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Abstract

OLAP has been extensively used for a couple of decades as a data analysis ap-
proach to support decision making on enterprise structured data. Now, with
the wide diffusion of NoSQL databases holding semi-structured data, there
is a growing need for enabling OLAP on document stores as well, to allow
non-expert users to get new insights and make better decisions. Unfortu-
nately, due to their schemaless nature, document stores are hardly accessible
via direct OLAP querying. In this paper we propose EXODuS, an interac-
tive, schema-on-read approach to enable OLAP querying of document stores
in the context of self-service BI and exploratory OLAP. To discover multidi-
mensional hierarchies in document stores we adopt a data-driven approach
based on the mining of approximate functional dependencies; to ensure good
performances, we incrementally build local portions of hierarchies for the
levels involved in the current user query. Users execute an analysis session
by expressing well-formed multidimensional queries related by OLAP oper-
ations; these queries are then translated into the native query language of
MongoDB, one of the most popular document-based DBMS. An experimen-
tal evaluation on real-world datasets shows the efficiency of our approach
and its compatibility with a real-time setting.

Keywords: Document stores, JSON, Exploratory OLAP, Self-service BI,
Multidimensional modeling
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1. Introduction

Over the past decade, companies have been adopting NoSQL databases
to deal with the huge volumes of data manipulated by modern applica-
tions. NoSQL systems have emerged as an alternative to relational database
management systems in several implementations [1]. They can be classi-
fied based on their data model, the most popular categories being key-value,
wide-column, graph-based and document-oriented. In particular, document-
oriented databases (briefly, document stores) are considered to be very developer-
friendly, thus they have attracted a large interest from researchers and practi-
tioners; indeed, they offer a flexible data model with great query possibilities,
are very easy to maintain, and offer rich APIs [2].

Document stores collect nested, denormalized, and hierarchical docu-
ments. Documents are self-describing and mainly encoded using the semi-
structured data format JSON (JavaScript Object Notation). Documents
are organized in collections ; in compliance with the data first, schema later
or never paradigm, the documents within the same collection may present a
structural variety to ensure flexibility and support evolution. This schemaless
nature provides a “fluid” data model that has attracted developers seeking
to avoid the restrictions posed by the relational model.

The growing use of document stores and the dominance of JSON have
resulted in vast amounts of semi-structured data holding precious informa-
tion, which could be profitably integrated into existing business intelligence
(BI) systems [3]. On-Line Analytical Processing (OLAP) is the querying
paradigm normally used in the context of BI to analyze multidimensional
(MD) data stored in data warehouses and data cubes, and it also has been
recognized to be an effective way for conducting analytics over big NoSQL
data as well [4]. Unfortunately, due to their schemaless nature, document
stores are hardly accessible via direct OLAP querying. Recent efforts in this
area propose to enable SQL querying of schemaless data for analytic pur-
poses, since SQL is well supported by several BI tools [5, 6, 7]. However,
none of these solutions provides OLAP on document stores.

In principle, two main approaches can be followed for enabling OLAP
over a data source: schema-on-write and schema-on-read. A schema-on-write
approach would force a fixed MD structure in data and load them into a data
warehouse to be then queried, while a schema-on-read approach would leave
data unchanged in their structure until they are accessed by the user [8].
Classical MD design follows a schema-on-write approach, in that it requires
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a target MD schema to be designed and an ETL (Extract, Transform, and
Load) process to be set before posing any queries. Conversely, in this paper
we follow a schema-on-read approach, which we claim should be preferred
when querying document stores in an OLAP fashion for the following reasons:

• In a schema-on-read approach, the schema can be defined at query
time based on user queries, which allows data to be directly analyzed
without requiring an upfront investment in schema and ETL design [7].

• A schema-on-read approach does not necessarily require an intervention
of IT people, so it is more suitable to self-service BI scenarios —where
the search and integration of data is accomplished by users without
any mediation by analysts, designers, or programmers [3].

• A schema-on-read approach can operate in real-time, so it is suitable
to exploratory OLAP scenarios [9] —where data scientists and data
enthusiasts need to timely access situational data, i.e., data with a
narrow focus on a specific domain problem and a short lifespan [10].

• Document stores handle high volumes of data with varied structure,
which question the ability of traditional ETL in processing data on the
one hand, and the possibility of storing them into a data warehouse
with a fixed schema on the other.

• Due to the evolving nature of schemaless data, ETL and schema main-
tenance in a schema-on-write approach would become more complex
than for enterprise structured data.

In this paper we propose EXODuS, an interactive, schema-on-read ap-
proach to enable OLAP querying of document stores in the context of self-
service BI and exploratory OLAP. OLAP requires data to be in MD form,
i.e., organized into measures, dimensions with different levels of aggrega-
tion (MD hierarchies). To discover hierarchies despite the lack of struc-
ture, we adopt a data-driven approach based on the mining of approximate
functional dependencies (AFDs); to ensure good performances, we incre-
mentally build local portions of hierarchies for the levels involved in the
current user query, thus acting in an on-demand fashion. EXODuS enables
users to execute an analysis session by expressing well-formed MD queries
related by OLAP operations. These queries are then translated into the na-
tive query language of MongoDB, one of the most popular document-based
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DBMS (www.db-engines.com/en/ranking), taking advantage of the discov-
ered MD knowledge. One significant benefit of our approach is that it allows
non-expert users to analyze data in document stores by means of operations
they already know, such as roll-up and drill-down, without having a deep
understanding of how data is actually stored. This allows them to create
reports in real-time and in a self-service fashion, which reduces the time and
effort spent in traditional BI settings.

The rest of the paper is organized as follows. Section 2 presents an
overview of EXODuS and Section 3 discusses the related work. In Sec-
tion 4 the three phases of our approach are detailed. Section 5 presents
the experimental evaluation and Section 6 concludes the paper giving some
future directions for research.

2. Preliminaries

In this section we give the basics of document stores followed by a high-
level overview of the three steps of our approach: MD Enrichment, Querying,
and OLAP enabling.

2.1. Document Stores

A document store holds a set of databases, each organizing the storage of
documents in the form of collections. A document, also called object, consists
of a set of name-value pairs (names are also called keys) typically encoded
using JSON (www.json.org). JSON is a popular data exchange format,
widely adopted in modern web applications (a formal specification of JSON
is proposed in [11]). It has many variants that are used for storage and op-
timization purposes, such as BSON (www.bsonspec.org) in MongoDB and,
very recently, OSON in the Oracle DBMS [6]. Keys in a JSON document are
always strings, while values usually have the following types: primitive (num-
ber, string, date, Boolean), object, and array of primitive values or objects.
Therefore, a document can contain nested, denormalized, and hierarchical
data.

From a conceptual point of view, a typical collection consists of a set of
business objects connected through two kinds of relationships: nesting and
references. Nesting consists of embedding objects arbitrarily within other
objects, which corresponds to two types of relationships: to-one in the case
of a nested object and to-many in the case of an array of nested objects. On
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order :
{“order id” : 100,

“date” : “2017-03-27”,
“customer id” : 1005,
“items” :
[ {“product name” : “Keyboard”,

“quantity” : 5,
“unitprice” : 20,
“rating” : 5

},
{“product name” : “Webcam”,

“quantity” : 1,
“unitprice” : 35,
“rating” : 4

}
]
“totalprice” : 135

}

(a)

order:
{“order id” : 100,

“date” : “2017-03-27”,
“customer id” : 1005,
“totalprice” : 135

}

item :
{“order id” : 100,

“product id” : 85,
“quantity” : 1,
“unitprice” : 35,
“rating” : 4

}
item :
{“order id” : 100,

“product id” : 86,
“quantity” : 5,
“unitprice” : 20,
“rating” : 5

}

(b)

Figure 1: Sample JSON document of an order: denormalized and nested (a)
and normalized (b)

the other hand, references are suitable for modeling many-to-many relation-
ships similarly to foreign keys in relational databases; they can be expressed
manually or using a specific mechanism such as $ref in MongoDB. However,
when references are used, getting data requires joins which are not supported
in document stores; so, nesting is most often used instead. A sample JSON
document of an order is illustrated in Figure 1 in two schema variants: one
denormalized and nested, and one normalized.

In this work we focus on collections of denormalized and nested JSON
documents that logically represent the same business entities, while expecting
that their structure may vary. Since the approach is data-driven, it also works
when nested structures are not present within the input data (e.g., for flat
documents), which is relevant because a large number of non-nested datasets
are available in JSON format on the web (e.g., more than 11000 collections
in www.data.gov).

