =
\prod Rk\prod 2F
\prod Rk−1\prod 2F

\bfnine Pk = Rk + Pk−1\beta k
end

Pk−1A = APk−1 + (APk−1)
T = Sk + S

T
k . Furthermore, only the lower---or upper---

triangular part of the iterates needs to be stored, leading to some gain in terms of
both memory requirements and number of floating point operations (flops). Various
algebraic simplifications can be implemented for the matrix inner products and the
Frobenius norms in lines 3, 6, 8 as well as for the matrix-matrix products in line 2.

We next show that all the matrices involved in Algorithm 1 are banded matrices,
with bandwidth linearly depending on k, the number of iterations performed so far.
This matrix-oriented procedure is effective in maintaining the banded structure as
long as k is moderate, which is related to the conditioning of the coefficient matrix.

Proposition 2.4. If X0 = 0, all of the iterates generated by Algorithm 1 are
banded matrices and, in particular,

\beta Wk
≤ k\beta A + \beta D, \beta Xk

≤ (k − 1)\beta A + \beta D, \beta Rk
≤ k\beta A + \beta D, \beta Pk

≤ k\beta A + \beta D.

Proof. We first focus on the effects of Algorithm 1 on the bandwidth of the current
iterates. We recall that if G,H ∈ \BbbR n×n are banded matrices with bandwidth \beta G, \beta H ,
respectively, the matrix GH has bandwidth at most \beta G + \beta H . The multiplication by
A in line 2 of Algorithm 1 is the only step that increases the iterate bandwidth at
iteration k; therefore, we have \beta Wk

≤ \beta A + \beta Pk−1
, \beta Xk

≤ max{\beta Xk−1
, \beta Pk−1

}, \beta Rk
≤

max{\beta Rk−1
, \beta Wk

}, and \beta Pk
≤max{\beta Rk

, \beta Pk−1
}.

We now demonstrate the statement by induction on k. Since X0 = 0, R0 =D and
\beta R0 = \beta P0 = \beta D. Moreover, for k = 1,

\beta W1 ≤ \beta A + \beta D, \beta R1 ≤max{\beta R0 , \beta W1} ≤ \beta A + \beta D,

\beta X1 = \beta D, \beta P1 ≤max{\beta R1 , \beta P0} ≤ \beta A + \beta D.
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Supposing that the statement holds for k = j − 1 > 1, we prove it for k = j:

\beta Wj ≤ \beta A + \beta Pj−1 ≤ \beta A + (j − 1)\beta A + \beta D = j\beta A + \beta D,

\beta Xj ≤max(\beta Xj−1 , \beta Pj−1) ≤ \beta Pj−1 ≤ (j − 1)\beta A + \beta D,

\beta Rj ≤max(\beta Rj−1 , \beta Wj) ≤ \beta Wj ≤ j\beta A + \beta D,

\beta Pj ≤max(\beta Rj , \beta Pj−1) ≤ \beta Rj ≤ j\beta A + \beta D.

A similar result can be shown if X0 is a banded matrix. Theorem 2.4 implies that
after k iterations all iterates are banded matrices with bandwidth at most k\beta A + \beta D.
Moreover, only their lower (or upper) triangular parts are stored so that the number
of nonzero entries of each iterate is at most

n +
k\beta A+\beta D

∑
i=1

(n − i) = n + (k\beta A + \beta D)n −
1

2
(k\beta A + \beta D)(k\beta A + \beta D − 1) = \scrO (n).

Exploiting Theorem 2.4, it can be shown that the computational cost of Algorithm
1 linearly scales with the problem size n. This is a major savings over the matrix-
oriented version of the algorithm, compared with its standard vector-oriented coun-
terpart with \scrA , which would require \scrO (n2) operations per iteration.

Corollary 2.5. For small values of k, the computational cost of the kth iteration
of Algorithm 1 amounts to \scrO (n) flops.

Proof. We first notice that if G,H ∈ \BbbR n×n are banded matrices with bandwidth
\beta G, \beta H , respectively, the matrix-matrix product GH costs \scrO (n(2\beta G + 1)(2\beta H + 1))
flops. Therefore, the number of operations required by line 2 of Algorithm 1 is

\scrO (2n(2\beta A + 1)(2\beta Pk+1
+ 1)) = \scrO (2n(2\beta A + 1)(2(k\beta A + \beta D) + 1)) = \scrO (8k\beta 2

An) .

Similarly, matrix-matrix products with banded matrices determine the matrix inner
products \coprod ⋅, ⋅\widetilde F and thus the Frobenius norms \prod ⋅ \prod F in lines 3 and 8. Finally, again
the summations in lines 4, 5, and 9 require a number of operations on the order of
the number of nonzero entries of the matrices involved; that is, \scrO (n).

For a given tolerance, we can predict the number of iterations required by CG to
converge and thus the bandwidth of the computed numerical solution. To this end,
classical CG convergence results (see, e.g., [2, section 13.2.1]) can be applied.

Theorem 2.6 (see [2, equation (13.12)]).2 Let errj ∶= \prod vec(X∗)−vec(Xj)\prod \scrA be the
error in the energy norm associated with the exact solution X∗ to (1.1). Moreover,

let \sigma =
1−
\biggl\lceil 
\kappa (\scrA )−1

1+
\biggl\lceil 
\kappa (\scrA )−1

. Then, for a given tolerance \epsilon res, the matrix X\=k computed by

performing \=k iterations of Algorithm 1, with

(2.4) \=k = \biggl\lfloor log (\epsilon −1res +
\biggl\lceil 
\epsilon −2res − 1) \Uparrow log(\sigma −1)\biggr\} ,

is such that
err\=k
err0

≤ \epsilon res.

Corollary 2.7. With the notation above, it holds that \sigma =
1−
\biggl\lceil 
\kappa (A)−1

1+
\biggl\lceil 
\kappa (A)−1

. Moreover,

for \=k as in (2.4), X\=k is banded with bandwidth \beta X\=k
≤ (\=k − 1)\beta A + \beta D.

2Since \scrA is SPD, \scrK (S) = \rho =K = 1 in [2, equation (13.12)].
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Proof. Both A and \scrA are SPD. Moreover, it is well known that \kappa (\scrA ) = \lambda max(\scrA )
\lambda min(\scrA ) =

2\lambda max(A)
2\lambda min(A) = \kappa (A). The result follows by recalling from Theorem 2.4 that X\=k is a

banded matrix such that \beta X\=k
≤ (\=k − 1)\beta A + \beta D.

When A is well conditioned, the simple matrix-oriented CG typically outperforms
more sophisticated methods proposed in the very recent literature. A typical situation
is reported in the next example.

Example 2.8. We consider an example from [25], where A = M ⊗ I6 + In ⊗ L ∈

\BbbR 6n×6n, M = tridiag(e, e, e) ∈ \BbbR n×n, L = tridiag(e, a − e, e) ∈ \BbbR 6×6, e = −0.34, and
a = 1.36. The right-hand side is D = Q ⊗ 11T + 0.8I6n, where 1 ∈ \BbbR 6 is the vector
of all ones and Q = tridiag(0.1,0.2,0.1) ∈ \BbbR n×n; note the change of sign in A and
D compared with [25]. Both matrices A and D are block tridiagonal with blocks of
size 6 and \beta A = 6, \beta D = 11. Thanks to the Kronecker structure of A, it is easy to
provide an estimate of its condition number which turns out to be independent of
n as \lambda max(A) = \lambda max(M) + \lambda max(L) and \lambda min(A) = \lambda min(M) + \lambda min(L). Since M
and L are tridiagonal Toeplitz matrices, we can explicitly compute their spectrum:
\lambda max(L) = a−e+2\bigcup e\bigcup cos(

\pi 
7
), \lambda min(L) = a−e+2\bigcup e\bigcup cos(

6
7
\pi ), \lambda max(M) = e+2\bigcup e\bigcup cos( \pi 

n+1),
and \lambda min(M) = e + 2\bigcup e\bigcup cos( n

n+1\pi ); see, e.g., [40]. Therefore,

\kappa (A) =
\lambda max(A)

\lambda min(A)
=

a + 2\bigcup e\bigcup (cos(\pi 
7
) + cos( \pi 

n+1))

a + 2\bigcup e\bigcup (cos( 6
7
\pi ) + cos( n

n+1\pi ))
=
a + 2\bigcup e\bigcup (cos(\pi 

7
) + cos( \pi 

n+1))

a − 2\bigcup e\bigcup (cos(\pi 
7
) + cos( \pi 

n+1))

≤
a + 2\bigcup e\bigcup (cos(\pi 

7
) + 1)

a − 2\bigcup e\bigcup (cos(\pi 
7
) + 1)

≤ 40 for all n.

The matrix A is thus well conditioned and Algorithm 1 can be employed in the solution
process. By (2.4), it follows that \=k = 45 iterations will be sufficient to obtain a relative
error (in the energy norm) less than 10−6 for all n. The solution X\=k will be a banded
matrix with bandwidth \beta X\=k

≤ 44 ⋅ \beta A + \beta D = 275.
We next apply Algorithm 1 for different values of n and relative residual tolerance

10−6, and we compare the method performance with that of the second procedure
described in [25]. This method consists of a gradient projection method applied to
minX \prod D−AX −XA\prod 2F , where the initial guess is chosen as a coarse approximation to
the integral in (3.1). We employ the same setting suggested by the authors; see [25]
for details. The results are collected in Table 2.1, where the CPU time is expressed
in seconds. In the first instance, Algorithm 1 is stopped as soon as the relative
residual norm satisfies the stopping criterion. In the second instance, a fixed number
of iterations for Algorithm 1 is used so as to obtain the same final approximate solution
bandwidth as that of the procedure in [25]. With this second instance, we are able to
directly compare the accuracy and efficiency of CG and of the method in [25].

Table 2.1
Algorithm 1 and the second procedure presented in [25] applied to Example 2.8. Results are for

different values of 6n. For CG, the quantity used in the stopping criterion is in bold.

6n CG (Algorithm 1) CG (Algorithm 1) Algorithm [25]
Its. \beta X Time Res. Its. \beta \beta \beta X Time Res. \beta X Time Res.

10200 45 275 17.1 8.4e-7 8 53 0.7 1.2e-1 53 123.1 5.5e-1
102000 45 275 170.8 8.4e-7 8 53 4.6 1.2e-1 53 1880.2 5.5e-1

1020000 45 275 1677.2 8.4e-7 8 53 56.9 1.2e-1 53 23822.9 5.5e-1
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A3588 DAVIDE PALITTA AND VALERIA SIMONCINI

Because the condition number is bounded independently of n, the number of CG
iterations is also bounded by a constant independent of n; this is clearly shown in the
table. Therefore, the total CPU time needed to satisfy a fixed convergence criterion
scales linearly with n. The results illustrated in Table 2.1 show that Algorithm 1
is very effective in terms of CPU time, while it always reaches the desired residual
norm, when this is used as stopping criterion. This is not the case for the algorithm
in [25], which would probably require a finer parameter tuning to be able to meet
all stopping criteria. If the final bandwidth is the stopping criterion, the obtained
accuracy is comparable with the results of the algorithm in [25]; however, CG is many
orders of magnitude faster.

