IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

Editors

J.F. Silva Gomes and Shaker A. Meguid

FEUP-INEGI (2018)

IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

Editors

J.F. Silva Gomes and Shaker A. Meguid

FEUP-INEGI (2018)

Published by

INEGI-Instituto de Ciência e Inovação em Engenharia Mecânica e Gestão Industrial Rua Dr Roberto Frias, 4200-465 Porto - Portugal Telefone: +351 22 9578710; Email: inegi@inegi.up.pt http://www.inegi.up.pt/

July, 2018

ISBN: 978-989-20-8313-1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, optical, recording, or otherwise, without the prior written permission of the Editors

TABLE OF CONTENTS

Preface		xxiii
Internat	ional Scientific Committee	xxiv
Organiz	ing Committee and Secretariat	XXV
Acknow	vledgments	xxvi
List of 7	Tracks and Symposia	xxvii
	INVITED KEYNOTE PAPERS	1
7001	STRATEGIES FOR IMPROVED VEHICLE SAFETY: SURVIVABILITY OF OCCUPANTS. Shaker A. Meguid, Mohamed T.Z. Hassan.	3
7002	ENHANCEMENT OF FATIGUE LIFE AND ELONGATION OF METALLIC MATERIALS BY HIGH-DENSITY PULSED ELECTRIC-CURRENT. Yang Ju.	5
7003	SAFETY IN SPORTS: CHALLENGES AND OPPORTUNITIES. Veit Senner.	7
	CONFERENCE MAIN TOPICS	9
TOPIC	-A: COMPOSITE AND ADVANCED MATERIALS	11
7096	THE IMPACT OF METAL REINFORCEMENT UPON THE PROPERTIES OF A COMPOSITE. Robert Szczepaniak, Pawel Przybylek, Aneta Krzyzak, Michal Mikolajewski, Andrzej Komorek.	13
7097	INVESTIGATION INTO THE THERMAL RESISTANCE OF A POLYMER COMPOSITE WITH AEROGEL. Robert Szczepaniak, Pawel Przybylek, Arkadiusz Bartuzi.	23
7110	MECHANICAL PROPERTIES OF NiAl-TiB2 COMPOSITE MATERIALS. Masashi Yoshida.	31
7123	EFFECTS OF ACCELERATED AGEING ON THE TENSILE PERFORMANCE OF GFRP/ EPOXY COMPOSITE AND THERMOSET EPOXY. Silviu Ivan, Matteo Cavasin, Stefanos Giannis, Ivo Dlouhy, Barry Thomson.	41
7129	SOME QUASI-ISOTROPIC LAMINATES ARE MORE ISOTROPIC THAN OTHERS. Mazen A. Albazzan, Ramy Harik, Zafer Gürdal, Jesse Hartzell.	43
7135	THERMO-PROTECTIVE PROPERTIES OF POLYMER COMPOSITES WITH NANO- TITANIUM DIOXIDE. Sylwester Stawarz, Natalia Bryła, Wojciech Kucharczyk, Mohamed Bakar, Magdalena Stawarz.	57
7137	THE MECHANICAL AND THERMAL BEHAVIOR OF EXPONENTIALLY GRADED SANDWICH PLATES IN BENDING TEST. Dongdong Li, Zongbai Deng, Shang-Chao Hung, Nai-Jen Cheng.	75
7150	NUMERICAL ANALYSIS OF A COMPOSITE LEG PROSTHESIS. João V.G. Santos, Vincent Wong, Vicente G. Neto, Luis C. Paschoarelli, Marcos A.R. Pereira, Carlos A. Fortulan, Cesar R. Foschini.	77