2.2. Approach Overview

With reference to the example in Figure 1, we propose a basic use case. A
non-expert user wants to compute some summaries on the orders collection,
such as counting orders per customer. She lacks knowledge about JSON and
the document store native query language, but she is familiar with tradi-
tional BI tools, so she knows how to (i) formulate MD queries by just picking
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Figure 2: Approach overview; steps in grey are up to either the user of the
document store

levels and measures of interest, and (ii) perform OLAP operations by nav-
igating through hierarchies. In a traditional BI setting these queries would
be formulated on data with a fixed MD schema whose correctness is ensured
by the designer. In a self-service BI or exploratory OLAP setting the user
has to determine a proper MD schema on-the-fly by identifying dimensions,
measures with their granularities, and hierarchies. To achieve this goal, EX-
ODuS operates in three phases as outlined below and sketched in Figure
2:

1. MD enrichment aims to extract a draft MD schema on which the user
will be able to write her first query. Since documents in a collection
are self-describing, they are not accompanied with a schema definition.
Therefore, in this step, a collection schema that captures attributes
(i.e., paths among document keys), their types, and some relationships
between these attributes is extracted from the collection. Then, a draft
MD schema is built by classifying attributes into levels and measures
based on their type (for example, a numeric attribute is potentially
a measure). To provide correct summarization of data, measures are
then related to the subset of levels that determine their granularity by
checking that the basic MD constraints are met.

2. Querying. Now the user can formulate her first MD query by picking
levels and measures of interest from the current MD schema; this query
is checked by mining AFDs from data to ensure its MD validity and
correct summarization. To avoid the exponential complexity of check-
ing all AFDs, we adopt a smart exploration strategy that reduces the
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search space by considering level cardinalities and structural informa-
tion provided by the collection schema. If an AFD is found to hold
between a pair of levels, the hierarchies are refined accordingly and
some possible querying alternatives are proposed to the user. If the
query is found to be well-formed it is translated into the native query
language of the document store and executed, and the next phase is
triggered.

3. OLAP enabling is an iterative phase that enables the user to further
explore data by running an OLAP session. To this end, local portions of
hierarchies (consisting of roll-up and drill-down relationships for each
level involved in the user query) are incrementally built by mining
AFDs from data. The user can now apply an OLAP operator (roll-up,
drill-down) to iteratively create a new query on the collection, which
again is translated into the query language of the document store and
executed.

These phases are described in detail in Section 4 together with their auto-
mated steps (those represented in white in Figure 2).

3. Related Work

Supply-driven MD design. The automation of MD modeling has been
widely explored in the area of data warehouse design. Supply-driven ap-
proaches automate the discovery of MD concepts by a thorough analysis
of the source data. The first approaches proposed algorithms to build MD
schemata starting from Entity/Relationship diagrams or relational schemata
[12, 13, 14], while further approaches considered more expressive conceptual
schemata such as UML class diagrams [15] and ontologies [16]. In particular,
similarly to the querying phase of our approach, [17] proposes an algorithm
to check the MD validity of an SQL cube query and to derive the underlying
MD schema. This algorithm identifies MD concepts from the structure of
the query itself and by following foreign keys in the relational schema.

In these approaches, MD modeling is done at design time, mainly based
on FDs expressed in the source schemata as foreign keys or many-to-one
relationships. Conversely, our approach is meant to be used at query time
and automates the discovery of MD concepts by mining FDs from data, as
required by the schemaless context.
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MD design from non-relational data. Our approach closely relates to
previous approaches for MD modeling from semi-structured data [18, 19, 20]
in XML format, which is similar to JSON. These approaches take in input
DTDs or XML schemata that provide rich information about XML docu-
ments (e.g., multiplicities, data types), so they cannot operate directly on
XML data not having a schema specification. In particular, the work in [20]
builds MD schemata starting from an XML schema but, in some cases, data
is accessed to discover FDs that are not expressed in the schema. Similarly,
starry vault [21] is a recent approach that mines FDs for MD modeling from
data vaults. These are databases characterized by a specific data model tai-
lored to provide historical storage in presence of schema evolutions. The
main idea is to mine approximate and temporal FDs to cope with the issue
of noisy and time-varying data, which may result in hidden FDs.

All the above-mentioned approaches are similar in that they define MD
schemata at design time using structural and additional information ex-
tracted from data (i.e., FDs). In contrast, our approach operates at query
time and mostly relies on data distributions, while structural information is
only used —when available— to reduce the search space.

While several approaches were delivered to implement MD schemata us-
ing NoSQL databases, to the best of our knowledge only a very few papers
deal with using NoSQL databases as a source for MD design and query-
ing. In particular, in [22] OLAP cubes are built starting from a columnar
data warehouse using the MC-CUBE operator, while in [23] the Graph Cube
model enables OLAP queries on graph databases. Interestingly, the main
methodologies for data warehouse design are compared in [24] at the light of
the new requirements posed by big data sources.

A preliminary version of our approach has been proposed in [25]; the new
contributions we give in this paper can be summarized as follows:

1. We propose a lightweight algorithm for extracting the schema of a
JSON collection.

2. The approach has been extended to cope with the structural variety of
JSON collections, assessed through some ad-hoc metrics.

3. The translation of MD queries into the native query language of Mon-
goDB is discussed.

4. A wider set of tests is proposed to evaluate the efficiency and scalability
of the approach.
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OLAP on linked data. Recent works in this space propose to directly
perform OLAP-like analysis over semantic web data. Exploratory OLAP has
been defined as the process that discovers, collects, integrates, and analyzes
these external data on-the-fly [26]. Some works in this direction address
the problem of building MD hierarchies from linked data [9, 27], which is
closely related to the third phase of our approach. Specifically, iMOLD [9]
is an instance-based approach that operates at query time for exploratory
OLAP on linked data; it aims at finding MD patterns representing roll-
up relationships, in order to enable users to extend corporate data cubes
with new hierarchies extracted from linked data. Similarly, [27] proposes an
algorithm for discovering hierarchies from dimensions present in statistical
linked data represented using the RDF Data Cube (QB) vocabulary (www.
w3.org/TR/vocab-data-cube/). Like starry vault, this algorithm mines for
AFDs (here called quasi -FDs) to cope with the presence of imperfect and
partial data.

The algorithm that we propose for building hierarchies differs from these
works in that, to ensure good performances, instead of trying to extensively
detect all hierarchies it only looks for local portions of hierarchies for the
levels involved in the user queries, thus acting in an on-demand fashion.

SQL on schemaless data. Several solutions have emerged in the indus-
try to enable SQL querying of schemaless data for analytic purposes. These
solutions can be classified into two categories: (1) relational systems enabling
the storage and management of schemaless data, and (2) systems designed
as an SQL interface for schemaless data.

Solutions in the first category include RDBMSs that support storage and
querying of schemaless data to be used along with relational data in one sys-
tem [5, 6] (e.g., Oracle, SQL Server, IBM DB2, and PostgreSQL). Current
systems do not impose a fixed relational schema to store and query data,
but derive and maintain a dynamic schema to be used for schema-on-read
SQL/JSON querying instead [6]. Other solutions that fall into this category
are virtual adapters that expose a relational view of the data in a docu-
ment store, to be used in common BI tools; an example is the MongoDB BI
connector (www.mongodb.com/products/bi-connector).

The second line of solutions are SQL engines that offer extensions to
query schemaless data persisted in document stores or as JSON files (e.g., in
Hadoop). Spark SQL [28] has been designed for relational data processing
of native Spark distributed datasets in addition of diverse data sources and
formats (including JSON). In order to run SQL queries on schemaless data
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in Spark SQL, a schema is automatically inferred beforehand. Apache Drill
(drill.apache.org) is a distributed SQL engine that can join data from
multiple data sources, including Hadoop and NoSQL databases. It has a
built-in support for JSON with columnar in-memory execution. Drill is also
able to dynamically discover a schema during query processing, which allows
to handle schemaless data without defining a schema upfront. Finally, Presto
(prestodb.io) is a distributed SQL engine, developed at Facebook for inter-
active queries, that can also combine data from multiple kinds of data sources
including relational and non-relational databases. When querying schema-
less data, Presto tries to discover data types, but sometimes it may need a
schema to be defined manually in order to run queries. All above-mentioned
engines differ in their architecture, support to ANSI SQL, and extensions to
SQL to handle schemaless and nested data. These engines can be used to
query data stored in MongoDB, which gave us various architectural options
for implementation. However, none of them supports OLAP on document
stores.