We next compare the memory-saving solution Xk computed by the CG algorithm
to the dense solution X obtained with the Bartels--Stewart method [4] implemented in
MATLAB as the function lyap. To this end, we consider a small problem, 6n = 1020,
and set \epsilon res = 10−6. CG converges in k = 45 iterations providing a solution Xk such
that \beta Xk

= 275. In Figure 2.2 we plot in logarithmic scale the relative magnitude of
the entries of Xk − X, where X is obtained from X by retaining only its first 275
(upper and lower) diagonals.

Fig. 2.2. Decay pattern of the entrywise relative error of the CG approximate solution matrix
(logarithmic scale).

As expected, the error in the approximate solution Xk is concentrated in the
entries of the most external diagonals. Indeed, due to the decay pattern of X, the
largest entries of X are gathered near the main diagonal, and these must be well
approximated to reach the prescribed accuracy. Intuitively, the corresponding entries
of Xk have been refined as the iterations proceed so that they do not contribute to
the entry wise error.

We recommend using the matrix-oriented CG method for well conditioned A,
while for ill conditioned problems we present a new method in the next section.
Nonetheless, in the case of moderately ill conditioned A, one may still want to employ
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CG and apply a preconditioning operator \scrP to further reduce the number of CG
iterations. However, the derivation of such a \scrP is not straightforward in our context.
In addition to reducing the iteration count at low cost, the application of \scrP should
preserve the banded structure of the subsequent iterates. This is surely an interesting
problem to explore; however, it goes beyond the scope of this work.

The situation changes significantly if A is ill conditioned, since a larger number
of iterations will be required to determine a sufficiently good approximation. This
difficulty is not a peculiarity of the method, but rather it reflects the fact that the exact
solutionX cannot be well represented by a banded matrix. Therefore, any acceleration
strategy to reduce the CG iteration count will necessarily end up constructing a denser
approximation. In this case, a different strategy needs to be devised, and this is
discussed in the next section.

3. A new method for ill conditioned \bfitA . If A is ill conditioned, the entries of
the solution X to (1.1) do not have, in general, a fast decay away from the diagonal,
so that a banded approximation is usually not sufficiently accurate. By using the
following closed form for the matrix X (see, e.g., [31]),

(3.1) X = ∫

+∞

0
e−tADe−tAdt,

we next derive a splitting of the matrix X that leads to a memory-saving approxima-
tion. The simple proof is reported for the sake of completeness, as the result without
proof is stated by Kailath as an exercise3 in [29, Exercise 2.6-1].

Theorem 3.1. Let X(\tau ) = ∫
\tau 
0 e−tADe−tAdt, for \tau > 0, so that X ≡ X(+∞). For

\tau > 0 the matrix X in (3.1) can be written as

(3.2) X =X(\tau ) + e−\tau AXe−\tau A.

Proof. We can split X as X = ∫
\tau 
0 e−tADe−tAdt+∫

+∞
\tau e−tADe−tAdt, where the first

term is X(\tau ). Performing the change of variable t = s + \tau , it holds that

∫

+∞

\tau 
e−tADe−tAdt = ∫

+∞

0
e−(s+\tau )ADe−(s+\tau )Ads

= e−\tau A ∫
+∞

0
e−sADe−sAdse−\tau A = e−\tau AXe−\tau A.

The splitting in (3.2) emphasizes two terms in the solution matrix X. If \tau is
sufficiently large and the eigenvalues of A present a global decay, the second term is
clearly numerically low rank, since e−\tau A is numerically low rank. Depending on the
magnitude of \tau A, the following theorem, Theorem 3.2 (proved in [11]), ensures that
the first term is banded. As a result, Theorem 3.1 provides a splitting of X between
its banded and numerically low-rank parts. Our new method aims at approximating
these two terms separately so as to limit memory consumption.

Theorem 3.2 (see [11]). Let M be Hermitian positive semidefinite with eigen-
values in the interval \bigl( 0,4\rho \bigr\rfloor . Assume, in addition, that M is \beta M -banded. For k ≠ \ell ,
let \xi = \biggl[ \bigcup k − \ell \bigcup \Uparrow \beta M \biggr\rceil ; then

(i) For \rho t ≥ 1 and
\biggr\rfloor 
4\rho t ≤ \xi ≤ 2\rho t, \bigcup (e−tM)k,\ell \bigcup ≤ 10 e−

\xi 2

5\rho t .

(ii) For \xi ≥ 2\rho t, \bigcup (e−tM)k,\ell \bigcup ≤ 10 e
−\rho t

\rho t
(
e\rho t
\xi 
)
\xi 
.

3We thank a referee for citing an article pointing to Kailath's book for this result.
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In our setting, Theorem 3.2 can be applied to e−t(A−\lambda minI) by appropriately scal-
ing the original matrix e−tA. For small t, Theorem 3.2 ensures that e−tA has small
components away from the diagonal so that it can be well approximated by a banded

matrix, e−tA
⋀

≈ e−tA; the product e−tA
⋀

De−tA
⋀

is still banded.
With these considerations in mind, we are going to approximate X by estimating

the two quantities X(\tau ), e−\tau AXe−\tau A in (3.2), for a suitable \tau > 0, that is,

X =X(\tau ) + e−\tau AXe−\tau A ≈XB +XL,

where the banded matrix XB approximates the fast decaying portion X(\tau ), while XL

approximates the numerically low-rank part e−\tau AXe−\tau A.

3.1. Approximating \bfitX (\bfittau ) by a banded matrix. The approximation of the
first term by a banded matrix is obtained with the following steps:

(i) We first replace the integral in X(\tau ) by an adaptive quadrature formula.
(ii) We approximate the two exponential matrix functions by rational counter-

parts, using a partial fraction expansion.
(iii) We truncate the elementary terms in the partial fraction expansion to banded

form.
The a priori accuracy of the first two steps can be estimated by using well estab-

lished results in the literature applied to the eigendecomposition of A. In the third
step, terms of the type (tiA − \xi jI)

−1 are dense; however, recent theoretical results
ensure that they can be approximated with banded matrices by truncation.

We start with step (i), that is,

(3.3) X(\tau ) = ∫
\tau 

0
e−tADe−tAdt ≈

\tau 

2

\ell 

∑
i=1
\omega ie

−tiADe−tiA,

where ti =
\tau 
2
xi+

\tau 
2
, while xi, \omega i are, respectively, the nodes and weights of the formula;

in our experiments we considered a matrix-oriented version of the adaptive Gauss--
Lobatto quadrature in [23, section 4.5] with given tolerance \epsilon quad.

As for step (ii), rational functions provide very accurate approximations to the
matrix exponential e−tiA ≈ \scrR \nu (tiA); see, e.g., [3, 16, 41]. In our setting rational
Chebyshev functions in \BbbR + appear to be appropriate. They admit the following partial
fraction expansion:

(3.4) \scrR \nu (tiA) =
\nu 

∑
j=1

\theta j(tiA − \xi jI)
−1,

where \theta j , \xi j ∈ \BbbC are its weights and (distinct) poles, respectively. For A real, the poles
\xi j are complex conjugate, yielding the simplified form

(3.5) \scrR \nu (tiA) =
\nu −1
∑
j=1,
j odd

2Re (\theta j (tiA − \xi jI)
−1
) + \theta \nu (tiA − \xi \nu I)

−1
,

where \xi \nu is the real pole of \scrR \nu if \nu is odd. The formula is well defined. Indeed, since
A is symmetric, the matrix tiA − \xi jI is invertible if \xi j has a nonzero imaginary part.
In the case of a real \xi \nu , a direct computation shows that \xi \nu < 0 for \nu ∈ {1, . . . ,13},4

4The computation of \xi j , \theta j can be carried out by using the polynomial coefficients listed in [17,
Tab. III] for \nu = 1, . . . ,14. See also section 3.2.
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\nu odd, so that tiA − \xi \nu I is nonsingular as well. We refer the reader to section 3.2
for details on the computation of the weights and poles of the rational Chebyshev
function (3.4). The number \nu of terms in (3.4) is closely related to the accuracy of
the computed approximation. Indeed, it holds (see, e.g., [16]) that

sup
\lambda ≥0

\bigcup e−\lambda −\scrR \nu (\lambda )\bigcup ≈ 10−\nu ;

a similar estimate holds for \prod e−tiA − \scrR \nu (tiA)\prod 2 for A SPD and ti ≥ 0. Indeed, if
A = Q\Lambda QT , \Lambda = diag(\lambda 1, . . . , \lambda n) denotes the eigendecomposition of A, it holds that

\prod e−A −\scrR \nu (A)\prod 2 = \prod e
−\Lambda 

−\scrR \nu (\Lambda )\prod 2 = max
i=1,...,n

\bigcup e−\lambda i −\scrR \nu (\lambda i)\bigcup .

Few terms are thus needed to obtain a quite accurate approximation for our purposes.
The rational function approximation (3.5) requires the computation of several

inverses of the form (tiA− \xi jI)
−1 for all i = 1, . . . , \ell , j = 1, . . . , \nu , which are, in general,

dense. This leads to the third approximation step above; that is, a banded approxima-

tion (tiA − \xi jI)
−1
⋀

≈ (tiA − \xi jI)
−1 with bandwidth much smaller than n. The quality

of this approximation is ensured by the following result, which takes full advantage
of the fact that the shifts \xi js are complex.

Proposition 3.3 (see [21]). Let M = \upsilon 1I + \upsilon 2M0 be \beta M -banded with M0 Her-
mitian and \upsilon 1, \upsilon 2 ∈ \BbbC . Define a ∶= (\lambda max(M) + \lambda min(M))\Uparrow (\lambda max(M) − \lambda min(M)) and

R ∶= \alpha +
\biggr\rfloor 
\alpha 2 − 1 with \alpha = (\bigcup \lambda max(M)\bigcup + \bigcup \lambda min(M)\bigcup )\Uparrow \bigcup \lambda max(M) − \lambda min(M)\bigcup . Then,

(3.6) \biguplus (M−1)
p,q
\biguplus ≤

2R

\bigcup \lambda max(M) − \lambda min(M)\bigcup 
B(a) (

1

R
)

\bigcup p−q\bigcup 
\beta M

, p ≠ q,

where, writing a = \zeta R cos(\psi ) + i\eta R sin(\psi ),

B(a) ∶=
R

\eta R
\biggl\lceil 
\zeta 2R − cos2(\psi )(\zeta R +

\biggl\lceil 
\zeta 2R − cos2(\psi ))

,

with \zeta R = (R + 1\Uparrow R)\Uparrow 2 and \eta R = (R − 1\Uparrow R)\Uparrow 2.

If spectral estimates are available, the entry decay of (tiA−\xi jI)
−1 can be cheaply

predicted by means of (3.6), so that the sparsity pattern of the banded approximation

(tiA − \xi jI)
−1
⋀

to (tiA − \xi jI)
−1 can be estimated a priori during its computation. The

actual procedure to determine (tiA − \xi jI)
−1
⋀

is discussed in section 3.2.
The matrix exponential e−tiA in (3.3) is thus approximated by

\scrR 
⋀

\nu (tiA) ∶=
\nu −1
∑
j=1

2Re (\theta j(tiA − \xi jI)
−1
⋀

) + \theta \nu (tiA − \xi \nu I)
−1
⋀

≈\scrR \nu (tiA) , i = 1, . . . , \ell .