7186	MATERIAL CHARACTERISTICS OF GEOPOLYMERS BASED ON AN INDUSTRIAL WASTE PRODUCT. Jan Fořt, Eva Vejmelková, Zdeněk Soukup, Pavla Rovnaníková, Robert Černý.	85
7221	SURFACE MODIFICATION OF POLYSTYRENE BEADS WITH SULFONAMIDE DERIVATIVES AND APPLICATION TO WATER SOFTENING SYSTEM. Seong Ik Jeon, Cheol-Hee Ahn.	93
7228	MECHANICAL PROPERTIES AND MICROSTRUCTURE OF CARBON-FIBRE/ ALUMINIUM-MATRIX AND CARBON-FIBRE/TITANIUM-MATRIX COMPOSITES. Alexander Rudnev, Rida Gallyamova, Andrew Gomzin, Andrew Kolchin, Sergei Galyshev, Fanil Musin, Sergei Mileiko.	95
7229	APPLICATION OF ZEOLITE IN CONCRETE MIXTURES FOR RADIONUCLIDE BARRIERS. Eva Vejmelková, Martin Keppert, Petr Bezdička, Robert Černý.	97
7238	DAMPING PROPERTIES OF CORK/FIBRE REINFORCED POLYMER COMPOSITES. Ali Daliri, Tahsin Anowar, José Silva.	101
7244	SILICATE-BASED FIBRES TO REINFORCE HIGH TEMPERATURE COMPOSITES. Sergei Mileiko, Andrew Kolchin, Natalia Novokhatskaya, Nelly Prokopenko, Olga Shakhlevich, Vladimir Chumichev, Sergei Abashkin. <i>(Invited Paper)</i> .	103
7251	EFFECT OF HOSTILE SOLUTIONS ON THE VISCOELASTIC BEHAVIOUR OF CARBON/EPOXY LAMINATES. M. Kamocka, Ana M. Amaro, Paulo N.B. Reis, Maria A. Neto, José Maria Cirne.	105
7254	THERMAL AND MECHANICAL ANALYSIS OF AN EPOXY FOAM SYNTHESIZED BY MEANS OF A CHEMICAL FOAMING AGENT. Matteo Cavasin, Marco Sangermano, Milena Salvo, Stefanos Giannis.	107
7277	ISOLATING VIBRATION BY PERIODIC COMPOSITE STRUCTURES. Hongping Hu, Yuantai Hu.	109
7291	SELF-ACTUATED MORPHING COMPOSITE WITH TUNABLE FREQUENCY AND DAMPING. Arnaldo Casalotti, Giulia Lanzara.	111
ΤΟΡΙΟ	C-B: COMPUTATIONAL MECHANICS	123
7084	CLUSTERING OF TRIBOLOGICAL FAULTS USING THE WARD METHOD. Antonio P.V. Pinto, Carlos E.F. Bezerra, Andreyvis S. Souza, Marco A.L. Cabral, Efrain P. Matamoros.	125
7098	MATHEMATICAL MODELING OF THE BLENDED WING BODY AIRCRAFT FLOW- OVER IN CRUISE MODE. Francheska Slobodkina.	135
7105	TIME-HARMONIC ANALYSIS OF LINEAR ANISOTROPIC ELASTIC SOLIDS WITH A BOUNDARY ELEMENT METHOD. Leonid Igumnov, Ivan Markov, Igor Vorobtsov, Mikhail Grigoryev.	139
7119	THREE-DIMENSIONAL DYNAMIC ANALYSIS OF A THREE-PHASE POROELASTIC MEDIUM USING THE TIME-DOMAIN BOUNDARY ELEMENT METHOD. Andrey Petrov, Leonid Igumnov, Igor Vorobtsov, Aleksandr Belov.	141
7120	NUMERICAL SOLUTION FOR A TRANSIENT PROBLEM OF A SANDSTONE LAYER ON A SOIL FOUNDATION UNDER VERTICAL LOAD USING BEM. Svetlana Litvinchuk, Akeksandr Ipatov, Aleksandr Boev.	143

7207	STRUCTURAL INTEGRITY ASSESSMENT OF CRACKED COMPOSITE PLATE UNDER AEROELASTIC LOADING BY MEANS OF XFEM. Nur Azam Abdullah, Jose L. Curiel Sosa, Nanda Wirawan, Mahesa Akbar.	145
7208	AEROFRACTURELASTIC ON WING BOX OF MULTI-PURPOSE COMMUTER AIRCRAFT UNDER GUST LOAD BY MEANS OF XFEM. Nur Azam Abdullah, Nanda Wirawan, Jose L. Curiel Sosa, Mahesa Akbar.	153
7215	ASYMPTOTIC STOKES FLOWS USING AXIAL GREEN FUNCTION METHOD WITH REFINEMENT. Junhong Jo, Hong-Kyu Kim, Do Wan Kim.	159
7219	ANALYSIS OF THE COLD FORMING PROCESS. Sigitas Kilikevičius, Ramūnas Česnavičius, Povilas Krasauskas, Andrius Juodsnukis.	161
7223	NUMERICAL AND EXPERIMENTAL ANALYSIS OF AERONAUTICAL CFRP COMPONENTS SUBJECTED TO STRUCTURAL LOADS. Alessandro Castriota, Vito Dattoma, Riccardo Nobile, Francesco Panella, Alessandra Pirinu, Andrea Saponaro.	165
7232	NEW APPROACH TO SOLVING MATHEMATICAL EQUATION FOR DAMPED OSCILLATIONS BY SLIDING (COULOMB) FRICTION AT THE KARAKURI MECHANISM. Tomas Riegr, Ivan Masin.	177
7246	SIMULATION OF A VIBRATORY SYSTEM WITH SHAPE MEMORY ALLOY UNDER ROTATING UNBALANCE EXCITATION. Michel A. Silva, Vinicius Piccirillo, Carlos A. Andrade.	179
7307	FROM PERCOLATION OF FRACTURED MEDIA TO SEISMIC ATTENUATION: A NUMERICAL STUDY. Mikhail Novikov, Vadim Lisitsa.	181
ΤΟΡΙΟ	C-C: EXPERIMENTAL MECHANICS AND INSTRUMENTATION	189
TOPIC 7052	C-C: EXPERIMENTAL MECHANICS AND INSTRUMENTATION DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi.	189 191
	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al	
7052	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE	191
7052 7060	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS	191 193
7052 7060 7101	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II.	191 193 195
7052706071017111	 DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II. Joana Rebelo Kornmeier, Michael Hofmann, Weimin M. Gan, Jens Gibmeier, Jan Saroun. COMPARATIVE STUDY ON ACCELERATED FLUID DIFFUSION IN THERMOSET EPOXY AND GFRP FOR MARINE APPLICATIONS. Matteo Cavasin, Silviu Ivan, 	191 193 195 205
 7052 7060 7101 7111 7152 	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II. Joana Rebelo Kornmeier, Michael Hofmann, Weimin M. Gan, Jens Gibmeier, Jan Saroun. COMPARATIVE STUDY ON ACCELERATED FLUID DIFFUSION IN THERMOSET EPOXY AND GFRP FOR MARINE APPLICATIONS. Matteo Cavasin, Silviu Ivan, Stefanos Giannis, Marco Sangermano, Milena Salvo, Barry Thomson.	 191 193 195 205 207