Schema discovery from document stores. Several works have ad-
dressed schema discovery from document stores [29, 30, 31, 32]. These
works focus on the structural variety of documents within the same collection
caused by the schemaless nature and by the evolution of data; for instance,
in [31] all the distinct schemata in a collection are extracted and stored in
a repository. In order to have a single view of a collection, the authors
propose a relaxed form of schema called skeleton that better captures the
core and prominent attributes and filters out unfrequent ones. However, the
computational cost for building skeletons is high, making them unsuitable
in real-time contexts [31]. The algorithm proposed in [32] extracts a schema
for each document and then merges these schemas into a global schema that
captures all possible attributes. This algorithm provides better execution
times even with massive data sets.

The algorithm that we propose differs from the existing ones in that it
pushes all the computation down to the document store, resulting in better
execution times. It also captures the structural variety within a collection by
computing the occurrence frequencies of the attributes and their value types,
without a significant impact on performance.
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games :
{“ id” : ObjectId(“52f2a70eddbd75540aba7c06”),

“date” : ISODate(“1989-03-27T02:00:00Z”),
“teams” :
[ {“name” : “Detroit Pistons”,

“abbreviation” : “DET”,
“score” : 90,
“home” : true,
“city” : “Detroit”,
“won” : 1,
“results” : { “assists” : 20, . . . },
“players” :
[ {“player” : “Isiah Thomas”,

“points” : 30, . . . },
. . .

]
},
{“name”: “Dallas Mavericks”,

“abbreviation” : “DAL”,
“score” : 77,
“home” : false,
“city” : “Dallas”,
“won” : 0,
“results” : { “assists” : 16, . . . },
“players” :
[ {“player” : “Rolando Blackman”,

“points” : 23, . . . },
. . .

]
}

]
}

(a)

games :
{“ id” : ObjectId(“52f29f91ddbd75540aba6dae”),

“team” :
{“name” : “Washington Bullets”,

“abbreviation” : “WSB”,
“city” : “Washington”},

“plays” :
[ {“id” : 198510254,

“date” : ISODate(“1985-10-25T04:00:00Z”),
“score” : 100,
“home” : false,
“won” : 1,
“results” : { “assists” : 21, . . . },
“players” :
[ {“player” : “Jeff Ruland”,

“points” : 19, . . . },
. . .

]
},
{“id” : 198510314,

“date” : ISODate(“1985-10-31T04:00:00Z”),
“score” : 107,
“home” : true,
“won” : 0,
“results” : { “assists” : 17, . . . },
“players” :
[ {“player” : “Dan Roundfield”,

“points” : 12, . . . },
. . .

]
}, . . .

]
}

(b)

Figure 3: Sample JSON documents of a game

4. The EXODuS Approach

In this section we give a detailed description of our approach with refer-
ence to a real-world example, namely, a collection that models NBA games
(adapted from [33]) where a document represents one game between two
teams along with players and team results.

Example 1. In the sample document shown in Figure 3.a the main object
is games, which embeds multiple teams, each including one object results and
an array of players. Since a document store has a flexible schema there are a
variety of ways for representing data; clearly, the way data are modeled may
affect performance and querying patterns. Figure 3.b shows an alternative
JSON representation of the NBA games domain; each document embeds a
team object and multiple plays, each including one object results and an array
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of players. Note that, in this representation, when the number of games
for a team increases, so does the plays array; this may lead to reaching the
document size limit, in which case data must be split into multiple documents
for the same team.

4.1. MD Enrichment

The goal of this phase is to extract a draft MD schema on which the user
will be able to formulate her first query. To this end, we extract the schema
of the input collection and enrich it with basic MD knowledge as explained
in the following subsections.

4.1.1. Extract the Collection Schema

In compliance with the real-time requirement posed by exploratory OLAP,
to extract the schema of a collection we propose a lightweight algorithm that
accesses the document store and assesses schema variety using count dis-
tinct queries. In the scope of this work we only consider the schema variety
arising from keys with varying types and missing keys; the stronger variety
arising from relevant changes in the document structure (e.g., due to major
evolutions and versioning) is not considered. The output of the algorithm is a
tree-like schema that provides a single view of the collection and includes all
the keys appearing in the documents with their corresponding types, defined
as follows.

Definition 1 (Collection Schema). Given a collection D, its schema (briefly,
c-schema) is a tree S “ pK,Eq where:

• K is the union of the sets of keys appearing in the documents of D;

• r P K is the root and is given the collection name;

• Each key k P K has a set of types, denoted Typespkq, which can contain
simple types ( number, string, date, boolean, missing, and null) as well
as complex types ( object, generic array, array of object, and array of
simple).

• E is a set of arcs that includes (i) an arc xr, ky for each key inside
the root of the documents in D, and (ii) an arc xk1, k2y iff k2 is a key
within an object or an array of objects having key k1.

12



Algorithm 1 Extract C-Schema
Require: A collection D
Ensure: A c-schema S
1: r Ð nameOfpDq
2: K Ð tr˚u
3: E ÐH

4: S Ð pK,Eq
5: S Ð ExpandpS, tr˚uq
6: return S

All keys of array type, including the root, are starred (˚) in the c-schema to
emphasize that they model -to-many associations.

The pseudo-code for building the c-shema S is sketched in Algorithms
1 and 2. Algorithm 1 initializes S with the root key, then calls function
Expand to build S. The goal of ExpandpS, Rq (Algorithm 2) is to extend S
by adding the keys nested in each key of R; each key of type object or array
of object is further expanded by recursively invoking the function. At first,
for each key r P R, function RetrieveNestedKeys creates and executes on
D a query that finds the set of keys Kr nested in r (Line3). The form of
this query depends on whether r is an object or an array of object: in the
first case, it just returns the nested keys; in the second it flattens the array,
limits the type to object, then proceeds as in the first case. Then, for each
key k P Kr, if k is an object it is added to the set of keys R1 to be expanded
in the next recursive call (lines 5—6). If k is an array, a new query is issued
to refine its type (e.g., from array to array of simple) and update Typespkq
accordingly (lines 7—9). After this update, if k is an array of object, a new
key k˚ (as mentioned above, the ˚ is added because k is an array) is added to
S and to R1, with type array of object, to be further expanded (lines 10—14).
If k has other types besides array of object, then the latter is removed to let
only simple types (lines 15—16); in this case k is added to S with an arc
from r to k (lines 18—19). If k has no other types, it is not added to S since
k˚ took its place (Line17). Finally, function Expand is recursively invoked
for the set of keys R1 (Line21).

Example 2. With reference to the document in Figure 3.a, belonging to
the games collection, we show how the c-schema is built. The first call to
Expand is made with the root games, of type object. The query generated in
Line3 first projects each document into an array of objects in the form [{”k”:
”name”, ”v” : value}], where k is the key and v its value. Then this array is
flattened and the type t of each value v is projected. Now, the documents are
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Algorithm 2 Expand
Require: A c-schema S, a set of keys to be expanded R
Ensure: An (extended) c-schema S
1: R1 ÐH

2: for all r P R do
3: Kr Ð RetrieveNestedKeyspD, rq
4: for all k P Kr do
5: if object P Typespkq then
6: R1 Ð R1 Y tku

7: if array P Typespkq then
8: T Ð QueryArraypD, kq
9: Update Typespkq based on T
10: if array of object P Typespkq then
11: R1 Ð R1 Y tk˚u
12: Typespk˚q Ð tarray of objectu
13: K Ð K Y tk˚u
14: E Ð E Y txr, k˚yu
15: if |Typespkq| ą 1 then
16: Typespkq Ð Typespkqztarray of objectu
17: else continue
18: K Ð K Y tku
19: E Ð E Y txr, kyu

20: if R1 ‰ H then
21: S Ð ExpandpS, R1q
22: return S

grouped by k and t to return a set of distinct pk, tq pairs while counting their
occurrences. Finally, the results are grouped by k as follows:

{ ”k”:” id”, ”types” : [{”t”:”objectId”,”occ”:31686}],
”k”:”teams”, ”types” : [{”t”:”array”,”occ”:31686}],
”k”:”date”, ”types” : [ {”t”:”date”,”occ”:31000},{”t”:”string”,”occ”:”563”}{”t”:”null”,”occ”:”123”} ] }

By iterating on each key, teams is found to be an array, so its types
are refined by the query in Line8 which flattens the array, projects the
value types, and groups by type counting the number of occurrences, to
obtain { ”t”:”object”, ”occ” : 31686}. The type of teams is updated to
Typespteamsq “ tarray of objectu and a new key teams* is added to the c-
schema. In the resulting c-schema after the first recursion, the root has
children id, date, and teams* (see Figure 4). In the second call to Expand,
teams* is expanded to obtain the keys shown in Figure 4 at the third level of
the tree. In the third call, results (of type object) and players* (of type array
of object) are expanded. Then no more objects are found and the algorithm
stops. The final c-schema is shown in Figure 4. Similarly, Figure 5 shows
the c-schema for the document in Figure 3.b.
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games*

id date teams*

name abbreviation city home results

assists . . .

score won players*

player points assists . . .