We notice that the entries of the most external diagonals of R
⋀

\nu (tiA) might be small

in magnitude. To further reduce the bandwidth of R
⋀

\nu (tiA), we thus suggest setting

to zero those components of R
⋀

\nu (tiA) that are smaller than \epsilon quad; that is, we replace

the matrix R
⋀

\nu (tiA) with the matrix \̃scrR \nu (tiA) defined as follows:
(3.7)

\̃scrR \nu (tiA) ∶= R
⋀

\nu (tiA) −Ei, (Ei)k,j ∶=

\bigr) \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr] 

(R
⋀

\nu (tiA))
k,j

if \bigwedge (R
⋀

\nu (tiA))
k,j
\bigwedge < \epsilon quad,

0 otherwise.
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Collecting all of these observations, we have

(3.8) X(\tau ) ≈
\tau 

2

\ell 

∑
i=1
\omega i\̃scrR \nu (tiA)D\̃scrR \nu (tiA) =∶XB ,

and the bandwidth \beta XB
of XB is such that \beta XB

≤ 2maxi{\beta \̃scrR \nu (tiA)}+\beta D. The overall
procedure for computing XB is illustrated in Algorithm 2.

Algorithm 2: Numerical approximation of X(\tau ).

input : A ∈ \BbbR n×n, A SPD, D ∈ \BbbR n×n, \nu ∈ \BbbN , \epsilon B , \epsilon quad, \tau > 0
output: XB ∈ \BbbR n×n, XB ≈X(\tau )

\bfone Compute ti, \omega i, i = 1, . . . , \ell , for the Gauss--Lobatto formula (3.3)
\bftwo Compute \xi j , \theta j , j = 1, . . . , \nu , for the rational Chebyshev approximation (3.4)
\bfthree Set XB = 0
for i = 1, . . . , \ell do

\bffour For j = 1, . . . , \nu compute (tiA − \xi jI)
−1
⋀

\bffive Set R
⋀

\nu (tiA) ∶= ∑
\nu −1
j=1 2Re (\theta j(tiA − \xi jI)

−1
⋀

) + \theta \nu (tiA − \xi \nu I)
−1
⋀

\bfsix Compute \̃scrR \nu (tiA) as in (3.7)

\bfseven Set XB =XB + \omega i\̃scrR \nu (tiA)D\̃scrR \nu (tiA)

end
\bfeight Set XB = \tau 

2
XB

3.2. Implementation details for computing \bfitX \bfitB . In this section we illus-
trate some details to efficiently implement Algorithm 2.

For given coefficients of the numerator and denominator polynomials (see, e.g.,
[17]), the weights and poles of the rational Chebyshev function (3.4) can be computed
by the residue theorem, implemented in MATLAB via the function residue.

The approximation of (tiA− \xi jI)
−1 for all considered i's and j's is the most time

consuming part of the process to obtain XB . This is performed by using a sparse
approximate inverse approach, which has been extensively studied in the context of
preconditioning techniques for solving large scale linear systems; see, e.g., [12, 9, 13].
Furthermore, many packages such as SPAI5 and FSAIPACK6 are available online for
its computation. Unfortunately, open software seldom handles complex arithmetic,
as occurs here whenever the poles have nonzero imaginary part.

With the notation in Proposition 3.3, we have

\biguplus ((tiA − \xi jI)
−1)

p,q
\biguplus ≤

2R

\bigcup \lambda 2 − \lambda 1\bigcup 
B(a) (

1

R
)

\bigcup p−q\bigcup 
\beta A

, p > 1,

and this allows us to explicitly compute only those entries that are above a given
tolerance, taking symmetry into account.

For every column q = 1, . . . , n, we compute \=pq (ti, \xi j) such that

(3.9) \=pq (ti, \xi j) = argmin

\bigr) \bigr\rceil \bigr\rceil 
\bigr\rfloor 
\bigr\rceil \bigr\rceil \bigr] 

p > 1, s.t.
2R

\bigcup \lambda 2 − \lambda 1\bigcup 
B(a) (

1

R
)

\bigcup p−q\bigcup 
\beta A

≤ \epsilon B

\bigl[ \bigr\rceil \bigr\rceil 
\bigl\lceil 
\bigr\rceil \bigr\rceil \bigl\lfloor 

,

5https://cccs.unibas.ch/lehre/software-packages/
6http://hdl.handle.net/11577/3132741

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 https://cccs.unibas.ch/lehre/software-packages/
http://hdl.handle.net/11577/3132741


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3593

where \epsilon B is a given threshold. Defining \bigg\backslash pq (ti, \xi j) ∶=min{n, q+ \=pq (ti, \xi j)}, we calculate
((tiA − \xi jI)

−1)
p,q
, q = 1, . . . , n, p = q, . . . ,\bigg\backslash pq(ti, \xi j) that are the most meaningful en-

tries of tiA−\xi jI. Indeed, only for these indices, it holds that \bigcup ((tiA − \xi jI)
−1)

p,q
\bigcup ≥ \epsilon B .

To this end, we perform a complex (symmetric) LDLt factorization of tiA− \xi jI, that
is, tiA − \xi jI = L(ti, \xi j)D(ti, \xi j)L(ti, \xi j)

T , and solve

(3.10) L(ti, \xi j)D(ti, \xi j)L(ti, \xi j)
T sq = eq, q = 1, . . . , n.

We do not compute all entries of sq but only those in position r, r = q, . . . ,\bigg\backslash pq (ti, \xi j),
suitably performing the forward-and-backward substitutionwithL(ti, \xi j) andL(ti, \xi j)

T ,
respectively. The computed sq approximates the qth column of (tiA− \xi jI)

−1. In par-
ticular, (sq)r = ((tiA − \xi jI)

−1eq)r for r = q, . . . ,\bigg\backslash pq (ti, \xi j).

If S = \bigl( s1, . . . , sn\bigr\rfloor and s denotes its diagonal, we define (tiA − \xi jI)
−1
⋀

∶= S +

ST − diag(s), and it holds that \prod (tiA − \xi jI)
−1
⋀

− (tiA − \xi jI)
−1\prod max < \epsilon B . Moreover,

(tiA − \xi jI)
−1
⋀

is a banded matrix with bandwidth

\beta 
(tiA − \xi jI)

−1
⋀= max

q=1,...,n
\bigg\backslash pq (ti, \xi j).

Therefore, the bandwidth of the final approximation XB in (3.8) will be such that
\beta XB

≤ 2maxi,j \beta 
(tiA − \xi jI)

−1
⋀+ \beta D.

The overall procedure is summarized in Algorithm 5, where complex arithmetic is
necessary due to the presence of the shift \xi j . The computational cost of the complete
algorithm is proportional to the problem size n. Indeed, since tiA−\xi jI is a \beta A-banded
matrix, the computation of L(ti, \xi j) and D(ti, \xi j) requires \scrO (n\beta A) flops. Notice that
the computational core of Algorithm 5 consists of inner products with vectors of length
(at most) \bigg\backslash pq (ti, \xi j)− q + 1. Therefore, the computation of the \bigg\backslash pq (ti, \xi j)− q + 1 entries
of sq costs \scrO (\bigg\backslash pq (ti, \xi j) − q) flops. The overall computational cost of (3.10), for all q,
thus amounts to \scrO (nmaxq{\bigg\backslash pq (ti, \xi j) − q}) flops.

The matrix (tiA − \xi jI)
−1
⋀

needs to be computed for all i = 1, . . . , \ell , j = 1, . . . , \nu ,
leading to a computational cost of \scrO (n\ell \nu maxq,i,j{\bigg\backslash pq (ti, \xi j) − q}) flops. Moreover,

thanks to the observation in (3.5), we can compute (tiA − \xi jI)
−1
⋀

, for i = 1, . . . , \ell , and

only a few terms in j. Fixing i ∈ {1, . . . , \ell }, the matrices (tiA − \xi jI)
−1
⋀

, j = 1, . . . , \nu ,
j odd, are computed in parallel, thus decreasing the cost of the overall procedure to
\scrO (n\ell maxq,i,j{\bigg\backslash pq (ti, \xi j) − q}) flops.

Optimal parameter \nu and thresholds \epsilon B , \epsilon quad requested by Algorithm 2 may
be tricky to determine in an automatic manner. Our numerical experience seems to
suggest that by setting \epsilon B = \epsilon quad and \nu = \bigl\langle log(1\Uparrow \epsilon quad)\big\backslash − 1, the performance is not
affected, while we are able to save the user from selecting two more parameters. With
these choices we observed that \prod e−tiA − \̃scrR \nu (tiA)\prod 2 ≈ \epsilon quad, and this accuracy is also
maintained by the adaptive quadrature formula.

3.3. Approximating \bfite −\bfittau \bfitA \bfitX \bfite −\bfittau \bfitA by a low-rank matrix. We next turn our
attention to the second component in (3.2), e−\tau AXe−\tau A. We show that for large \tau 
this matrix can be well approximated by a low-rank matrix. In the following, we shall
assume that the eigenvalues of the SPD matrix A decay more than linearly, so as to
ensure the low numerical rank of e−\tau A for \tau sufficiently large.

Proposition 3.4. Let \lambda 1 ≥ ⋯ ≥ \lambda n > 0 be the eigenvalues of A and X as in
(3.1). Then, rank(e−\tau AXe−\tau A)↘ 0 as \tau → +∞, and there exists a matrix XL ∈ \BbbR n×n,
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A3594 DAVIDE PALITTA AND VALERIA SIMONCINI

rank(XL) = \=\ell < n, such that

(3.11) \prod e−\tau AXe−\tau A −XL\prod 
2
2 ≤

3

4\lambda 2n
e−2\tau (\lambda n+\lambda n−\=\ell )\prod D\prod 2F .

Proof. Let A = Q\Lambda QT with \Lambda = diag (\lambda 1, . . . , \lambda n) be the eigendecomposition of A.
Then, we can write e−\tau AXe−\tau A = Qe−\tau \Lambda (QTXQ)e−\tau \Lambda QT = Qe−\tau \Lambda Y e−\tau \Lambda QT , where
Y ∈ \BbbR n×n is such that \Lambda Y + Y \Lambda = QTDQ. We notice that e−\tau \lambda i ≤ e−\tau \lambda j for all j ≤ i
and e−\tau \lambda i → 0, \tau → +∞, for all i = 1, . . . , n. Hence, e−\tau AXe−\tau A = Qe−\tau \Lambda Y e−\tau \Lambda QT is
numerically low rank as \tau → +∞, since rank(e−\tau \Lambda ) = rank (diag(e−\tau \lambda 1 , . . . , e−\tau \lambda n))↘ 0
as \tau → +∞.