7182	EDDY CURRENT APPROACH FOR METALLURGICALLY CLAD PIPE INSPECTION. Cesar G. Camerini, João M.A. Rebello, Rafael W. Santos, João M. Santos, Gabriela R. Pereira.	227
7197	ADVANCED NDT PROCEDURES AND THERMAL DATA PROCESSING ON CFRP AERONAUTICAL COMPONENTS. Vito Dattoma, Riccardo Nobile, Francesco Panella, Alessandra Pirinu, Andrea Saponaro.	229
7220	STRENGTH AND MICROSTRUCTURE ANALYSIS OF SPOT WELDED JOINTS. Ramūnas Česnavičius, Sigitas Kilikevičius, Povilas Krasauskas, Vytautas Jurgaitis.	243
7222	DETERMINATION OF ALUMINUM ALLOY EN AW-1100 LIMITING DRAWING RATIO AT DIFFERENT TEMPERATURES THROUGH PRACTICAL EXPERIMENTS AND NUMERICAL SIMULATION USING FINITE ELEMENT METHOD. Gilmar C. Silva, Matheus M. Costa, João P.S. Carneiro, Jorge A.P. Rodrigues, José F.P. Vasconcelos, Daniel C. Maciel, Tiago A. Silva.	247
7224	MAGNETIC CHARACTERIZATION OF HEAT-RESISTANT AUSTENITIC STEELS BY USING AN OWN EDDY CURRENT SYSTEM. Mónica P. Arenas, Clara J. Pachecho, Artur L. Ribeiro, Helena G. Ramos, Carlos B. Eckstein, Laudemiro Nogueira Jr., Luiz H. Almeida, João M.A. Rebello, Gabriela R. Pereira.	255
7266	ANALYSIS OF HIGH TEMPERATURE PIPE INTEGRITY USING CUSTOMIZED EDDY- CURRENT SYSTEM. Fernando S. Crivellaro, Ana Peixoto, Miguel A. Machado, José P. Sousa, António Custódio, J. Pamies Teixeira, Telmo G. Santos.	257
TOPIC	C-D: FATIGUE AND FRACTURE MECHANICS	263
7074	FRACTURE MECHANICS ANALYSIS OF POROSITY EFFECT ON STRENGTH CHARACTERISTICS OF POROUS ALUMINA. Natsumi Miyazaki, Toshihiko Hoshide.	265
7080	CREEP FRACTURE OF PLATES IN UNSTEADY COMPLEX STRESS STATE IN THE PRESENCE OF AMBIENT MEDIUM. Alexander Lokoshchenko, Leonid Fomin.	277
7089	INVESTIGATION OF FATIGUE PROPERTIES OF SOME STEAM TURBINE BLADE MATERIALS. Jan Chvojan, Jaroslav Václavík.	279
7092	NEW CORROSION MODEL TO PREDICT STEEL STRENGTH. Rachid Dami.	281
7102	STUDY OF THE EFFECT OF STRESS CONCENTRATORS IN FATIGUE FAILURE ANALYSIS OF A CRANKSHAFT. José R.G. Carneiro, Leonardo C. Aguiar, Gilmar C. Silva, João P.S. Carneiro .	283
7166	THE EFFECT OF FRESH WATER CORROSIVE SOLUTION ON FATIGUE STRENGTH OF LOW CARBON STEEL. Marta Morgantini, Volodymyr Okorokov, Yevgen Gorash, Donald MacKenzie, Ralph van Rijswick.	289
7172	APPROACH TO FULL-SCALE FATIGUE TEST OF THE MIG-29 VERTICAL STABILIZER WITH REPAIR OF COMPOSITE STRUCTURES. Piotr Synaszko, Michał Sałaciński, Michał Dziendzikowski, Krzysztof Dragan, Andrzej Leski.	297
7230	PERIDYNAMIC MECHANO-CHEMICAL MODELING OF STRESS CORROSION CRACKING. Ziguang Chen, Siavash Jafarzadeh, Shumin Li, Florin Bobaru, Qin Qian.	299