Figure 4: C-schema of the games collection (representation in Figure 3.a)

games*

team

name abbreviation city

id plays*

id date results

assists . . .

score won players*

player points assists . . .

home

Figure 5: C-schema of the games collection (representation in Figure 3.b)

A path from the root to a leaf of S is called an attribute. To
name attributes we use the dot notation omitting the root; so, for in-
stance, the c-schema in Figure 4 contains attributes date, teams*.name,
teams*.results.assists, teams*.players*.player, etc. The depth of attribute
a is the number of starred keys in its path (including the root), and
is denoted by depthpaq (e.g., depthpdateq “ 1, depthpteams*.nameq “ 2,
depthpteams*.results.assistsq “ 2); the set of attributes at depth δ is denoted
by Attrspδq, the maximum depth of the c-schema by δmax. For example, for
the c-schema in Figure 4 it is δmax “ 3.

Since documents within the same collection may present a structural va-
riety due to schema flexibility and data evolution, they can have varying
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attributes and an attribute can have different value types. To assess this
variability inside a collection we use two metrics. The frequency of attribute
a is defined as

freqpaq “
|k̃|

|D|
(1)

where |D| is the total number of documents in the collection, k̃ is the leaf key
of a, and |k̃| is the number of documents where k̃ appears with type different
from null and missing. Let t P Typespk̃q be one of the types of k̃; then, the
frequency of type t in a is

freqpt, aq “
|t|k̃
|k̃|

(2)

where |t|k̃ is the number of documents where k̃ has type t.

4.1.2. Build the Draft Md-Schema

After the c-schema S of a collection has been defined, a corresponding MD
schema has to be derived from it. Since measures at different granularities
can possibly be included in the documents (e.g., in our example, points at the
player’s level and score at the team level), the definition we provide relates
each single measure to a specific set of dimensions.

Definition 2 (Md-Schema). A multidimensional schema (briefly, md-
schema) is a triple M “ pH,M, gq where:

• H is a finite set of hierarchies; each hierarchy hi P H is associated to
a set Li of categorical levels and a roll-up partial order ľi of Li. The
top level of each hierarchy is called a dimension. Each element G P 2L,
where L “

Ť

i Li, such that for no l, l1 P G it is l ľi l
1, is called a

group-by set of H.

• M is a finite set of numerical measures.

• g is a function relating each measure in M to the set of levels that
determine its granularity: g : M Ñ G where G is the set of all group-by
sets of H.

At first, a draft md-schema Mdraft is built from S by tentatively labelling
all attributes of types date, string, and Boolean as levels, and all attributes
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having type number and array of number as measures. In case of an at-
tribute with varying type, labelling is done according to its prevalent type
(determined based on Formula 2). The user can contribute to this step by
manually changing the label of some attributes, since in some cases a numeric
attribute can be used as a level, and a non-numeric attribute can be used as
a measure. The first situation has no impact on the following steps, since
a group-by set can also include numeric attributes. Conversely, in the sec-
ond situation, to enable correct aggregations the values of the non-numeric
attribute should be transformed into numerical values (in MongoDB, ag-
gregating an attribute with a varying type only takes into account numeric
values and skips non-numeric, missing, and null values).

In real collections there can be a notable amount of noise in the form
of low-frequency attributes; so, we do not consider the attributes whose fre-
quency (determined based on Formula 1) is below a user-defined threshold.
Of course, pruning these attributes may lead to missing some level/measure
for analysis. However, including in a query an attribute that is present in
a very small percentage of documents would produce very partial results,
which could be misleading to the user. Besides, repairing these issues would
require specific business rules and cannot be realistically done on-the-fly by
an end-user. We claim that some imprecision/incompleteness is a neces-
sary price to be paid to preserve the self-service and real-time nature of our
schema-on-read approach.

Since at this stage no roll-up relationship has been discovered yet, each
level is the only member of a different hierarchy (i.e., it is a dimension); hence,
each possible subset of L is a group-by set. The only exceptions are date
dimensions, which can be decomposed into different categorical levels to give
rise to standard temporal hierarchies (e.g., date ľ month ľ year). No further
attempt to discover hierarchies is made at this stage, since extensively looking
for FDs among all attributes would be computationally very expensive. As
a consequence, in Mdraft two levels l and l1 might be erroneously modeled
as two separate dimensions, while they should be actually part of the same
hierarchy because l ľ l1. This issue is fixed during the querying and OLAP
enabling phases.

To complete the definition of Mdraft, the granularity mapping g must
be built. We recall that an md-schema should comply with the MD space
arrangement constraint, stating that each instance of a measure is related to
one instance of each dimension [17]. In the c-schema S, attributes in Attrspδq
are related by to-many multiplicity to those in Attrspδ ` 1q, so a measure
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cannot be related to levels having a higher depth; specifically, our goal is to
avoid that for some m P M there is a to-many relationship between m and
a level l P G, because this would lead to double counting. Therefore, gpmq
is set by connecting each measure m to the group-by set G that contains all
levels l P L such that depthpmq ě depthplq. Note that a measure with type
array of number can be safely aggregated since a dimension can be related to
multiple instances of a measure.

Example 3. With reference to the c-schema in Figure 4, at-
tribute teams*.score is numerical, so it is assumed to be a mea-
sure, while teams*.name is assumed to be a dimension. It
is depthpteams*.scoreq “ 2, therefore teams*.score is tenta-
tively associated in the draft md-schema with group-by set G “

tteams*.name, teams*.abbreviation, teams*.city, teams*.home, id, dateu. All
the measures at the same depth of teams*.score (e.g., teams*.won and
teams*.results.assists) are also associated with G. Similarly, measure
teams*.players*.points has depth 3, so it is associated with group-by set
G1 “ tteams*.players*.player, teams*.name, teams*.abbreviation, teams*.city,
teams*.home, id, dateu. Formally:

H “ ttteams*.nameu, tteams*.abbreviationu,

tteams*.cityu, tteams*.homeu, tidu, tdateu,

tteams*.players*.playeruu

M “ tteams*.score, teams*.won, teams*.results.assists,

teams*.players*.pointsu

gpteams*.scoreq “ tteams*.name, teams*.abbreviation, teams*.city,

teams*.home, id, dateu

gpteams*.players*.pointsq “ tteams*.players*.player, teams*.name,

teams*.abbreviation, teams*.city, teams*.home,

id, dateu

The draft md-schema is shown in DFM notation [12] in Figure 6; remarkably,
it is the same obtained for the c-schema in Figure 5.

The mapping g is defined using information provided by the c-schema,
and some exceptions may arise when the relationship between a measure m
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Figure 6: The draft md-schema for games (dimensions are shown as circles,
measures are listed within each box)

and a level l cannot be captured. This happens when this relationship is
hidden in data, i.e., though m and l have the same depth they are actually
related by a to-many relationship [34] (e.g., when arrays of objects are not
used to model to-many relationships). In this case, m may be non-additive
or even non-aggregable on gpmq, so the user’s knowledge of the application
domain is required to manually fix summarization (see Section 4.2.3).

4.2. Querying

This phase is aimed at supporting a non-expert user in formulating a well-
formed MD query. In a schema-on-write approach, queries are formulated
on a complete MD schema whose correctness is ensured by the designer.
Conversely, in a schema-on-read approach —our case—, the MD schema is
defined at read-time by the query itself. Though this approach gives more
flexibility because each user can “force” her own MD view onto the data, it
requires a further check to ensure that the FDs implied by the query are not
contradicted by data; so, querying becomes an iterative process where the
underlying md-schema is progressively refined together with the query.

Definition 3 (Md-Query). A multidimensional query (briefly, md-query)
q on md-schema M “ pH,M, gq is a triple q “ pGq,Mq,Σq where 1

1We do not consider selection predicates in this definition because our OLAP enabling
phase is focused on roll-ups and drill-downs, which operate on the query group-by set
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• Gq P G is the md-query group-by set;

• Mq ĎM is the set of required measures;

• Σ is a function that associates each measure m P Mq with an aggrega-
tion operator.

Starting from the draft md-schema M, the user formulates an md-query q
by choosing one to three dimensions2 (Gq), one or more measures of interest
(Mq), and an aggregation operator for each measure (Σ). However, to be
considered well-formed, q must satisfy some conditions.