For a fixed \=\ell , we consider the partition Q = \bigl( Q1,Q2\bigr\rfloor , Q1 ∈ \BbbR n×(n−\=\ell ),Q2 ∈ \BbbR n×\=\ell ,
e−\tau \Lambda = blkdiag(e−\tau \Lambda 1 , e−\tau \Lambda 2), \Lambda 1 = diag(\lambda 1, . . . , \lambda n−\=\ell ),\Lambda 2 = diag(\lambda n−\=\ell +1, . . . , \lambda n), and
Y = \bigl( Y11, Y12;Y21, Y22\bigr\rfloor with blocks Yst, s, t = 1,2, of conforming dimensions, that is,
Yst is the solution of the Sylvester equation \Lambda sYst +Yst\Lambda t = Q

T
s DQt, s, t = 1,2. Then,

e−\tau AXe−\tau A = Qe−\tau \Lambda Y e−\tau \Lambda QT = \bigl( Q1,Q2\bigr\rfloor \bigl\lfloor 
e−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \bigl\lfloor Y11 Y12

Y21 Y22
\bigr\} \bigl\lfloor e

−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \bigl\lfloor Q

T
1

QT
2
\bigr\} .

Defining XL ∶= Q2e
−\tau \Lambda 2Y22e

−\tau \Lambda 2QT2 , rank(XL) = \=\ell , we have

\prod e−\tau AXe−\tau A −XL\prod 
2
2 = \biguplus \bigl( Q1,Q2\bigr\rfloor \bigl\lfloor 

e−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \bigl\lfloor 
Y11 Y12
Y21 0

\bigr\} \bigl\lfloor 
e−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \bigl\lfloor 
QT1
QT2

\bigr\} \biguplus 

2

2

= \biguplus \bigl\lfloor 
e−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \bigl\lfloor 
Y11 Y12
Y21 0

\bigr\} \bigl\lfloor 
e−\tau \Lambda 1

e−\tau \Lambda 2
\bigr\} \biguplus 

2

2

≤ (\prod e−\tau \Lambda 1Y11e
−\tau \Lambda 1\prod 2 + \prod e

−\tau \Lambda 2Y21e
−\tau \Lambda 1\prod 2 + \prod e

−\tau \Lambda 1Y12e
−\tau \Lambda 2\prod 2)

2

≤ (e−2\tau \lambda n−\=\ell \prod Y11\prod 2 + e
−\tau (\lambda n+\lambda n−\=\ell )\prod Y21\prod 2 + e

−\tau (\lambda n+\lambda n−\=\ell )\prod Y12\prod 2)
2

≤ (e−2\tau \lambda n−\=\ell \prod Y11\prod F + e
−\tau (\lambda n+\lambda n−\=\ell )\prod Y21\prod F + e

−\tau (\lambda n+\lambda n−\=\ell )\prod Y12\prod F )
2

≤ (e−2\tau \lambda n−\=\ell + 2e−\tau (\lambda n+\lambda n−\=\ell ))
2
\prod Y \prod 2F

≤ (e−\tau \lambda n−\=\ell + 2e−\tau \lambda n)
2
e−2\tau \lambda n−\=\ell \prod Y \prod 2F ≤ 3e−2\tau (\lambda n+\lambda n−\=\ell )\prod Y \prod 2F .

Since Y is such that \Lambda Y +Y \Lambda = QTDQ, it holds that \prod Y \prod 2F ≤
\prod D\prod 2F
4\lambda 2

n
. Therefore, we can

write

\prod e−\tau AXe−\tau A −XL\prod 
2
2 ≤

3

4\lambda 2n
e−2\tau (\lambda n+\lambda n−\=\ell )\prod D\prod 2F .

The proof is constructive, since it provides an explicit form for XL, that is, XL =

Q2e
−\tau \Lambda 2Y22e

−\tau \Lambda 2QT2 , where \Lambda 2 contains the \=\ell eigenvalues closest to the origin, and the
columns of Q2 constitute the associated invariant subspace basis; Y22 is the solution
of a reduced Lyapunov equation.

Depending on the eigenvalue distribution, Proposition 3.4 shows that a good ap-
proximation may be obtained by using only a few of the eigenvectors of A, where,
however, \=\ell is not known a priori. Moreover, the computation of \=\ell eigenpairs of a
large matrix, though SPD and banded, may be too expensive. We thus propose
employing a Krylov subspace type procedure to capture information on the rele-
vant portion of the eigendecomposition of A. More precisely, let Km(A

−1, v) ∶=

Range(\bigl( v,A−1v, . . . ,A−m+1v\bigr\rfloor ), where v ∈ \BbbR n is a random vector with unit norm,
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LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3595

let the columns of Vm = \bigl( v1, . . . , vm\bigr\rfloor ∈ \BbbR n×m, m ≪ n, be an orthonormal basis of
Km(A

−1, v), and let Km = V TmAVm. If Vm is such that e−\tau A ≈ Vme
−\tau KmV Tm , then we

approximate

(3.12) e−\tau AXe−\tau A ≈ Vm (e−\tau Km (V TmXVm) e
−\tau Km)V Tm .

The use of A−1 in the definition of the Krylov subspace Km(A
−1, v) is geared towards

a fast approximation of the smallest eigenvalues of A and the associated eigenvectors,
particularly suitable for the approximation of the exponential [42]. Since e−\tau A and A
commute, we observe that e−\tau AXe−\tau A solves the Lyapunov equation

Ae−\tau AXe−\tau A + e−\tau AXe−\tau AA = e−\tau ADe−\tau A.

Substituting the approximation in (3.12) we can define the following residual matrix:

\scrT m = AVme
−\tau Km(V TmXVm)e

−\tau KmV Tm + Vme
−\tau Km(V TmXVm)e

−\tau KmV TmA

−Vme
−\tau Km(V TmDVm)e

−\tau KmV Tm .

To complete the approximation, we need to replace V TmXVm with some easily com-
putable quantity Zm ≈ V TmXVm, so that the final approximation will be

e−\tau AXe−\tau A ≈ Vm (e−\tau KmZme
−\tau Km)V Tm .

To this end, we impose the standard matrix Galerkin condition on the residual matrix
\scrT m, that is, V Tm\scrT mVm = 0. Explicitly writing all terms in this matrix equation leads
to the solution of the following m ×m Lyapunov equation:

(3.13) KmZm +ZmKm =Dm,

where Dm = V TmDVm; see, e.g., [39]. Note that the matrix exponential terms e−\tau Km

simplify. For m ≪ n, (3.13) could be solved by decomposition-based methods such
as the Bartels--Stewart method [4] or its symmetric version, the Hammarling method
[26]. We opt for the explicit computation, since the eigendecomposition is also used
to get the final matrix Sm. Let Km = \Pi m\Psi m\Pi Tm with \Psi m = diag(\psi 1, . . . , \psi m) be the
eigendecomposition of Km. Plugging these matrices in (3.13) gives

(3.14) \Psi m \bigg\backslash Zm + \bigg\backslash Zm\Psi m = \Pi TmDm\Pi m,

where \bigg\backslash Zm = \Pi TmZm\Pi m. Since \Psi m is diagonal, we can write (\bigg\backslash Zm)i,j =
(\Pi T

mDm\Pi m)
i,j

\psi i+\psi j
.

With \bigg\backslash Zm at hand, and with its eigendecomposition being \bigg\backslash Zm =W\Theta WT , we can set

Sm ∶= Vm (\Pi me
−\tau \Psi mW\Theta 1\Uparrow 2) so that e−\tau AXe−\tau A ≈ SmS

T
m.(3.15)

A rank reduction of Sm can be performed if some of the diagonal elements of \Theta 1\Uparrow 2

fall below a certain tolerance, so that the corresponding columns can be dropped. This
postprocessing gives rise to a thinner matrix Sm, with fewer than m columns.

Assume that the matrix XB in (3.8) already has been computed. Then the space
Km(A

−1, v) is expanded until the residual norm of the original problem,

\prod R\prod F ∶= \prod A(XB + SmS
T
m) + (XB + SmS

T
m)A −D\prod F ,

is sufficiently small. Exploiting the sparsity of XB and the low-rank property of
SmS

T
m, the quantity \prod R\prod F can be computed in \scrO (sn) flops, where s = rank(Sm),
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Algorithm 3: Iterative approximation of e−\tau AXe−\tau A.

input : A ∈ \BbbR n×n, A SPD, D,XB ∈ \BbbR n×n, v ∈ \BbbR n, \tau , \epsilon res, \epsilon it > 0, mmax ∈ \BbbN 
output: Sm, ∈ \BbbR n×s, s≪ n, such that SmS

T
m ≈ e−\tau AXe−\tau A

\bfone Set \mu = \prod D\prod F
\bftwo Set V1 = v\Uparrow \prod v\prod 
for m = 1,2, . . . until convergence do

\bfthree Expand Km = V TmAVm, Dm = V TmDVm
\bffour Compute the eigendecomposition Km = \Pi m\Psi m\Pi Tm
\bffive Solve \Psi m \bigg\backslash Zm + \bigg\backslash Zm\Psi m = \Pi TmDm\Pi m
\bfsix Compute the eigendecomposition \bigg\backslash Zm =W\Theta WT

\bfseven Set Sm ∶= Vm (\Pi me
−\tau \Psi mW\Theta 1\Uparrow 2) and reduce columns if desired

\bfeight Compute \prod R\prod F \Uparrow \prod D\prod F
\bfnine if \prod R\prod F \Uparrow \prod D\prod F < \epsilon res or \bigcup \prod R\prod F − \mu \bigcup \Uparrow \prod R\prod F < \epsilon it or m >mmax then

\bfone \bfzero Stop

end
\bfone \bfone \bigg\backslash v = A−1vm
\bfone \bftwo ṽ ← Orthogonalize \bigg\backslash v w.r.t. Vm
\bfone \bfthree Set vm+1 = ṽ\Uparrow \prod ṽ\prod and Vm+1 = \bigl( Vm, vm+1\bigr\rfloor 

\bfone \bffour Set \mu = \prod R\prod F
end

without the construction of the large and dense matrix R. See section 3.4 for more
details. The overall procedure is summarized in Algorithm 3.

The two-step procedure for the approximation of X provides a threshold for the
final attainable accuracy, in particular for \prod R\prod F . Indeed, assume that XB ≠ X(\tau ).
Then the final residual cannot go below the discrepancy X(\tau ) −XB even if the low-
rank portion of the solution is more accurate. Indeed,

R = A(XB + SmS
T
m) + (XB + SmS

T
m)A −D

= A(XB −X(\tau )) + (XB −X(\tau ))A
\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 

+A(X(\tau ) + SmS
T
m) + (X(\tau ) + SmS

T
m)A −D

\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr] \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 
Rideal

.

The matrix Rideal is the ideal (noncomputable) residual one would obtain if the
banded part were computed exactly, so we obtain

\prod R −Rideal\prod F = \prod A(XB −X(\tau )) + (XB −X(\tau ))A\prod F ≤ 2 \prod A\prod F \prod XB −X(\tau )\prod F .

Therefore, even if SmS
T
m is accurate, \prod R\prod F may stagnate at the level of \prod XB−X(\tau )\prod F .

To limit this stagnation effect, we include a stopping criterion that avoids iterating
when the residual stops decreasing significantly; and in all our numerical experiments
we set \epsilon it = \epsilon quad, where \epsilon quad is related to the accuracy of XB .

3.4. Implementation details for computing the low-rank part of the
solution. We first notice that the update of the matrices Km = V TmAVm, Dm =

V TmDVm in line 3 of Algorithm 3 only requires the addition of one extra column and
row at each iteration. Moreover, for the sake of robustness we perform a full basis
orthogonalization at step 12, though in exact arithmetic this would be ensured by the
symmetry of A. Alternative computationally convenient strategies would include a
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selective orthogonalization [36]. Moreover, the linear systems with A in line 11 can
be solved by, e.g., a sparse Cholesky method.