7240	ADVANCED NUMERICAL TECHNIQUES APPLIED TO THE STRENGTH PREDICTION OF STEPPED-LAP ADHESIVE JOINTS. Rui Machado, Raúl Campilho.	311
7241	MIXED-MODE FRACTURE OF BONDED JOINTS USING THE ASYMMETRIC TAPERED DOUBLE-CANTILEVER BEAM TEST. Filipe Nunes, Raúl Campilho.	313
7264	REAR SUSPENSION DEVELOPMENT: DURABILITY STUDY ON THE EFFECTS OF VARIATION OF VEHICLE AND SUSPENSION CHARACTERISTICS IN A TWIST BEAM REAR SUSPENSION. Guilherme Carneiro, Marco Anjos, Ernani S. Palma.	315
7292	COUPLED METHOD TO INVESTIGATE PLASTIFICATION OF HEAVY HAUL RAILWAY WHEELS. Pedro Picanço, Felipe Bertelli, Eduardo A. Lima, Thairon R. Costa, Auteliano A. Santos.	317
ΤΟΡΙΟ	2-E: NANOTECHNOLOGIES AND NANOMATERIALS	325
7081	EFFICIENT FABRICATION METHOD OF METALLIC NANO/MICRO STRUCTURES FOR NANO DEVICES. Masahiko Yoshino, P. Potejanasak, Duc P. Truong, Motoki Terano.	327
7109	NANOINDENTATION INDUCED PLASTIC DEFORMATION IN NANOCRYSTALLINE ZrN COATING. Zhoucheng Wang.	329
7149	ALUMINA DOPING FOR IMPROVING PROPERTIES OF ZIRCONIA CERAMICS. Danil Belichko, Larysa Loladze, Tetyana Konstantinova, Alexandr Myloslavskyy.	331
7151	NEW CHALLENGES IN THE CREATION OF RELIABLE CERAMIC NANOCOMPOSITES. Igor A. Danilenko, Tetyana E. Konstantinova, Oxana A. Gorban, Irina I. Brukhanova, Larysa V. Loladze, Danil R. Belichko, Artyom V. Shylo.	333
7269	ZINC OXIDE MATERIAL FOR OPTOELECTRONIC APPLICATIONS. Irinela Chilibon.	335
7290	CARBON NANOTUBES BASED SENSORS FOR DAMAGE DETECTION. Erika Magnafico, Arnaldo Casalotti, Maryam Karimzadeh, Krishna C. Chinnan, Giulia Lanzara.	337
7296	IMPROVEMENT OF ADHESION STRENGTH OF THE COPPER NANOWIRE SURFACE FASTENER BY INVESTIGATING THE DIAMETER RATIO OF NANOWIRES. Motohiro Kato, Yuhki Toku, Yasuyuki Morita, Yang Ju.	345
7297	ELECTROMAGNETIC PERFORMANCE OF SPIRALLY DEFORMED COATED NANOWIRES. Yuhki Toku, Yuji Ueda, Yasuyuki Morita, Yang Ju.	347
ΤΟΡΙΟ	-F: TRIBOLOGY AND SURFACE ENGINEERING	349
7076	STRUCTURAL DEGRADATION OF LUBRICATING GREASES. AN ENERGY DRIVEN PROCESS. Erik Kuhn.	351
7177	CROSS-SECTIONAL MICROSTRUCTURE AND STRESS DISTRIBUTIONS IN THIN FILMS DURING INDENTATION REVEALED BY X-RAY NANODIFFRACTION. Josef Keckes, Rostislav Daniel, Juraj Todt, C. Krywka, M. Burghammer.	353
7194	EVALUATION OF RESEARCH OPPORTUNITIES OF A TRIBOLOGICAL TESTING TAPE MACHINE. Wojciech Żurowski, Wojciech Kucharczyk, Jarosław Zepchlo.	355
7265	FAULT DETECTION IN DIESEL ENGINE INJECTORS USING A VIBRATION AND SOUND PRESSURE LEVEL TECHNIQUE. Jarbas S. Medeiros, Daniel M. Lago, Antônio C. Moreira Filho, Efrain P. Matamoros, João T.N. Medeiros.	357