Firstly, we have to ensure that all the measures in Mq can be correctly
aggregated at group-by set Gq. To this end, we observe that the roll-up
partial orders on the hierarchies H of an md-schema M induce a partial
order ľH on the set G of the group-by sets of H, such that G ľH G1 iff
the granularity of G1 is coarser than the one of G [35]. Since in a draft
md-schema all hierarchies include a single level with no roll-up relationship,
it is G ľH G1 when G1 Ď G. Measure m P Mq is compatible with Gq iff
gpmq ľH Gq; indeed, if this condition is satisfied, the granularity expressed
by the group-by set is coarser than the one at which m is defined, so m can
be safely aggregated at Gq.

Example 4. A possible md-query on the draft md-schema described in Ex-
ample 3 is the one characterized by Gq “ tteams*.players*.player, dateu,
Mq “ tteams*.scoreu, and Σ “ Sum. It is gpteams*.scoreq ńH Gq (be-
cause teams*.players*.player is not in gpteams*.scoreq). Indeed, aggregat-
ing on teams*.score would result in double counting since each instance of
teams*.score is related to multiple instances of teams*.players*.player (a team
has several players).

Secondly, q (and the md-schema q is formulated on) should comply with
the following constraints [17]:

and not on selections. Differently from group-by sets, selections are not influenced by
hierarchies, so they would not require additional well-formedness checks.

2Group-by sets with more than three dimensions are seldom used in practice, mainly
because visualizing n-dimensional datasets with n ě 4 requires sophisticated chart types
that are typically oriented to very skilled users.
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Algorithm 3 Querying
Require: A c-schema S, an md-schema M, an md-query q “ pGq ,Mq ,Σq on M
Ensure: A (refined) md-schema M, a (valid) md-query q on M
1: if |Gq | ą 1 then
2: Gq Ð CheckGroupBypMq , Gq ,M,Sq
3: if |Gq | “ 1 then
4: Lrec Ð RecommendLevelspGq ,Mq

5: Update Gq and M based on the user’s choice

6: CheckSummarizationpq,Mq

7: TranslateMdQuerypqq

71 The base integrity constraint, stating that the levels in the group-by set
are orthogonal, i.e., functionally independent on each other.

72 The summarization integrity constraint, which requires disjointness
(the measure instances to be aggregated are partitioned by the group-
by instances), completeness (the union of these partitions constitutes
the entire set), and compatibility (the aggregation operator chosen for
each measure is compatible with the type of that measure) [36].

How to carry out these two checks is discussed in the following subsections.
The pseudo-code of the querying phase is sketched in Algorithm 3. It

starts from md-query q and md-schema M, and produces in output a valid
md-query based on a possibly refined md-schema. Algorithm 3 works as fol-
lows. Firstly, if the md-query group-by set includes either 2 or 3 levels (Lines
1–5), procedure CheckGroupBy is called to drop from Gq the levels, if any,
that are not compliant with the base integrity constraint and update M ac-
cordingly (Line 2). If just one level is left in Gq, procedure RecommendLevels
is called to look for additional group-by levels (Line 4) and possibly include
them in the md-query upon the user’s decision (Line 5). Finally, procedure
CheckSummarization checks summarization (Line 6) and q is translated into
the native query language of the document store and executed (Line 7).

4.2.1. Check Group-by Set

This process is aimed at ensuring base integrity and at checking disjoint-
ness and completeness [36].

Base integrity requires that the levels in Gq are mutually orthogonal. So,
from this point of view, md-query q is valid only if there are no FDs between
the levels in Gq, i.e., there are many-to-many relationships between them.
An FD is a to-one relationship, usually denoted with l Ñ l1 to emphasize
that values of l functionally determine the values of l1. FDs are not modeled
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at the schema level, so we must resort to data; since document stores host
large amounts of data, we can reasonably assume that the FDs we find are
representative enough of the application domain. Unfortunately, schemaless
data commonly present errors and missing values, which may hide some FDs.
The tool we adopt to cope with this issue are approximate functional depen-
dencies (AFDs) [37], which “almost hold” on data; for complexity reasons,
we only consider simple AFDs (i.e., those relating single attributes rather
than attribute sets), which are mostly common in MD schemata.

Definition 4 (Approximate Functional Dependency). Given two lev-
els l and l1, let strengthpl, l1q denote the ratio between the number of unique
values of l and the number of unique values of ll1 [38]. We will say that AFD
l l1 holds if strengthpl, l1q ě ε, where ε is a user-defined threshold.

To verify base integrity we check AFDs between the levels in Gq; the
algorithm we adopt to look for AFDs is Cords [39]. Noticeably, to reduce
the search complexity we avoid useless AFD checks. An AFD l  l1 cannot
hold —so its check can be avoided— in two cases:

• If the cardinality of l1 is higher than the cardinality of l, |l1| ą |l|.

• If depthplq ă depthpl1q. Indeed, as already stated in Section 4.1.2, the
attributes in Attrspδq are related by to-many multiplicity to those in
Attrspδ ` 1q, so l ­ l1.

The result of all AFD checks performed is stored in a meta-data repository,
to be used to avoid checking the same AFDs twice.

The detection of an AFD leads to dropping one or two levels from Gq and
to refining the md-schema by creating portions of hierarchies. In particular,
when AFD l l1 is detected, where l, l1 P Gq and l and l1 belong to hierarchies
h and h1, respectively, l1 is dropped from Gq and M is refined as follows: (i)
level l1 is moved from h1 to h; (ii) the roll-up partial order of h is updated
by adding l ľ l1; (iii) the granularity function of each measure m such that
l, l1 P gpmq is updated by removing l1; and (iv) h1 (which remains empty) is
deleted from H.

In more detail, recalling that 1 ď |Gq| ď 3, the following situations may
arise:

1. If |Gq| “ 1, orthogonality is obvious.
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2. If |Gq| “ 2, the relationship between the two levels in Gq, l and l1, is
checked. If it turns out to be many-to-many because no AFDs are found
between l and l1 (e.g., if Gq “ tdate, teams*.nameu), the base integrity
constraint is met and both levels remain in Gq. If it turns out to be
many-to-one, for instance because l  l1, then only the level at the
“many” side, l, remains in Gq, and l ľ l1 is added to M. For instance,
if Gq “ tteams*.name, teams*.cityu, it is teams*.name teams*.city so
teams*.city is dropped from Gq and teams*.name ľ teams*.city is added
to the md-schema.

3. If |Gq| “ 3, with Gq “ tl, l
1, l2u, there are four possibilities:

(a) No AFDs are detected, so many-to-many relationships hold be-
tween each pair of levels. In this case the base integrity
constraint is met and all levels remain in Gq (e.g., if Gq “

tdate, teams*.name, teams*.players*.playeru).

(b) One AFD is detected, say l1  l2 (e.g., if Gq “

tteams*.name, id, dateu, since id  date). In this case, l1 ľ l2

is added to M and l2 is removed from Gq.

(c) Two AFDs are detected. Two cases arise here:

i. If l l1 and l l2, both l ľ l1 and l ľ l2 are added to M, and
l1 and l2 are dropped from Gq. Conceptually, l is the starting
level of a branch in the hierarchy [12].

ii. If l1  l and l2  l, both l1 ľ l and l2 ľ l are added to M, and
l is dropped from Gq. Conceptually, there is a convergence in l
[12].

(d) Three AFDs are detected, say l  l1, l1  l2, and l  l2. In this
case the three levels in Gq belong to the same hierarchy; l ľ l1 ľ l2

is added to M and only the level with highest cardinality, l, is kept
in Gq.