The computational core of Algorithm 3 is the residual norm calculation in line 8.
The sparsity of XB and the low rank of Sm allow for a cheap evaluation of \prod R\prod F
without the explicit computation of the dense and large R. To this end, we first write
a quite standard Arnoldi-type relation for A holding for the space Km(A

−1, v).

Lemma 3.5. For v ∈ \BbbR n, v ≠ 0, let the columns of Vm be an orthonormal basis of
Km(A

−1, v) generated by the Arnoldi method, so that A−1Vm=VmHm+vm+1hm+1,me
T
m.

Let \eta = \prod (I − VmV
T
m )Avm+1\prod and \bigg\backslash v = (I − VmV

T
m )Avm+1\Uparrow \eta . Then

AVm = \bigl( Vm,\bigg\backslash v\bigr\rfloor Gm, with Gm = \bigl\lfloor 
Im V TmAvm+1
0 \eta 

\bigr\} \bigl\lfloor 
H−1
m

−hm+1,me
T
mH

−1
m
\bigr\} ∈ \BbbR (m+1)×m.

Proof. Consider the Arnoldi relation A−1Vm = Vm+1Hm = VmHm+vm+1hm+1,me
T
m,

whereHm ∈ \BbbR (m+1)×m, (Hm)i,j = hi,j , collects the orthogonalization coefficients stem-
ming from the Arnoldi procedure in lines 11--13 in Algorithm 3. Premultiplying by A
and postmultiplying by H−1

m we get

AVm = VmH
−1
m −Avm+1hm+1,me

T
mH

−1
m = \bigl( Vm,Avm+1\bigr\rfloor \bigl\lfloor 

H−1
m

−hm+1,me
T
mH

−1
m
\bigr\} .

Let \eta \bigg\backslash v ∶= Avm+1 − VmV
T
mAvm+1, where \eta = \prod Avm+1 − VmV

T
mAvm+1\prod 2. Then

Avm+1 = \eta \bigg\backslash v + VmV
T
mAvm+1 = \bigl( Vm,\bigg\backslash v\bigr\rfloor \bigl\lfloor 

V TmAvm+1
\eta 

\bigr\} ,

so that

AVm = \bigl( Vm,Avm+1\bigr\rfloor \bigl\lfloor 
H−1
m

−hm+1,me
T
mH

−1
m
\bigr\} 

= \bigl( Vm,\bigg\backslash v\bigr\rfloor \bigl\lfloor 
Im V TmAvm+1
0 \eta 

\bigr\} \bigl\lfloor 
H−1
m

−hm+1,me
T
mH

−1
m
\bigr\} = \bigl( Vm,\bigg\backslash v\bigr\rfloor Gm,

where Gm ∈ \BbbR (m+1)×(m+1), and Wm ∶= \bigl( Vm,\bigg\backslash v\bigr\rfloor has orthonormal columns by construc-
tion.

Proposition 3.6. With the notation of Lemma 3.5, let Wm = \bigl( Vm,\bigg\backslash v\bigr\rfloor and Sm =

Vm (\Pi me
−\tau \Psi mW\Theta 1\Uparrow 2) =∶ Vm\Delta m. Moreover, let RB = AXB+XBA−D and \gamma = \prod RB\prod F .

Then
\prod R\prod 2 = \gamma 2 + \prod Jm\prod 

2
F + 2 trace (Jm (WT

mRBWm)) ,

where

Jm = \bigl\lfloor 
Im
0

Gm\bigr\} \bigl\lfloor 
0 \Delta m\Delta T

m

\Delta m\Delta T
m 0

\bigr\} \bigl\lfloor 
Im
0

Gm\bigr\} 

T

∈ \BbbR (m+1)×(m+1).

Proof. Recalling that \prod G +H\prod 2F = \prod G\prod 2F + \prod H\prod 2F + 2\coprod G,H\widetilde F , it holds that

\prod R\prod 2F = \prod A(XB + SmS
T
m) + (XB + SmS

T
m)A −D\prod 2F

= \prod ASmS
T
m + SmS

T
mA\prod 

2
F + \prod AXB +XBA −D\prod 2F

+2\coprod ASmS
T
m + SmS

T
mA,AXB +XBA −D\widetilde F .
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The banded matrix RB = AXB +XBA −D and its Frobenius norm can be computed
once and for all at the beginning of Algorithm 3. The computation of the additional
two terms can be cheaply carried out in \scrO (sn) flops. We first focus on the matrix
ASmS

T
m + SmS

T
mA. Denoting \Delta m ∶= \Pi me

−\tau \Psi mW\Theta 1\Uparrow 2, we have

ASmS
T
m + SmS

T
mA = \bigl( Vm,AVm\bigr\rfloor \bigl\lfloor 

0 \Delta m\Delta T
m

\Delta m\Delta T
m 0

\bigr\} \bigl\lfloor 
V Tm
V TmA

\bigr\} .(3.16)

Using Lemma 3.5 we have

ASmS
T
m + SmS

T
mA =Wm \bigl\lfloor 

Im
0

Gm\bigr\} \bigl\lfloor 
0 \Delta m\Delta T

m

\Delta m\Delta T
m 0

\bigr\} \bigl\lfloor 
Im
0

Gm\bigr\} 

T

\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr] \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 
=∶Jm

WT
m,

so that
\prod ASmS

T
m + SmS

T
mA\prod 

2
F = \prod Jm\prod 

2
F ;

only matrices of order (at most) m + 1 are involved in the computation of this norm.
Concerning the computation of \coprod ASmS

T
m + SmS

T
mA,AXB +XBA −D\widetilde F we have

\coprod ASmS
T
m + SmS

T
mA,RB\widetilde F = trace(WmJmW

T
mRB) = trace(JmW

T
mRBWm),

and, similarly to Km and Dm, the matrix WT
mRBWm ∈ \BbbR (m+1)×(m+1) requires only

the two matrix-vector products WT
mRB\bigl( vm,\bigg\backslash v\bigr\rfloor to be updated at each iteration.

Although the computation of the residual norm costs\scrO (sn) flops at each iteration,
lines 8--10 still remain among the most expensive steps of the overall procedure for
solving (1.1), and they are thus performed periodically, say every d iterations.

Remark 3.7. The trace appearing in Proposition 3.6 can be carefully computed by
further exploiting the trace properties and the definition of Jm. Nonetheless, in finite
precision arithmetic cancellations might occur, so additional care should be taken in
case a very small residual tolerance---below the square root of machine precision---is
selected. We did not experience this problem in our numerical tests.

3.5. Complete numerical procedure and the choice of \bfittau . The algorithm
we propose, hereafter called lyap banded, approximates the solution X to (1.1) as
X ≈XB + SmS

T
m, where XB is banded and Sm is low rank. It is important to realize

that unless \tau → +∞, the entries of SmS
T
m contribute in a significant way towards the

solution, and, in particular, to the nonzero entries of the leading banded part of X.
Indeed, even assuming that XB is exact, that is, XB =X(\tau ), we obtain

e−2\tau \lambda max(A) ≤
\prod X −XB\prod 

\prod X\prod 
≤ e−2\tau \lambda min(A),(3.17)

since \prod X −XB\prod = \prod e−\tau AXe−\tau A\prod ≤ \prod e−\tau A\prod 2\prod X\prod = e−2\tau \lambda min(A)\prod X\prod and \prod e−\tau AXe−\tau A\prod ≥
\prod X\prod 

\prod e\tau A\prod 2 = e−2\tau \lambda max(A)\prod X\prod .

The performance of lyap banded crucially depends on the choice of \tau . Indeed,
a large \tau corresponds to a wider bandwidth of X(\tau ) and thus to a possibly too wide
\beta XB

. On the other hand, Proposition 3.4 says that e−\tau AXe−\tau A is numerically low
rank if \tau → +∞. Therefore, if the selected value of \tau is too small, then the numerical
rank of e−\tau AXe−\tau A may be so large that an accurate low-rank approximation is hard
to determine; see Table 5.3 in section 5. A trade-off between the bandwidth of XB
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LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3599

and the rank of Sm has to be sought. To make the action of e−\tau A scaling-independent,
and without loss of generality, (1.1) can be scaled by 1\Uparrow \lambda min(A); this is done in all
our experiments. This seemed to also speed-up the computation of the adaptive
quadrature formula.

To automatically compute a suitable value of \tau we proceed as follows. Intuitively,
we fix a maximum value for \beta XB

and compute the corresponding \tau by using the
decay estimate of Theorem 3.2 applied to X(\tau ). If X(\tau ) is approximated by the
Gauss--Lobatto quadrature formula (3.3), the decay in its off-diagonal entries can be
estimated by that of e−\tau ADe−\tau A (for i = \ell , xi = 1, and ti = \tau in (3.3)). Note that
according to Theorem 3.2, the entries of e−\tau A contribute the most to the bandwidth of
e−tA, t ∈ \bigl( 0, \tau \bigr\rfloor away from the main diagonal, and thus to the right-hand side of (3.3).
In addition, following the discussion at the beginning of section 3, the multiplication
by D does not seem to dramatically influence the final bandwidth of e−\tau ADe−\tau A. Let
us thus focus on the first column of e−\tau A. To apply Theorem 3.2 to e−\tau A we fix a
value \beta max ∈ \BbbN and define \=\xi ∶= \biggl[ \bigcup \beta max − 1\bigcup \Uparrow \beta A\biggr\rceil . For7 \rho = (\lambda max(A) − \lambda min(A))\Uparrow 4 and
\biggr\rfloor 
4\rho \tau ≤ \=\xi ≤ 2\rho \tau , we have

\bigcup (e−\tau A)\beta max,1\bigcup ≤ e
−\tau \lambda min(A)\bigcup (e−\tau (A−\lambda min(A)I))\beta max,1\bigcup ≤ 10 e−

\=\xi 2

5\rho \tau e−\tau \lambda min(A).(3.18)

Similarly, for \=\xi ≥ 2\rho \tau ,

(3.19) \bigcup (e−\tau A)\beta max,1\bigcup ≤ 10
e−\rho \tau 

\rho \tau 
(
e\rho \tau 
\=\xi 
)

\=\xi 

e−\tau \lambda min(A).

Our aim is to estimate for which \tau the quantity \bigcup (e−\tau A)\beta max,1\bigcup is not negligible, while
the components from \beta max + 1 up to n in the same column can be considered as tiny.
Since we would like to have a reasonably large value of \tau while maintaining \beta max

moderate, we only consider the bound (3.18) in our strategy. Indeed, (3.19) requires
\=\xi ≥ 2\rho \tau , hence a very large \beta max, to obtain a sizable value of \tau . Fixing a threshold
\epsilon \tau , we can compute \tau as

(3.20) \tau opt = argmin{t ≥ 0 s.t. \bigcup (e−tA)\beta max,1\bigcup ≥ \epsilon \tau }.