7304	MICROSTRUCTURE ANALYSIS OF RARE EARTH-MAGNESIUM ALLOY REPAIRED USING HIGH POWER SURFACE LASER CLADDING. Rongjuan Yang, Dongyun Ge, Xuan Zhao.	369
TOPIC	C-G: MECHANICAL DESIGN AND PROTOTYPING	371
7059	USING DESIGN S-N CURVES AND DESIGN STRESS SPECTRA FOR PROBABILISTIC FATIGUE LIFE ASSESSMENT OF VEHICLE COMPONENTS. Miloslav Kepka, Miloslav Kepka Jr.	373
7077	QUANTITATIVE ANALYSIS OF RELATIONSHIP BETWEEN EXTRUSION BLOW MOLDING PROCESS PARAMETERS AND DEFORMATION PROPERTIES. Esther R. Dorp, Berenika Hausnerova, Bernhard Möginger.	385
7082	MAIN EXPECTED PROBLEMS DURING THE IMPLEMENTATION OF "INDUSTRY- 4.0" REFORMS AND THEIR PRACTICAL SOLUTIONS BASED ON IMPROVING THE EFFICIENCY OF USED MECATRONIC SYSTEMS. Raul Turmanidze, Vasili Bachanadze, Giorgi Popkhadze.	387
7189	A NUMERICAL AND EXPERIMENTAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF AUXETIC STRUCTURES MANUFACTURED WITH ADDITIVE TECHNOLOGY. Filip Sarbinowski, Remigiusz Labudzki, Rafał Talar, Adam Patalas.	399
7270	DESIGN METHODOLOGY OF AN ALUMINIUM CHASSIS. Ana L. Ramos, Oscar Zapata, Tania Berber, Natalia Navarrete.	403
7301	COMPARISON OF UNIBODY AND FRAME BODY VERSIONS OF ULTRA EFFICIENT ELECTRIC VEHICLE. Wojciech Skarka, Tomasz Pabian, Michał Sosnowski.	405
7305	METHODOLOGY FOR THE OPTIMIZATION OF AN ENERGY EFFICIENT ELECTRIC VEHICLE. Wojciech Skarka.	415
TOPIC	C-H: BIOMECHANICAL APPLICATIONS	423
7050	KINEMATICS ANALYSIS OF MOZAMBICAN ATHLETES IN THE 100 METERS RACE. Ercilio Machanguan, Anicêncio Macitela, Alberto Graziano.	425
7051	ANALYSIS OF THE PERFORMANCE OF LOWER MEMBERS IN SUSPENSION SERVICE IN VOLLEYBALL. Anicêncio Macitela, Alberto Graziano.	429
7063	THE EFFECT OF MULTIPLE NEUROTRANSMISSION ON THE BIOMECHANICS OF THE HUMAN STOMACH. Saleh Alrowaili, Roustem Miftahof.	433
7066	BIOMECHANICS OF THE BOLUS PROPULSION IN THE COLON. Omar Al Qatrawi, Roustem Miftahof.	435
7067	BIOMECHANICS OF THE HUMAN STOMACH AFTER DIABETIC VAGOTOMY. Dareen Bash, Roustem Miftahof.	437
7071	MODELLING OF THE EFFECT OF METOCLOPRAMIDE ON THE BIOMECHANICS OF THE GASTROPARETIC HUMAN STOMACH. Fatima Alhayki.	439
7075	CONTRACTILE ACTIVITY OF THE HUMAN STOMACH UNDER COMPLEX STIMULATION. AlDana M. Zaid, Roustem Miftahof.	441