A special case is when both l  l1 and l1  l hold, i.e., the relation-
ship between two levels in the group-by set is one-to-one (e.g., if Gq “

tteams*.name, teams*.abbreviationu). Here, one of the levels, say l, is kept
in Gq while l1 is considered as a descriptive attribute, which can be picked by
the user when formulating a query to improve the quality of the results by
giving additional information about l [12].
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Note that using AFDs instead of FDs may entail an approximate sat-
isfaction of the disjointness constraint, which in turn can cause summariz-
ability issues. Disjointness is violated when an instance of measure m P Mq

is related to multiple instances of level l P Gq. This may happen when
Typesplq Ě tsimple, array of simpleu and in some documents the array con-
tains more than one value. In this case, a local check on each document
can be performed by submitting a query to the document store. The query
should select documents where both m and l exist and l is an array of simple,
and return the documents for which the size of the array is greater than 1.
If some results are returned, disjointness is locally violated; to avoid dou-
ble counting, a simple solution is to restrict the values of l to simple type.
An example of disjointness violation between measure teams*.score and level
teams*.name is shown below:

”teams” : {”score” : 100, ”name” : [”Washington Bullets”,”WSB”], ”city” : ”Washington”}

Disjointness can also be violated between two levels in the same hierarchy,
l ľ l1, when an instance of l is related to more than one instance of l1, i.e.,
when l  l1 but l Û l1. This situation can be detected either locally as
seen before or globally using a different query that groups documents by l
counting the distinct values of l1 to return the documents having a count
greater that 1. If some results are returned, disjointness is globally violated.
In the following an example of local violation between the levels teams*.name
and teams*.city:

”teams” : {”score” : 100, ”name”:”Washington Bullets”, ”city” : [”Washington”,”Washington DC”]}

and one of global violation:

”teams” : {”score” : 100, ”name”:”Washington Bullets”, ”city” : ”Washington”}

”teams” : {”score” : 107, ”name”:”Washington Bullets”, ”city” : ”Washington DC”}

Even in this case, a basic solution to avoid double counting is to exclude the
values for which there is no disjointness (whose relative significance clearly
depends on the threshold ε used for AFD detection). Note that, in schema-on-
write approaches, summarizability can be enforced in presence of disjointness
violations by enclosing sophisticated algorithms in the ETL process [40],
which unfortunately is unsuitable to a real-time context like ours.

Finally, the completeness constraint is violated when, for some level
l P Gq, there is no instance corresponding to one or more instances of a
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measure m P Mq; from a conceptual point of view, l is classified as optional
[12]. In a schema-on-write approach this problem is fixed by aggregating all
“dangling” measures into an ad-hoc group of l. Similarly, in our schema-
on-read approach, these instances are grouped into a null instance of l thus
restoring the completeness condition; then for instance, the $ifNull operator
of MongoDB could be used to replace null values with an ad-hoc one when
executing q.

4.2.2. Recommend Levels

Recommending additional group-by levels is done when originally the user
had selected two or three group-by levels, but only one of them was left in
Gq after checking the group-by set. For a given candidate level l, it requires
to check that the base integrity constraint is met between l and some other
level l1 in M, and at least a measure m PMq is compatible with Gq. The first
level found is proposed to the user, who has the choice to use it or to proceed
looking for other levels (up to a maximum of three levels in the group-by
set).

Example 5. Let Gq “ tteams*.name, teams*.cityu and Mq “ tteams*.scoreu.
Since the AFD teams*.name  teams*.city holds, teams*.city is removed
from Gq. In this case, to recommend levels we may look for AFDs between
teams*.name and id, date, teams*.abbreviation, teams*.city, teams*.home.
Since id has a many-to-many relationship with teams*.name, it is recom-
mended to the user as a possible group-by level.

4.2.3. Check Summarization

The first possible problem with summarization is related to compatibil-
ity, which states that measures cannot be aggregated along levels using any
aggregation operator [36]. In principle, checking summarization would re-
quire knowing the measure category (flow, stock, or value-per-unit), the type
of group-by levels (temporal or non-temporal), and the aggregation operator
(Sum, Avg, Min, Max, Count, etc.). Knowing the measure category and type
of group-by levels could be used to recommend some aggregation operators,
but still the user would have to choose among a number of potential options;
besides, correctly classifying a measure into flow, stock, or value-per-unit
may be hard for non-skilled users. Therefore, we prefer to enable users to
directly pick an aggregation operator for each measure in Mq.

The second situation where summarization could be violated is when a
measure m P Mq has finer granularity than another measure m1 P Mq, since
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m would be double-counted when executing q. In this case, the user is
warned that she will get erroneous results, and she may choose to change the
aggregation operator for m (e.g., using Min, Max or Avg instead of Sum will
give the correct result) or to drop m from Mq.

Example 6. Let Mq “ tteams*.score, teams*.players*.pointsu. These mea-
sures have different granularities, so if the user has chosen to aggregate
teams*.score (which has finer granularity) using Sum she will get dou-
ble counting. Then, she can either change the aggregation operator for
teams*.score to Avg or drop teams*.score from Mq.

4.2.4. Translate Md-Query

In this section we show how the md-queries expressed using EXODuS
(as of Definition 3) can be translated into the native query language of
MongoDB. Aggregations in MongoDB can be expressed using the aggre-
gation framework, which offers the ability to group, project, filter, and
sort results in different stages. An aggregate MongoDB query consists of
a multi-stage pipeline that transforms documents into an aggregated result
(docs.mongodb.com/manual/aggregation/).

The pseudo-code of the md-query translation is sketched in Algorithm
4. It starts from a well-formed md-query q and a c-schema S, and produces
in output a MongoDB query qm. Algorithm 4 initializes qm as an aggregate
query with the collection name (Line1) and then works as follows. At first, a
$group stage is added at the end of qm (Line2). For each attribute a in the set
Aq of group-by attributes and measures, if the leaf key k of a is nested in an
array, function arraysOfpq is called to return the arrays in which k is nested
(Lines 5—7). To flatten these arrays one $unwind stage is added for each
array at the beginning of qm (Lines 8—10). Then, if a is a level, we check
if it is a temporal one that has been added during MD enrichment; if so,
since a does not exist in the collection as an attribute, an $addFields stage is
inserted before the $group stage to add an attribute for the dimension dimpaq
to which a belongs (Lines 12—14). Then, AddGrouppq adds attribute a to
the $group stage (Line15). Finally, if a is a measure, it is aggregated using
Σpmq and added to the $group stage of qm (Lines 16—17).

Example 7. Let us consider for instance the query characterized by Gq “

tteams*.players*.player, yearu, Mq “ tteams*.players*.pointsu, and Σ “ Sum,
which calculates the total score by player and year. The leaf key player is
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Algorithm 4 TranslateMdQuery
Require: A c-schema S, a (well-formed) md-query q “ pGq ,Mq ,Σq
Ensure: A mongoDB query qm
1: qm Ð AggregateprootOfpSqq
2: AddStagepqm, $groupq
3: Aq Ð Gq YMq

4: for all a P Aq do
5: k Ð keyOfpaq
6: if k is nested in an array then
7: for all array P arraysOfpkq do
8: if array has not been added yet then
9: AddStagepqm, $unwindq
10: Unwindpqm, arrayq

11: if a is a level then
12: if a is a temporal level then
13: AddStagepqm, $addFieldsq
14: AddAttributepqm, a, dimpaqq

15: AddGrouppqm, aq
16: else if a is a measure then
17: AddGrouppqm, a,Σpaqq

18: return qm

nested in an array, so two $unwind stages are required to flatten arrays teams
and teams.players respectively. Level year is temporal so an $addFields stage is
required to retrieve the year from dimension date using the (native) function
$year. The corresponding query in MongoDB is then as follows:

db.games.aggregate
( [ {$unwind :

$teams
},
{$unwind :

$teams.players
},
{ $addFields:
{ year: { $year: $date },
}

},
{$group:
{ id : { name: $teams.name, year: $year}

score : {$sum : $teams.score}
}

}
] )

4.3. OLAP Enabling

The goal of this phase is to refine the md-schema by incrementally discov-
ering some roll-up relationships, so that the user is enabled to interact with
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data in an OLAP fashion and iteratively formulate new md-queries. Com-
pletely building all the hierarchies would require to mine all AFDs between
levels, which would be computationally very expensive. For this reason, we
only build local portions of hierarchies for the levels in the group-by set of
the previously-formulated md-query q. Specifically, the idea is to mine, for
each level l P Gq, the AFDs of either type l  l1 (to enable a roll-up of l)
or l1  l (to enable a drill-down of l). Then, if the user applies a roll-up or
drill-down, a new md-query q1 is formed and the process is iterated to further
extend the hierarchies.

At a given time during a user’s session, let M be the current version of the
md-schema and q be the last md-query formulated. Then, the search space
for mining AFDs includes the levels that are not in Gq and are not involved in
roll-up relationships in M. Like in group-by set checking (Section 4.2.1), we
take into account level cardinalities and the structural clues provided by the
c-schema to avoid useless checks. In addition, we avoid checking transitive
AFDs since we explore one hierarchy at a time.

The whole process is described by Algorithm 5; in the following subsec-
tions, roll-up and drill-down discovery are detailed.