In [11] it has been shown that the bounds in Theorem 3.2 are rather sharp, leading
to correspondingly sharp bounds (3.18)--(3.19). This allows us to save computational
costs by replacing (3.20) with

\tau ∶= argmin{t ≥ 0 s.t. 10 e−
\=\xi 2

5\rho t e−t\lambda min(A) ≥ \epsilon \tau } ≈ \tau opt,

and a direct computation shows that

(3.21) \tau =
1

10\rho \lambda min(A)
(−5\rho log(\epsilon \tau \Uparrow 10) −

\biggr\rceil 

25\rho 2 log2(\epsilon \tau \Uparrow 10) − 20\rho \lambda min(A)\=\xi 2) .

To clarify the discussion, let us consider the vector-valued function f ∶ \BbbR → \BbbR n,

fi(t) ∶= 10 e−
\xi 2i
5\rho t e−t\lambda min(A), \xi i = \biggl[ \bigcup i−1\bigcup \Uparrow \beta A\biggr\rceil , i = 1, . . . , n. Choosing \tau as in (3.21) ensures

that f\=\xi +1(\tau ) ≥ \epsilon \tau , whereas f\=\xi +1+k(\tau ) < \epsilon \tau , k > 0, so that also \bigcup (e−\tau A)\=\xi +1+k,1\bigcup < \epsilon \tau . A
graphical description is provided in the following example, Example 3.8.

7We recall that for the scaled problem, \lambda min(A) = 1. However, for the sake of generality we
prefer not to substitute its value.
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20 40 60 80 100 120 140 160 180 200

10−15

10−10

10−5

100

ξ̄ + 1

ǫτ

t1 = 10−3

t2 = 10−2

t3 = 10−1

τ = 0.0088

Fig. 3.1. f(t) for different values of t and n = 200.

Example 3.8. Consider A = L\Uparrow \lambda min(L), where L = tridiag(−1,2,−1) ∈ \BbbR n×n, and
n = 200. Figure 3.1 displays the function f for different values of t and for \tau computed
by (3.21), where \epsilon \tau = 10−5 and \beta max = 50. The range of the y-axis is restricted to
\bigl( 10−15,102\bigr\rfloor so as to better depict the trend of the largest entries of f(t). Since
\beta max = 50 and \beta A = 1, it holds that \=\xi = 49. For t = t1, f\=\xi +1(t1) = 1.11 ⋅ 10−50 < \epsilon \tau 
so that t1 is not a useful value for our purpose. On the other hand, for t = t3,
f\=\xi +1(t3) = 2.79 ≥ \epsilon \tau , but also many of the subsequent values satisfy f\=\xi +1+k(t3) ≥ \epsilon \tau .
This may lead to an undesired large bandwidth when the rational approximation to
e−t3A is actually computed. We obtain a similar behavior for f(t) when t = t2, \tau , but
only for t = \tau we indeed have that f\=\xi +1(\tau ) ≥ \epsilon \tau , whereas it holds that f\=\xi +1+k(\tau ) < \epsilon \tau ,
as illustrated in Table 3.1.

Table 3.1
Example 3.8. Values of f\=\xi +k(t), k = 0,1,2, t = t1, \tau .

t = t1 t = \tau 

f\=\xi (t) 1.27 ⋅ 10−4 1.74 ⋅ 10−5

f\=\xi +1(t) 7.95 ⋅ 10−5 1 ⋅ 10−5

f\=\xi +2(t) 4.90 ⋅ 10−5 5.66 ⋅ 10−6

The overall procedure is summarized in Algorithm 4.8

Algorithm 4: lyap banded: Numerical approximation X ≈XB + SmS
T
m.

input : A ∈ \BbbR n×n, A SPD, D ∈ \BbbR n×n, \beta max, \nu ,mmax ∈ \BbbN , \epsilon \tau , \epsilon B , \epsilon quad, \epsilon res
output: XB ∈ \BbbR n×n, Sm ∈ \BbbR n×s, s≪ n

\bfone Compute \tau by (3.21)
\bftwo Compute XB by Algorithm 2
\bfthree Compute Sm by Algorithm 3

8A MATLAB implementation is available at https://zenodo.org/record/1324955.
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Notice that approximations to the extreme eigenvalues of A are necessary to be
able to compute \tau via (3.21). In all of our numerical examples, approximations to
\lambda min(A) and \lambda max(A) were obtained by means of the MATLAB function eigs.

Finally, since the strategy adopted for choosing \tau is related to the computation
of the banded part of the solution, we suggest setting \epsilon \tau = \epsilon quad.

4. Numerical solution of the Sylvester equation. The procedure proposed
in the previous sections can be extended to the case of the following Sylvester equation:

(4.1) AX +XB =D,

with A ∈ \BbbR nA×nA , B ∈ \BbbR nB×nB banded and SPD, and D ∈ \BbbR nA×nB banded. For ease
of presentation we consider the case n = nA = nB , while different nA, nB could be
considered as well. Once again, the selection of which numerical procedure should
be used between those discussed in the previous sections depends on \kappa (\scrA ), where
here \scrA = B ⊗ I + I ⊗ A. In this case, \kappa (\scrA ) = (\lambda max(A) + \lambda max(B))\Uparrow (\lambda min(A) +
\lambda min(B)); therefore, the magnitude of \kappa (\scrA ) depends on the relative size of the extreme
eigenvalues of A and B.

If \scrA is well conditioned, Algorithm 1 can be applied with straightforward modifi-
cations in lines 1 and 2. Notice that even if D is symmetric, none of the CG iterates
are symmetric, so the memory-saving strategies and computational tricks discussed
in section 2 cannot be applied. Nevertheless, the bandwidth of the iterates still grows
linearly with the number of iterations.

Proposition 4.1. If X0 = 0, all of the iterates generated by CG applied to (4.1)
are banded matrices and, in particular,

\beta Wk
≤ kmax(\beta A, \beta B) + \beta D, \beta Xk

≤ (k − 1)max(\beta A, \beta B) + \beta D,

\beta Rk
≤ kmax(\beta A, \beta B) + \beta D, \beta Pk

≤ kmax(\beta A, \beta B) + \beta D.

Proof. The same arguments of the proof of Theorem 2.4 can be applied, noticing
that the bandwidth of the matrix Wk = APk +PkB is such that \beta Wk

≤max(\beta A, \beta B)+
\beta Pk

.

If \scrA is ill conditioned, Algorithm 4 can be generalized to handle the new setting.
The solution X can be written as (see, e.g., [39])

(4.2) X = ∫

+∞

0
e−tADe−tBdt = ∫

\tau 

0
e−tADe−tBdt + ∫

+∞

\tau 
e−tADe−tBdt.

A procedure similar to Algorithm 2 can be applied to approximate the first integral.
Clearly, the presence of two different matrix exponentials increases the computational
cost of the method as two approximations \bigg\backslash R\nu (tiA), \bigg\backslash R\nu (tiB) have to be computed at
each node.

To approximate the second integral addend in (4.2) we can generalize Algorithm 3.
Taking into account the presence of two coefficient matrices, a left and a right space
need to be constructed, namely Km(A

−1, v), Km(B
−1,w), as is customary in projec-

tion methods for Sylvester equations.
The choice of \tau may be less straightforward in the case of (4.1). If A and B

have similar condition numbers, we suggest to still compute \tau by (3.21) but replacing
\lambda min(A) by \lambda min(C), where C is the matrix with the widest bandwidth9 between A
and B.

9Also the computation of \rho in (3.21) will change accordingly.
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5. Numerical examples. In this section we present numerical experiments il-
lustrating the effectiveness of the method lyap banded.

Banded matrices are a particular example of \scrH -matrices, so that algorithms
specifically designed to deal with this kind of structure could be employed in solving
(1.1). The very low memory requirements is one of the features of the \scrH -format.
Although we are not going to implement an ad-hoc routine for \scrH -matrices com-
putations, in Example 5.2 we compare the memory requirements to store the pair
(XB , Sm) with those required to store a comparably accurate approximate solution
obtained in \scrH -format. To this end, we use the hm-toolbox10 developed while writing
[33]; to the best of our knowledge, this is the only available MATLAB toolbox for
\scrH -format computation. In particular, in the hm-toolbox a subclass of the set of \scrH -
format representations---sometimes called the Hierarchically Off-Diagonal Low-Rank
(HODLR) format---is implemented; see, e.g., [32, Chapter 3] for more details.

All results were obtained with MATLAB R2015a on a Dell machine with two
2GHz processors and 128 GB of RAM. All reported experiments use the parameter
settings in Table 5.1.

Table 5.1
Values of the parameters in the reported numerical experiments.

\epsilon res = 10−3 relative residual stopping tol (CG, lyap banded)

mmax = 2000 max number of iterations (CG, lyap banded)
(\epsilon \tau , \beta max) = (10−5,500) setting for the computation of \tau in lyap banded
(\nu , \epsilon B , \epsilon quad) = (6,10

−5,10−5) truncation and approximation parameters for XB

Example 5.1. We consider the symmetric tridiagonal matrix A ∈ \BbbR n×n (thus
\beta A = 1) stemming from the discretization by centered finite differences of the one
dimensional (1D) differential operator

\scrL u = −
1

\gamma 
(exux)x + \gamma u,

in \Omega = (0,1) with zero Dirichlet boundary conditions. The matrix A is asymptotically
ill conditioned due to the second order term of the operator, and \kappa (A) grows with
n. The parameter \gamma ∈ \BbbR is used to vary the condition number of A. The right-
hand side D of (1.1) is a diagonal matrix (thus \beta D = 0) with uniformly distributed
random diagonal entries. We ran lyap banded for different values of n and \kappa (A) and
compare its performance with that of Algorithm 1. In lyap banded the parameter
\tau is computed with the parameters set in Table 5.1. The relative residual norm
\prod R\prod F \Uparrow \prod D\prod F is computed every d = 10 iterations. Table 5.2 collects the results as n
and \gamma vary.

Algorithm 1 is very effective up to \kappa (A) ≈ \scrO (104), while for the same \kappa (A)
lyap banded is rather expensive in terms of CPU time compared to CG. The role
of the two methods is reversed for \kappa (A) = \scrO (105). In this case, CG takes a lot
of iterations to meet the stopping criterion; the costs of lyap banded grow far less
dramatically, making the method competitive, both in terms of CPU time and storage
demand. The bandwidth obtained by CG is lower than that obtained by the banded
portion in lyap banded for the smaller conditions numbers, while the situation is
reversed for the largest value of \kappa (A).

10https://github.com/numpi/hm-toolbox
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Table 5.2
Example 5.1. Results for different values of n and \gamma . s = rank(Sm). Time is CPU time in

seconds.

n \gamma \kappa (A) CG (Algorithm 1) lyap banded

Its. \beta X Time Res. \tau \beta XB
s Time Res.