7094	MODELING OF LARGE GAUGE ARTERIES WITH A SOFT ELASTIC MEMBRANE PIPE FINITE ELEMENT. Francisco Q. Melo, António G. Completo, José L.S. Esteves.	443
7190	A MECHANICAL ANALYSIS OF CANCELLOUS BONE IN FEA SIMULATION RESEARCH AND EXPERIMENTAL TESTING WITH THE μCT CONTROL. Adam Patalas, Remigiusz Labudzki, Filip Sarbinowski, Bartosz Gapiński, Rafał Talar.	445
7203	INFLUENCE OF BONE QUALITY IN THE BEHAVIOUR OF GRAFT FIXATION IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION. Covadonga Quintana, Cristina Rodriguez, Ines Peñuelas, Antonio Maestro.	447
7204	BIOMECHANICAL BEHAVIOUR CHARACTERIZATION OF THE MATERIALS INVOLVED IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION. Covadonga Quintana, Cristina Rodriguez, Ines Peñuelas, Antonio Maestro.	457
7267	IN VIVO CHARACTERIZATION OF MICRO ARCHITECTURE OF A HUMAN VERTEBRA BY MICRO-IMAGING. Hacene Ameddah, Hammoudi Mazouz.	471
ΤΟΡΙΟ	C-I: CIVIL AND STRUCTURAL ENGINEERING APPLICATIONS	477
7057	AGGREGATE SIZE AND LATERAL DIMENSION EFFECTS ON CORE COMPRESSIVE STRENGTH OF CONCRETE. Adel Benidir, M'Hamed Mahdad, Ahmed Brara.	479
7068	EXPERIMENTAL STUDY OF THE MECHANICAL BEHAVIOR OF COMPRESSED STABILIZED EARTH BLOCKS AND WALLS. M'Hamed Mahdad, Adel Benidir, Ahmed Brara.	487
7083	SUBSTITUTION OF THE TRANSVERSE REINFORCEMENT WITH ENGINEERED CEMENTITIOUS COMPOSITE IN RC EXTERIOR BEAM-COLUMN JOINTS SUBJECTED TO CYCLIC LOADING. Shwan H. Said.	497
7085	THE EFFECTS OF SOIL CATEGORY ON THE SEISMIC RESPONSE OF CIRCULAR STEEL WATER TANKS WITH MEDIUM H/D RATIO USING LAGRANGIAN APPROACH. Armen Assatourians, Sohrab Fallahi.	499
7090	IDENTIFICATION OF HYSTERICALLY DEGRADING STRUCTURES USING THE BOUC-WEN-BABER-NOORI (BWBN) MODEL. Ying Zhao, M. Noori, Wael Altabey.	507
7108	PERFORMANCE OF AIR CURED CONCRETE TREATED WITH WATERPROOFING ADMIXTURES OR SURFACE TREATMENTS. Sirwan Kamal, Hsein Kew, Hamid Jahromi.	509
7112	NON-DESTRUCTIVE EVALUATION OF DETERIORATED REINFORCED CONCRETE SLAB USING EXPERIMENTAL AND NUMERICAL METHODOLOGIES. Norbert Renault, Jean-Louis Gallias, Christophe Barnes.	511
7118	STRAIN-RATE INFLUENCE ON A SHAPE MEMORY ALLOY BASED DAMPER. João Morais, Carlos Santos, Paulo Morais.	513
7121	PROBABILISTIC TRAFFIC LOAD IDENTIFICATION FOR CONCRETE BRIDGES. Sebastian Zorn, Jörg F. Unger.	521
7130	COST CONSEQUENCE-BASED RELIABLITY ANALYSIS OF BURSTING FAILURE IN SUBSEA PIPELINES. Bahram Mehrafrooz, Pedram Edalat, Mojtaba Dyanati.	523
7162	DAMDAMAGE1.0: A MATLAB 3DFE PROGRAM FOR NON LINEAR ANALYSIS OF ARCH DAMS. André Alegre, Sérgio Oliveira.	525