4.3.1. Discover Roll-ups

Let l P Gq; discovering possible roll-ups for l requires to mine the AFDs
of type l  l1, with l1 P LzGq and depthplq ě depthpl1q. To avoid useless

Algorithm 5 OLAP Enabling
Require: An md-schema M, an md-query q “ pGq ,Mq ,Σq on M, a threshold ε on the strength of AFDs
Ensure: A (refined) md-schema M
1: RÐ LzGq

2: for all l P Gq do
3: if l has not been explored yet then
4: for all l1 P R do
5: if l ń l1 then
6: if depthplq ě depthpl1q and |l1| ď |l| then Ź Roll-up discovery
7: CheckAFDpl, l1, εq
8: if l  l1 then
9: update M with l ľ l1

10: if l1 ń l then
11: if depthpl1q ě depthplq and |l| ď |l1| then Ź Drill-down discovery
12: if at least a measure in Mq is compatible with Gqztlu Y tl1u then
13: CheckAFDpl1, l, εq
14: if l1  l then
15: update M with l1 ľ l

16: Mark l as explored and notify the user of possible roll-ups and drill-downs

17: return M
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checks, an AFD whose right-hand side l1 has higher cardinality than l is not
checked, since it clearly cannot hold (Line6 in Algorithm 5). For each AFD
l  l1 that is found to hold, the md-schema M is updated by adding l ľ l1

and the user is notified of the ability of performing a roll-up from l.

Example 8. Let Gq “ tid, teams*.nameu and Mq “

tteams*.score, teams*.won, teams*.results.assistsu. The search space
for level id only includes date, since it is the only level for which
depthpidq ě depthpdateq. Since |id| ą |date|, id  date is checked and
it is found to hold, so the md-schema is updated with id ľ date. The
search space for teams*.name consists of teams*.abbreviation, teams*.city,
and teams*.home; by accessing data we find that |teams*.name| “

|teams*.abbreviation| ą |teams*.city| ą |teams*.home|. All three AFDs are
checked; teams*.name teams*.city and teams*.name teams*.abbreviation
are found to hold, while teams*.name  teams*.home does not hold. So
the games md-schema is updated with teams*.name ľ teams*.city and
teams*.name ľ teams*.abbreviation.

4.3.2. Discover Drill-Downs

Here the set of candidate levels for checking AFDs of type l1  l includes
the levels in LzGq whose depth is greater or equal than l, i.e., such that
depthpl1q ě depthplq. As in roll-up discovery, an AFD whose right-hand side
l has higher cardinality than l1 is not checked, since it cannot hold (Line11
in Algorithm 5). If l1  l is found to hold, the md-schema M is updated
with l1 ľ l and the user is notified of the ability of drilling down from l.

Note that drilling down from l to l1 could produce a new md-query q1

whose group-by set, Gq1 “ GqztluYtl
1u, is not compatible with the granularity

of some of the measures. Since checking compatibility is computationally
cheaper than checking AFDs (as explained in Section 4.1.2, it can be done
based on the partial order of group-by sets, without accessing data), the
AFD for a candidate level l1 is checked only if Gq1 is found to be compatible
with the granularity of at least one of the measures in Mq1 (Line12). Of
course, if l1  l is found to hold and the user decides to drill-down to l1, the
incompatible measures in Mq1 must be dropped.

We finally remark that, when |l| “ |l1| or |l| ” |l1| (due to approximation),
both l  l1 and l1  l are checked (during roll-up and drill-down discovery,
respectively), since the relationship between l and l1 may be one-to-one. In
case both AFDs hold, l1 is a descriptive attribute for l.
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Figure 7: The games md-schema

Example 9. Consider again Example 8. Since id has the highest cardi-
nality, there are no AFDs to check for it. On the other hand, the search
space for teams*.name consists of teams*.abbreviation, teams*.home and
teams*.players*.player (we recall that teams*.city has already been added to the
hierarchy), where |teams*.home| ă |teams*.name| “ |teams*.abbreviation| ă
|teams*.players*.player|. AFD teams*.home  teams*.name is not
checked because of its cardinality; the same for teams*.players*.player  
teams*.name, since the measures in Mq1 are not compatible with Gq1 “

tid, teams*.players*.playeru. Eventually, teams*.abbreviation  teams*.name
is checked, giving rise to a descriptive attribute.

The md-schema resulting after OLAP enabling in Examples 8 and 9 is
shown in DFM notation in Figure 7. Note that, at the end of the user’s
session, md-schemata (which summarize all the knowledge acquired in terms
of AFDs) can be stored for reuse and sharing.

5. Experimental Evaluation

In this section we evaluate the performance of EXODuS using three
real-world datasets (accessible at [41]):

• Games. The working example dataset has been collected by Sports
Reference LLC [33]. It contains around 32K nested documents repre-
senting NBA games in the period 1985—2013. Each document rep-
resents a game between two teams with at least 11 players each. It
contains 47 attributes; 40 of them are numeric and represent team and
player results.
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• DBLP. This dataset contains 2M documents scraped from DBLP
(dblp.uni-trier.de/xml/) in XML format and converted into JSON.
Documents are flat and represent eight kinds of publications including
conference proceedings, journal articles, books, thesis, etc. The third
portion of the dataset represent author pages, containing half the num-
ber of attributes compared to other kinds. So, documents have shared
attributes such as title, author, type, year and unshared ones such as
journal and booktitle.

• Twitter. This dataset contains 2M tweets scraped from the Twitter
API [38]. Each document represents a tweet message and its metadata,
which contains some nested objects: a user object that represent the
author of the tweet, a place object that gives its location and a retweet
object if it is a reply. The dataset is heterogeneous and mixes between
tweets and documents of an API call for tweet deletes.

Table 1 shows the characteristics of the used datasets. Each dataset has
been loaded as a collection in a local MongoDB instance running on Intel
Core i7 CPU at 3.6 GHz and 8 GB of RAM machine with Ubuntu 14.04 OS.

We have focused testing on the parts of our approach that require access-
ing data, since the purely algorithmic parts have no relevant computational
complexity. Query execution is delegated to MongoDB. Specifically, in the
following subsections we evaluate the performance of the three phases of
EXODuS.

5.1. MD Enrichment

To evaluate this phase, we measure the time tcSchema required to build
the c-schema since it is the only part that requires to access data. In Table
1 we show, for our three datasets, the time required to extract the c-schema
and the number of performed iterations. Remarkably, the maximum time

Table 1: Performance of MD enrichment

Dataset Size #Documents #Attr #Iterations tcSchema
Games 167.5MB 32K 47 3 17.4 sec.
DBLP 683MB 2M 27 1 24.6 sec.
Twitter 4GB 2M 100 5 142.9 sec.
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for building a c-schema is less than 143 seconds, which is compatible with
real-time usage. We also emphasize that this step is executed only once for
each analysis session, at its beginning.

Since also cardinality checks are done once in a session, we discuss them
in this section. Table 2 shows for each level its cardinality and the time to
retrieve it, tcard, which is normally quite small since MongoDB can use in-
dexes instead of collection scans. Note that for levels having high cardinality,

Table 2: Performance of cardinality checks

Dataset l |l| tcard

Games

date 4424 0.0 sec.
id 31686 0.1 sec.
teams*.abbreviation 36 0.0 sec.
teams*.city 31 0.0 sec.
teams*.home 2 0.0 sec.
teams*.name 36 0.0 sec.
teams*.players*.player 2191 0.4 sec.
all levels — 0.6 sec.

DBLP

author 1691491 6.0 sec.
booktitle 10606 0.0 sec.
journal 1669 0.0 sec.
type 8 0.0 sec.
year 83 0.0 sec.
all levels — 6.1 sec.

Twitter

created at 377942 0.8 sec.
place.full name 7248 0.0 sec.
place.name 6657 0.0 sec.
place.country 119 0.0 sec.
place.country code 117 0.0 sec.
source 13519 0.0 sec.
user.created at 1550216 5.9 sec.
user.lang 17 0.0 sec.
user.location 583070 5.3 sec.
user.name 1409401 6.3 sec.
user.screen name 1569422 5.8 sec.
all levels — 24.4 sec.
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the time to retrieve a cardinality is high due to the upper limit of document
size in MongoDB (16MB); so we had to use a different query that could not
benefit from indexes and suffered from memory limits in MongoDB.

5.2. Querying

Since checking group-by sets requires AFD detection, to evaluate querying
we start by measuring the time to check each single AFD possibly present
in each md-schema (obviously excluding those whose check can be avoided).
Tables 3, 4, and 5 show, for each AFD checked between a pair of levels, its
strength and the checking time tAFD. Clearly, tAFD depends on the levels
and on their depths. This is apparent for the AFDs involving the author
attribute in Table 4, which have a higher execution time. The reason for
this is the amount of memory allowed by MongoDB for group-by queries,
which is limited to 100 MB; when a query does not fit in memory, temporary
files must be written on disk, which dramatically slows execution down. By
comparing the figures in Table 2 on the one hand and Tables 3, 4, and 5 on
the other we can also confirm that using cardinalities to reduce the search
space can significantly improve the overall performance, since retrieving a
cardinality is faster than checking an AFD.