4 ⋅ 104 1000 6.61e3 290 289 3.77e2 9.87e-4 2.73 480 7 1.44e3 3.88e-4

500 2.68e4 583 582 1.57e3 9.92e-4 0.56 578 340 1.63e3 9.86e-4
200 1.72e5 1475 1474 1.09e4 9.99e-4 0.08 594 366 1.66e3 9.57e-4

7 ⋅ 104 1800 6.19e3 281 280 6.20e2 9.82e-4 2.98 466 7 2.46e3 3.22e-4

1000 2.02e4 507 506 2.02e3 9.89e-4 0.76 571 576 3.38e3 9.89e-4
400 1.29e5 1277 1276 1.41e4 9.98e-4 0.11 592 632 3.79e3 9.56e-4

105 2500 6.53e3 288 287 9.11e2 9.94e-4 2.77 478 7 3.96e3 3.44e-4

1500 1.82e4 481 480 2.56e3 9.96e-4 0.84 570 812 6.77e3 9.73e-4
500 1.67e5 1456 1455 2.65e4 9.96e-4 0.08 594 892 7.15e3 9.87e-4

Regarding lyap banded, we notice that for fixed n both \beta XB
and rank(Sm) grow

with \kappa (A). In particular, rank(Sm) is consistently much lower for the first value of \gamma 
than for the other ones. This can be explained by noticing the quite different value of
\tau taken as \gamma varies. This dramatically influences the exponential exp(−2\tau ), and thus
the expected error bound for the banded part of the approximation. For instance, for
n = 4 ⋅ 104 we obtain

\tau = 2.73, exp(−2\tau ) = 4.3 ⋅ 10−3,
\tau = 0.56, exp(−2\tau ) = 3.2 ⋅ 10−1,
\tau = 0.08, exp(−2\tau ) = 8.5 ⋅ 10−1.

Taking into account the error upper bound in (3.17), we have \prod X − XB\prod ≤

\prod X − X(\tau )\prod + \prod X(\tau ) − XB\prod ≤ e−2\tau \prod X\prod + \prod X(\tau ) − XB\prod . Therefore, if XB is a good
approximation to X(\tau ), the leading term in the bound is e−2\tau \prod X\prod . For \tau = 2.73, the
small value of e−2\tau shows that the banded part XB is already a good approximation to
the final solution, so that a very low-rank approximate solution is sufficient to finalize
the procedure. This is not the case for the other values of \tau .

For similar values of \kappa (A), only rank(Sm) is affected by an increment in the
problem size. This phenomenon is associated with the strategy we adopt for choosing
\tau . Indeed, a fixed value \beta max is employed and \tau is computed according to (3.21);
this way \tau only depends on the (rescaled) extreme eigenvalues of A, whose magnitude
is similar for comparable \kappa (A). Since the n eigenvalues of A seem to spread quite
evenly in the interval \bigl( 1, \kappa (A)\bigr\rfloor , the number \=\ell of eigenvectors required to get an equally
accurate low-rank matrix XL in Corollary 3.4 increases with n.

We next set n = 40000, \gamma = 500. All of the other parameters are as before. We
vary \tau to study how its choice affects the performance of the algorithm. Results are
reported in Table 5.3. The reference value of \tau (first line in the table) is obtained
with the default values of the parameters, as in Table 5.1, and with the automatic
procedure of section 3.5. All of the other values of \tau are selected as 10j , j = −2, . . . ,1.

Table 5.3
Example 5.1 with n = 40000 and \gamma = 500. Results for different values of \tau .

\tau \beta XB
rank(Sm) Time Res.

0.56 578 340 1.63e3 9.86e-4
0.01 92 1894 4.69e3 1.13e-2
0.1 270 861 1.43e3 9.88e-4
1 718 270 2.70e3 9.89e-4

10 874 213 5.28e3 1.50e-3
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As expected, a small \tau leads to a very tight bandwidth of XB but a too large rank
of Sm. On the other hand, a very large \tau causes an increment in the bandwidth of XB

while a very low-rank Sm is computed. Notice that a proper value of \tau is essential also
in terms of accuracy of the numerical solution. Indeed, for \tau = 0.01, Algorithm 3 stops
because the maximum number of iterations mmax = 2000 is reached, while for \tau = 10
a too small residual norm reduction causes a stagnation flag. Good performance is
obtained for \tau = 0.1,1, although both values lead to larger memory requirements than
those obtained with \tau computed by (3.21).

Example 5.2. We consider the matrix A ∈ \BbbR n×n stemming from the discretization
by centered finite differences of the 1D differential operator

\scrL (u) = −uxx + \gamma log(10(x + 1))u,

in \Omega = (0,1) with zero Dirichlet boundary conditions and \gamma > 0. If \Omega is discretized by
n nodes (x1, . . . , xn), we have

A = −
(n − 1)2

12
pentadiag(−1,16,−30,16,−1)+\gamma diag(\chi 1, . . . , \chi n), \chi j = log(10(xj+1)),

The four neighboring points were used for each grid node. As in the previous example,
the matrix A is asymptotically ill conditioned, and \gamma is chosen to control its condition
number, so that A = A(\gamma ). The right-hand side D of (1.1) is a symmetric tridiagonal
matrix with uniformly distributed random entries and unit Frobenius norm. Both A
and D are banded, with \beta A = 2 and \beta D = 1.

Table 5.4
Example 5.2. Results for different values of n and \gamma . The timings reported are in seconds.

s = rank(Sm).

n \gamma \kappa (A) \tau Time XB (\beta XB
) Time Sm (s) Time tot. Res.

4 ⋅ 104 5000 7.00e5 2.07e-2 2.45e3 (523) 3.11e2 (464) 2.77e3 9.89e-4

800 4.20e6 3.45e-3 2.28e3 (523) 3.15e2 (464) 2.60e3 9.98e-4
300 1.08e7 1.32e-3 2.24e3 (523) 3.09e2 (464) 2.55e3 9.97e-4

7 ⋅ 104 15000 7.27e5 1.99e-2 4.01e3 (523) 1.54e3 (795) 5.55e3 9.86e-4

2000 5.27e6 2.78e-3 4.02e3 (523) 1.54e3 (794) 5.55e3 9.95e-4
800 1.28e7 1.16e-3 3.99e3 (523) 1.54e3 (793) 5.53e3 9.92e-4

105 50000 4.51e5 3.22e-2 6.21e3 (523) 4.47e3 (1124) 1.07e4 9.86e-4

5000 4.38e6 3.34e-3 6.08e3 (523) 4.47e3 (1124) 1.04e4 9.99e-4
200 6.78e7 2.13e-4 5.90e3 (523) 4.44e3 (1129) 1.03e4 9.77e-4

We solve this problem only by lyap banded, as the large n's and the moderate
values of \gamma we considered lead to sizeable values of \kappa (A). All of the thresholds and
parameters of the procedure are set as in Table 5.2. In Table 5.4 we collect the results
as n and \gamma vary. We also report the CPU time devoted to the computation of XB

and Sm, respectively.
We notice that in this example, the fixed value \beta max leads to a constant \beta XB

for
all the tested n's. Moreover, for a given n, also the rank of the computed Sm turns out
to be almost independent of \kappa (A). This can be intuitively explained by referring to
Figure 5.1, where the values of exp(−\tau \lambda j) above 10−8 are plotted for three automatic
selections of \tau ---as the operator parameter \gamma changes---and for the smallest eigenvalues
of A. The legend also gives the number of values above the threshold, for the given
\tau . Both the distribution and the number of eigenvalues of A = A(\gamma ) that give an
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exponential above the threshold 10−8 are approximately the same for all selections of
\tau , showing that the automatic selection of \tau well adapts to the change in the spectrum
given by the different \gamma 's.

0 20 40 60 80 100 120 140
10 -8

10 -6

10 -4

10 -2

10 0

e
x
p
(-

k
i)>

1
0

-8

n=5000

(A)=1.19e7, 
1

=0.0012, #:131

(A)=5.71e6, 
2

=0.0025, #:131

(A)=1.03e5, 
3

=0.1414, #:129

Fig. 5.1. Values of exp(−\tau k\lambda j) above the threshold 10−8. Larger eigenvalues of A contribute
very little to the value of the exponential.

We next compare the storage demand of lyap banded with that of an \scrH -format
approximation to the solution X. We consider a smaller problem, n = 5000, so as
to compute X by the Bartels--Stewart algorithm (MATLAB function lyap). The
comparison matrix X ≈ X is obtained from X by means of the function hm, avail-
able in the MATLAB toolbox hm-toolbox. The parameters for the \scrH -format com-
pression are set so as to have a similar residual norm in X and (XB , Sm): we set
hmoption('threshold',1e-7) for \gamma = 200,20 and hmoption('threshold',1e-8)

for \gamma = 0.2. Table 5.5 collects the results.

Table 5.5
Example 5.2. Results for different values of \gamma . s = rank(Sm). \=\ttX = \tth \ttm (\ttX ).

XB Sm (XB , Sm) X X

\gamma \kappa (A) Bytes (\beta XB
) Bytes (s) Res. Bytes Res.

200 2.50e5 4.29e7 (275) 4.68e6 (117) 9.49e-4 1.11e7 1.48e-4
20 2.09e6 4.29e7 (275) 4.68e6 (117) 9.73e-4 1.05e7 9.98e-4
0.2 1.28e7 4.29e7 (275) 4.68e6 (117) 9.23e-4 1.09e7 6.33e-4

For the same level of residual accuracy, the numbers in Table 5.5 show that the
memory requirements for X are of the same order of magnitude as those for storing
(XB , Sm), suggesting that the splitting procedure we propose works rather well in
terms of memory demands.

6. Conclusions. In this paper we have addressed the solution of large-scale Lya-
punov equations with banded symmetric data and positive definite coefficient matrix
A. In the case of well conditioned A, the numerical solution can be satisfactorily
approximated by a banded matrix, so that the matrix-oriented CG method is shown
to be a valid candidate for its computation.
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If the coefficient matrix is ill conditioned, no banded good approximation can be
determined, in general. However, we showed that the solution X can be represented in
terms of the splitting XB +SmS

T
m, with XB banded and Sm low rank, and an efficient

procedure for computing the pair (XB , Sm) was presented. Our preliminary numerical
results show that the new method is able to compute a quite accurate approximate
solution, and that the tuning of the required parameters is not too troublesome.

Both the derivation and the algorithm were extended to the case of Sylvester
equations with banded symmetric data and positive definite coefficient matrices.

Appendix A. Here we report the algorithm presented in section 3.2 for solving
the linear system (3.10).

Algorithm 5: Computing a banded approximation to (tiA − \xi jI)
−1.

input : A ∈ \BbbR n×n, A SPD, ti ∈ \BbbR , \xi j ∈ \BbbC 
output: (tiA − \xi jI)

−1
⋀

, (tiA − \xi jI)
−1
⋀

≈ (tiA − \xi jI)
−1

\bfone Compute tiA − \xi jI = L(ti, \xi j)D(ti, \xi j)L(ti, \xi j)
T

for q = 1, . . . , n do
\bftwo Compute \=pq (ti, \xi j) as in (3.9)
\bfthree Set \bigg\backslash pq (ti, \xi j) ∶=min{n, q + \=pq (ti, \xi j)}
\bffour (yq)1 = 1\Uparrow (L(ti, \xi j))q,q

for k = q + 1, . . . ,\bigg\backslash pq (ti, \xi j) do

\bffive (yq)k−q+1 = − (L(ti, \xi j))
T
k,q∶k (yq)1∶k−q\Uparrow (L(ti, \xi j))k,k

end
for k = q, . . . ,\bigg\backslash pq (ti, \xi j) do

\bfsix (zq)k−q+1 = (yq)k−q+1\Uparrow (D(ti, \xi j))k,k
end

\bfseven (sq)\bigg\backslash pq (ti,\xi j)−q+1 = (zq)\bigg\backslash pq (ti,\xi j)−q+1\Uparrow (L(ti, \xi j)
T )\bigg\backslash pq (ti,\xi j),\bigg\backslash pq (ti,\xi j)

for k = \bigg\backslash pq (ti, \xi j) − 1, . . . , q do
\bfeight (sq)k−q+1 =

((zq)j−q+1 − (L(ti, \xi j)T )
T

k,k∶\bigg\backslash pq (ti,\xi j) (sq)j−q+2∶\bigg\backslash pq (ti,\xi j)−q+1) \Uparrow (L(ti, \xi j)
T )

k,k

end

end
\bfnine Set S = \bigl( s1, . . . , sn\bigr\rfloor and s ∶= diag(S)

\bfone \bfzero Set (tiA − \xi jI)
−1
⋀

∶=S +ST − diag(s)

Acknowledgments. We thank A. Haber for having provided us with the codes
from [25]. We thank the reviewers for their careful reading and several insightful
remarks.