7165	RESILIENCY OF SLAB TRACK SYSTEMS SUBJECTED TO LONG-TERM DETERIORATION: NUMERICAL MODELLING WITH SUBSTRUCTURING TECHNIQUES. Samuel Matias, Patrícia Ferreira.	527
7167	INFLUENCE OF 4 BOLTS-PER-ROW CONNECTION ON A STEEL FRAME BUILDING SUBJECTED TO COLUMN LOSS. Daniel Nunes, I. Marginean, Adrian Ciutina, Florea Dinu.	529
7168	MODAL IDENTIFICATION METHODS IN TIME DOMAIN NUMERICAL TESTS AND APPLICATIONS IN CIVIL ENGINEERING. Ana Prior, Sérgio Oliveira, Matilde Freitas.	539
7170	MONITORING AND ANALYSIS OF CONCRETE DAMS BEHAVIOR OVER TIME CONSIDERING SWELLING EFFECTS. INTEGRATED USE OF FINITE ELEMENT MODELS AND MODELS FOR EFFECTS SEPARATION. Miguel Rodrigues, Sérgio Oliveira.	541
7171	OPTIMIZATION OF WEB STIFFENER IN COLD-FORMED STEEL CHANNEL BEAMS SUBJECTED TO PURE BENDING. Ayman R. Ahmed, Ahmad M. Abdullah, Sedky A. Tohamy, Amr Bakr Saddek.	543
7188	EVALUATION OF HYGRIC PROPERTIES OF CONTEMPORARY PLASTERS. Jan Fořt, Zbyšek Pavlík, Lukáš Balík, Robert Černý.	545
7191	ULTIMATE CAPACITY OF STEEL FRAMES WITH BOLTED CONNECTIONS UNDER COLUMN LOSS SCENARIOS. Ioan Marginean, Florea Dinu, Robert Kulcsár, Simina Sabău, Dan Dubina.	553
7192	APPLICATION OF A COMPLETE STRUCTURAL HEALTH MONITORING CHAIN ON THE CANADIAN RIVIÈRE-AUX-MULETS BRIDGE NUMERICAL MODEL SUBJECTED TO A SEISMIC LOAD. Farouk Frigui, Jean-Pierre Faye, Carmen Martin, Olivier Dalverny, François Pérès, Sébastien Judenherc.	555
7195	NUMERICAL STUDY OF THE ROBUSTNESS OF STEEL STRUCTURES WITH FRICTION JOINTS. Francisca Santos, Aldina Santiago, Gianvittorio Rizzano, Luís S. Silva, Massimo Latour.	569
7201	STATIC AND DYNAMIC ELASTICITY MODULE ANALYSIS OF CEMENT COATING MORTARS. Ana Isabel Marques, João Morais, Carlos Santos, Paulo Morais, Maria do Rosário Veiga.	571
7202	DEVELOPMENT OF ALTERNATE LOAD PATHS IN STEEL FRAMES WITH COMPOSITE BEAMS SUBJECT TO ACCIDENTAL EXPLOSIONS. Florea Dinu, Ioan Marginean, Ioan Petran, Mihai Senila, Calin Neagu, Dan Dubina.	581
7205	NUMERICAL STUDIES ON SEISMIC RESPONSE OF STEEL AND COMPOSITE ECCENTRICALLY BRACED FRAMES. Mihai Senila, Ioan Petran, Calin Neagu, Florea Dinu.	583
7209	NUMERICAL MULTI-SCALE APPROACH FOR MASONRY INFILLED FRAME. T.T.N. Nguyen, N.Q. Vu, S.T. Nguyen, N.H. Tran, M.N. Vu.	585
7212	FRAGILITY CURVES FOR RC BRIDGES USING GENERALIZED PUSHOVER ANALYSIS. Camilo Perdomo, Ricardo Monteiro.	587
7213	ANALYSIS OF THE GROWTH CURVE FOR THE USE OF THE REJECT OF GRANITE ROSA IRACEMA IN THE MANUFACTURE OF EXIT FUNNELS IN THE TEXTILE INDUSTRY. Joseanne Alves de Sousa, Jorge Luiz Cardoso, Cândido S. Lobo.	589

7216	STUDY OF THE PERFORMANCE OF R.C. WALLS WITH OPENINGS USING AN ANALYTICAL FINITE ELEMENT MODEL. Alaa Morsy, Youssef Ibrahim.	591
7217	INTEGRATING THREE INSPECTION/MONITORING METHODS FOR CIVIL ENGINERING APPLICATIONS. Amir Nasrollahi, Piervincenzo Rizzo.	593
7227	ECODESIGN FOR DECONSTRUCTION IN THE LIFE CYCLE POST-OPERATIONAL STAGE TO IMPROVE CONCRETE RECYCLING IN BRAZIL. Silvia Letícia Vacelkoski, George Stanescu.	595
7236	INVESTIGATION INTO THE DOUBLE-LAYER BARREL VAULT SPACE STRUCTURE RESISTANCE TO PROGRESSIVE COLLAPSE. Karim Abedi, Shahram R. Kolachahi.	607
7248	IMPACT OF PREVENTIVE MAINTENANCE ON FLEXIBLE PAVEMENT SERVICE LIFE. Manuel Ruíz, Luís Ramírez, Fermín Navarrina, J.R. Fernández Mesa, David López- Navarrete, Mario Aymerich.	615
7250	USE OF STRUCTURAL MASONRY OF CONCRETE BLOCKS AND PROTECTED LABS WITH FENCED CORDOBA IN RESIDENTIAL BUILDINGS. Harlen Nunes, Roberto Carvalho.	625
7255	STRUCTURAL RECOVERY AND PROJECT MANAGEMENT: THE DESIGN DRAWS CONTRIBUTION. Giorgio Garzino.	627
7259	TIMBER SHEAR WALLS: NUMERICAL ASSESSMENT OF THE EQUIVALENT VISCOUS DAMPING. Giorgia Di Gangi, Cristoforo Demartino, Giuseppe Quaranta, Marco Vailati, Giorgio Monti.	641
7260	THERMAL EFFECT OF A LOCALIZED FIRE IN THE STEEL STRUCTURE OF AN OPEN CAR PARK. Paulo Piloto, Edson M.S. Júnior, Francisco A.A. Gomes.	651
7261	FIRE DYNAMICS IN OPEN COMPARTMENTS. Paulo Piloto, Ketlen Possoli, Luiz C.M. Júnior, Khadouma Nechab, Benarous Abdallah.	663
7271	DATA PROCESSING FOR DATA ACQUISITION SYSTEMS: ANALYSIS OF VIBRATIONS IN STRUCTURES. R.S. Gonçalves, Matheus S. Vieira, Thalyta L. Santos, J.G.S. Jesus.	673
7275	PERFORMANCE OF DUAL-SHOULDER-MOUNT-TRUSS WEATHERING-STEEL OVERHEAD SIGN STRUCTURES IN WEST VIRGINIA. Wael Zatar, Hai Nguyen.	675
7276	DEVELOPMENT OF A STRUCTURE VIBRATIONS MONITORING INSTRUMENT USING TRIAXIAL ACCELEROMETER. J.G.S. Jesus, Matheus S. Vieira, Thalyta L. Santos, R.S. Gonçalves.	677
7286	STABILITY EVALUATION OF MARBLE STONE CLADDING AFFECTED BY BOWING AND WIND PRESSURE - A CASE STUDY. Rui Sousa, Hipólito Sousa.	679
ΤΟΡΙΟ	C-J: IMPACT AND CRASHWORTHINESS	689
7131	A FINITE ELEMENT MODEL TO STUDY WELD AND GEOMETRIC IMPERFECTIONS IN AN IMPACT ATTENUATOR DEVICE. Jose A. López-Campos, Abraham Segade, E. Casarejos, Jose R. Fernandez, J.A. Vilán.	691
7132	STUDY OF A CRASH BOX DESIGN OPTIMIZED FOR A UNIFORM LOAD PROFILE. Abraham Segade, Alejandro Bolaño, Jose A. López-Campos, E. Casarejos, Jose R. Fernandez,	701