Then we consider four md-queries on each dataset (the group-by sets of
all twelve queries are shown in Table 6); we assess the performance of query

Table 3: Performance of AFD checks on the Games dataset

l l1 strengthpl, l1q tAFD
id date 100% 0.1 sec.
teams*.name teams*.abbreviation 100% 0.1 sec.
teams*.name teams*.home 50% 0.1 sec.
teams*.name teams*.city 100% 0.1 sec.
teams*.city teams*.home 50% 0.1 sec.
teams*.abbreviation teams*.name 100% 0.1 sec.
teams*.abbreviation teams*.home 50% 0.1 sec.
teams*.abbreviation teams*.city 100% 0.1 sec.
teams*.players*.player teams*.name 34.7% 0.8 sec.
teams*.players*.player teams*.abbrev. 34.7% 0.8 sec.
teams*.players*.player teams*.home 50.5% 0.8 sec.
teams*.players*.player teams*.city 35.1% 0.8 sec.
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Table 4: Performance of AFD checks on the DBLP dataset

l l1 strengthpl, l1q tAFD
year type 23.5% 1.7 sec.
journal type 99.9% 1.1 sec.
journal year 6.9% 1.2 sec.
booktitle type 67.0% 1.4 sec.
booktitle year 29.3% 1.3 sec.
booktitle journal no relationship 0.7 sec.
author type 67.0% 15.0 sec.
author year 42.8% 11.9 sec.
author journal 52.9% 6.3 sec.
author booktitle 42.4% 7.3 sec.

validation in the worst case, i.e., assuming that each query is formulated
on the draft md-schema first, so that no AFDs previously acquired can be
reused. Specifically, in Table 6 we show the time tquerying for checking the
group-by set of each query (i.e., the sum of the times for the AFD checks
required) since it is the only part that requires to access data3. The table
also shows the number of AFD checks avoided (#Avoided) using cardinalities
and structural information from the c-schema. For instance, for query q1, the
AFDs to be considered are the ones between the two attributes in the group-
by set, teams*.name and date; of these, date  teams*.name is not checked
because depthpdateq ă depthpteams*.nameq, while teams*.name date is not
checked because |date| ą |teams*.name|. So, overall, 2/2 checks are avoided.

We can conclude that (i) our approach effectively reduces the number
of checks by using cardinalities and the c-schema, and (ii) the md-query
validation time depends on the number of levels in the group-by set and on
their depths. The md-query validation time is very small and fully compatible
with real-time usage.

5.3. OLAP Enabling

For OLAP enabling, we consider that each md-query is executed in a
session alone. Table 7 shows the overall performance when executing one

3The time for actually executing each md-query is not considered here, since the opti-
mization of each md-query is out of the paper scope.
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Table 5: Performance of AFD checks on the Twitter dataset

l l1 strengthpl, l1q tAFD
source place.full name 1,9% 3,5 sec.
source place.name 2% 3,5 sec.
source place.country 29,7% 3,5 sec.
source place.country code 29,8% 3,5 sec.
source user.lang 82,9% 5,1 sec.
user.location source 74,2% 8,7 sec.
user.name source 90,4% 12,9 sec.
user.created at source 95,4% 13,3 sec.
user.screen name source 96,2% 12,1 sec.
created at source 26,3% 8,7 sec.
created at place.full name 95,5% 4,8 sec.
created at place.name 95,5% 4,8 sec.
created at place.country 96,5% 4,8 sec.
created at place.country code 96,5% 4,9 sec.
created at user.lang 43,3% 6,9 sec.
user.location created at 34,2% 9,7 sec.
user.name created at 73,9% 12,2 sec.
user.created at created at 81,2% 13,8 sec.
user.screen name created at 82,2% 12,4 sec.
user.name user.location 91,1% 12,9 sec.
user.name place.full name 96,8% 11,3 sec.
user.name place.name 96,8% 11,4 sec.
user.name place.country 99,3% 11,4 sec.
user.name place.country code 99,3% 11,3 sec.
user.name user.lang 98,4% 12,2 sec.
user.created at user.name 98,3% 13,6 sec.
user.screen name user.name 98,7% 13,2 sec.
place.name place.country 98,6% 3,1 sec.
place.name place.country code 98,6% 3.0 sec.
place.name user.lang 86,5% 4,7 sec.
place.full name place.name 100% 3.0 sec.
user.location place.name 76% 6,1 sec.
user.created at place.name 98,1% 11,8 sec.
user.screen name place.name 98,1% 10,8 sec.

35



Table 6: Performance of querying

Dataset q Gq #Avoided tquerying

Games

q1 date, teams*.name 2/2 0.0 sec.
q2 id,teams*.name, teams*.home 5/6 0.1 sec.
q3 teams*.players*.player, teams*.name, date 5/6 0.8 sec.
q4 teams*.players*.player, teams*.name,

teams*.home
3/6 1.7 sec.

DBLP

q5 booktitle, year 1/2 1.3 sec.
q6 year, type 1/2 1.7 sec.
q7 author, year 1/2 11.9 sec.
q8 type, year, author 3/6 28.6 sec.

Twitter

q9 created at, source 1/2 8.7 sec.
q10 source, place.name 1/2 3.5 sec.
q11 user.name, created at 1/2 12.2 sec.
q12 place.name, user.name, created at 3/6 28.4 sec.

Table 7: Overall performance of OLAP enabling

Dataset q #Roll-up, #Drill-down #Avoided tOLAP

Games

q1 1,1 7/10 , 7/10 1.3 sec.
q2 2,0 9/12, 7/12 2.2 sec.
q3 1,1 6/12, 10/12 2.9 sec.
q4 1,0 8/12, 9/12 2.1 sec.

DBLP

q5 0,0 3/6 , 3/6 24.2 sec.
q6 0,1 6/6 , 0/6 31.9 sec.
q7 0,0 2/6 , 4/6 32.8 sec.
q8 0,1 4/6 , 2/6 18.6 sec.

Twitter

q9 0,0 8/18 , 10/18 140.4 sec.
q10 2,1 11/18 , 7/18 130.0 sec.
q11 2,1 5/18 , 13/18 181.0 sec.
q12 4,1 10/24 , 14/24 210.8 sec.
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OLAP enabling phase (i.e., one roll-up discovery plus one drill-down discov-
ery) starting from each of our twelve md-queries: the number of roll-up and
drill-down relationships discovered, the number of checks avoided, and the
total time spent, tOLAP . The latter is calculated as the sum of the times
for checking each AFD. The results show that the time required by OLAP
enabling is reasonable for all md-queries , which confirms that our approach
fits real-time contexts.

Example 10. For query q1, the AFDs to be considered are those involving
the two attributes in the group-by set, teams*.name and date; namely, for
roll-up:

date id (avoided using cardinalities)

date teams*.abbreviation (avoided using the c-schema)

date teams*.city (avoided using the c-schema)

date teams*.home (avoided using the c-schema)

date teams*.players*.player (avoided using the c-schema)

teams*.name id (avoided using cardinalities)

teams*.name teams*.abbreviation (checked)

teams*.name teams*.city (checked)

teams*.name teams*.home (checked)

teams*.name teams*.players*.player (avoided using the c-schema)

and for drill-down:

id date (checked)

teams*.abbreviation date (avoided using cardinalities)

teams*.city date (avoided using cardinalities)

teams*.home date (avoided using cardinalities)

teams*.players*.player date (avoided using cardinalities)

id teams*.name (avoided using the c-schema)

teams*.abbreviation teams*.name (checked)

teams*.city teams*.name (avoided using cardinalities)

teams*.home teams*.name (avoided using cardinalities)

teams*.players*.player teams*.name (checked)
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6. Conclusion

In this paper we have proposed EXODuS, an interactive schema-on-
read approach for enabling OLAP querying on document stores. To this
end, AFDs are incrementally mined to discover MD structures based on the
queries of interest for the user. User interaction is mostly limited to the
selection of possible dimensions and measures and to a proper choice of the
aggregation operators. After validating user queries from the MD point of
view and refining the underlying MD schema accordingly, we build local
portions of MD hierarchies aimed at enabling OLAP-style user interaction
in the form of roll-ups and drill-downs.

Overall, the experiments we conducted show that the performances of
our approach are in line with the requirements of a real-time user interac-
tion. However, some relevant issues still need to be explored and are part of
our future work. To improve performance, we plan to further optimize the
algorithms proposed. Besides, to increase effectiveness, the versioning and
evolution of data and schemata in a collection must be considered; we plan
to address this issue by searching for temporal AFDs, i.e., for AFDs that are
valid not globally but at each instant of time.
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