REFERENCES

[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6,
SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994, https:
//doi.org/10.1017/CBO9780511624100.

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1017/CBO9780511624100
https://doi.org/10.1017/CBO9780511624100


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LYAPUNOV EQUATIONS WITH SYMMETRIC BANDED DATA A3607

[3] G. A. Baker, Jr. and P. Graves-Morris, Pad\'e Approximants, 2nd ed., Encyclopedia of
Mathematics and Its Applications 59, Cambridge University Press, Cambridge, UK, 1996,
https://doi.org/10.1017/CBO9780511530074.

[4] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the Matrix Equation AX +

XB = C, Comm. ACM, 15 (1972), pp. 820--826.
[5] U. Baur, Low rank solution of data-sparse Sylvester equations, Numer. Linear Algebra Appl.,

15 (2008), pp. 837--851.
[6] U. Baur and P. Benner, Factorized solution of Lyapunov equations based on hierarchical

matrix arithmetic, Computing, 78 (2006), pp. 211--234.
[7] P. Benner and P. K\"urschner, Computing real low-rank solutions of Sylvester equations by

the factored ADI method, Comput. Math. Appl., 67 (2014), pp. 1656--1672, https://doi.
org/10.1016/j.camwa.2014.03.004.

[8] P. Benner, R.-C. Li, and N. Truhar, On the ADI method for Sylvester equations, J. Comput.
Appl. Math., 233 (2009), pp. 1035--1045, https://doi.org/10.1016/j.cam.2009.08.108.

[9] M. Benzi and D. Bertaccini, Approximate inverse preconditioning for shifted linear systems,
BIT, 43 (2003), pp. 231--244, https://doi.org/10.1023/A:1026089811044.

[10] M. Benzi and N. Razouk, Decay bounds and O(n) algorithms for approximating functions of
sparse matrices, Electron. Trans. Numer. Anal., 28 (2007), pp. 16--39.

[11] M. Benzi and V. Simoncini, Decay bounds for functions of Hermitian matrices with banded
or Kronecker structure, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1263--1282, https:
//doi.org/10.1137/151006159.

[12] M. Benzi and M. T\r uma, A comparative study of sparse approximate inverse precondition-
ers, Appl. Numer. Math., 30 (1999), pp. 305--340, https://doi.org/10.1016/S0168-9274(98)
00118-4.

[13] D. Bertaccini, Efficient preconditioning for sequences of parametric complex symmetric linear
systems, Electron. Trans. Numer. Anal., 18 (2004), pp. 49--64.

[14] D. A. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic Riccati Equa-
tions, Fundamentals of Algorithms 9, SIAM, Philadelphia, 2012, https://doi.org/10.1137/
1.9781611972092.

[15] C. Canuto, V. Simoncini, and M. Verani, On the decay of the inverse of matrices that are
sum of Kronecker products, Linear Algebra Appl., 452 (2014), pp. 21--39, https://doi.org/
10.1016/j.laa.2014.03.029.

[16] A. J. Carpenter, A. Ruttan, and R. S. Varga, Extended numerical computations on the
``1\Uparrow 9"" conjecture in rational approximation theory, in Rational Approximation and Interpo-
lation: Proceedings of the United Kingdom - United States Conference held at Tampa, FL,
1983, P. R. Graves-Morris, E. B. Saff, and R. S. Varga, eds., Springer, Berlin, Heidelberg,
1984, pp. 383--411, https://doi.org/10.1007/BFb0072427.

[17] W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximations to e−x
in \bigl( 0, +∞) and applications to heat-conduction problems, J. Approx. Theory, 2 (1969),
pp. 50--65.

[18] B. N. Datta, Linear and numerical linear algebra in control theory: Some research problems,
Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992),
Linear Algebra Appl., 197/198 (1994), pp. 755--790, https://doi.org/10.1016/0024-3795(94)
90512-6.

[19] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math.
Comp., 43 (1984), pp. 491--499, https://doi.org/10.2307/2008290.

[20] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical
systems, Systems Control Lett., 60 (2011), pp. 546--560.

[21] R. Freund, On polynomial approximations to fa(z)(z − a)−1 with complex a and some appli-
cations to certain non-Hermitian matrices, Approx. Theory Appl., 5 (1989), pp. 15--31.

[22] Z. Gajic and M. J. Qureshi, Lyapunov matrix equation in system stability and control, Math.
Sci. Engrg., Academic Press, San Diego, 1995.

[23] W. Gander and W. Gautschi, Adaptive quadrature---revisited, BIT, 40 (2000), pp. 84--101,
https://doi.org/10.1023/A:1022318402393.

[24] L. Grasedyck, W. Hackbusch, and B. N. Khoromskij, Solution of large scale algebraic
matrix Riccati equations by use of hierarchical matrices, Computing, 70 (2003), pp. 121--
165, https://doi.org/10.1007/s00607-002-1470-0.

[25] A. Haber and M. Verhaegen, Sparse solution of the Lyapunov equation for large-scale inter-
connected systems, Automatica J. IFAC, 73 (2016), pp. 256--268, https://doi.org/10.1016/
j.automatica.2016.06.002.

[26] S. J. Hammarling, Numerical solution of the stable, nonnegative definite Lyapunov equation,
IMA J. Numer. Anal., 2 (1982), pp. 303--323, https://doi.org/10.1093/imanum/2.3.303.

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1017/CBO9780511530074
https://doi.org/10.1016/j.camwa.2014.03.004
https://doi.org/10.1016/j.camwa.2014.03.004
https://doi.org/10.1016/j.cam.2009.08.108
https://doi.org/10.1023/A:1026089811044
https://doi.org/10.1137/151006159
https://doi.org/10.1137/151006159
https://doi.org/10.1016/S0168-9274(98)00118-4
https://doi.org/10.1016/S0168-9274(98)00118-4
https://doi.org/10.1137/1.9781611972092
https://doi.org/10.1137/1.9781611972092
https://doi.org/10.1016/j.laa.2014.03.029
https://doi.org/10.1016/j.laa.2014.03.029
https://doi.org/10.1007/BFb0072427
https://doi.org/10.1016/0024-3795(94)90512-6
https://doi.org/10.1016/0024-3795(94)90512-6
https://doi.org/10.2307/2008290
https://doi.org/10.1023/A:1022318402393
https://doi.org/10.1007/s00607-002-1470-0
https://doi.org/10.1016/j.automatica.2016.06.002
https://doi.org/10.1016/j.automatica.2016.06.002
https://doi.org/10.1093/imanum/2.3.303


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3608 DAVIDE PALITTA AND VALERIA SIMONCINI

[27] M. Hochbruck and G. Starke, Preconditioned Krylov subspace methods for Lyapunov matrix
equations, SIAM Matrix Anal. Appl., 16 (1995), pp. 156--171, https://doi.org/10.1137/
S0895479892239238.

[28] I. Jonsson and B. K\r agstr{\e}m, Recursive blocked algorithms for solving triangular systems
Part II: Two-sided and generalized Sylvester and Lyapunov matrix equations, ACM Trans.
Math. Softw., 28 (2002), pp. 416--435.

[29] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[30] D. Kressner and P. Sirkovi\'c, Truncated low-rank methods for solving general linear matrix

equations, Numer. Linear Algebra Appl., 22 (2015), pp. 564--583, https://doi.org/10.1002/
nla.1973.

[31] P. Lancaster, Explicit solutions of linear matrix equations, SIAM Rev., 12 (1970), pp. 544--
566, https://doi.org/10.1137/1012104.

[32] S. Massei, Exploiting Rank Structures in the Numerical Solution of Markov Chains and Matrix
Functions, Ph.D. thesis, Scuola Normale Superiore di Pisa, Pisa, Italy, 2017.

[33] S. Massei, D. Palitta, and R. Robol, Solving rank structured Sylvester and Lyapunov equa-
tions, SIAM J. Matrix Anal. Appl., to appear; preprint, https://arxiv.org/abs/1711.05493,
2017.

[34] The MathWorks, Inc., MATLAB 7, r2013b ed., 2013.
[35] D. Palitta and V. Simoncini, Matrix-equation-based strategies for convection-diffusion equa-

tions, BIT, 56 (2016), pp. 751--776, https://doi.org/10.1007/s10543-015-0575-8.
[36] B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization,

Math. Comp., 33 (1979), pp. 217--238, https://doi.org/10.2307/2006037.
[37] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM

J. Sci. Comput., 29 (2007), pp. 1268--1288, https://doi.org/10.1137/06066120X.
[38] V. Simoncini, The Lyapunov matrix equation. Matrix analysis from a computational perspec-

tive, Topics in Mathematics, Bologna - UMI 2015, Quaderno UMI, (2015), pp. 157--174.
[39] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016),

pp. 377--441, https://doi.org/10.1137/130912839.
[40] G. D. Smith, Numerical Solution of Partial Differential Equations, 2nd ed., Clarendon Press,

Oxford, 1978.
[41] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational

approximations, BIT, 46 (2006), pp. 653--670, https://doi.org/10.1007/s10543-006-0077-9.
[42] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix

exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438--1457, https://doi.org/10.1137/
040605461.

D
ow

nl
oa

de
d 

11
/0

6/
18

 to
 1

93
.1

75
.5

2.
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/S0895479892239238
https://doi.org/10.1137/S0895479892239238
https://doi.org/10.1002/nla.1973
https://doi.org/10.1002/nla.1973
https://doi.org/10.1137/1012104
https://arxiv.org/abs/1711.05493
https://doi.org/10.1007/s10543-015-0575-8
https://doi.org/10.2307/2006037
https://doi.org/10.1137/06066120X
https://doi.org/10.1137/130912839
https://doi.org/10.1007/s10543-006-0077-9
https://doi.org/10.1137/040605461
https://doi.org/10.1137/040605461

	Introduction
	The case of well conditioned A
	A new method for ill conditioned A
	Approximating X() by a banded matrix
	Implementation details for computing XB
	Approximating e-A X e-A by a low-rank matrix
	Implementation details for computing the low-rank part of the solution
	Complete numerical procedure and the choice of 

	Numerical solution of the Sylvester equation
	Numerical examples
	Conclusions
	Appendix A
	Acknowledgments
	References