J.A. Vilán.

7144	RESEARCH ON THE ANISOTROPIC PROPERTIES OF WOOD AT HIGH-RATE LOADING. Anatoly Bragov, Alexander Konstantinov, Andrey Lomunov.	717
7160	ESTIMATION OF DEFORMATION ENERGY DURING IMPACT DESTRUCTION OF ADHESIVE JOINT SAMPLES. Jan Godzimirski, Andrzej Komorek, Robert Szczepaniak.	727
7193	ANALYTICAL MODELING OF THE TRANSITION OF THE PROGRESSIVE FOLDING MODE OF THIN-WALLED TUBES AFTER FOAM-FILLING. Fan Yang, Shaker A. Meguid.	735
7198	OPTIMIZATION STRATEGIES FOR CRASH RELEVANT VEHICLE STRUCTURES. Ralf Sturm, Michael Schäffer, Marco Münster.	737
7226	USE OF COMPUTATIONAL METHODS TO EVALUATE DAMPING DEVICE EFFICIENCY DURING THE DESIGN OF NUCLEAR POWER PLANT EQUIPMENT. A.M. Bragov, O Yu. Vilensky, A. Yu. Konstantinov, D.A. Lapshin, M.G. Malygin, V.V. Petrunin.	739
7256	MECHANICAL STUDY OF ADDITIVE MANUFACTURED HONEYCOMB STRUCTURES. Piotr Dziewit, Paweł Płatek, Jacek Janiszewski.	741
7321	MULTIBODY DYNAMIC ANALYSIS OF WHIPLASH. Mohamed T. Z. Hassan, Mo Gabriel Shi, S. A. Meguid.	743
7322	EFFECT OF IMPACT SEVERITY ON OCCUPANT'S RESPONSE DURING REAR-END COLLISIONS. Mohamed T. Z. Hassan, S. A. Meguid.	745
ΤΟΡΙΟ	C-L: INDUSTRIAL ENGINEERING AND MANAGEMENT	747
7055	CUTTING AND PASSIVE TIMES CALCULATION FOR TURNING PROCESS. Nivaldo L. Coppini, Gabriel N. Oliveira, Danilo E. Braga.	749
7070	CONDITION MONITORING WITH PREDICTION BASED ON OIL ENGINES OF URBAN BUSES - A CASE STUDY. Hugo Raposo, José T. Farinha, Inácio Fonseca, Luís A. Ferreira.	751
7087	BUSINESS SUSTAINABILITY THROUGH THE PRACTICE OF CSR: THE A. PETTI SPA EXPERIENCE. Maria R. Sessa, Ornella Malandrino, Daniela Sica, Stefania Supino.	755
7133	DEVELOPING THE BEST PREVENTIVE MAINTENANCE POLICY FOR FULLY AUTOMATED SHIP-TO-SHORE CRANE. Yassine Achhal, Hassan Samadi.	757
7148	COMMON CAUSE ANALYSIS OF CIRCULAR VARIABLE NACELLE INLET CONCEPTS FOR AERO ENGINES IN CIVIL AVIATION. Stefan Kazula, David Grasselt, Klaus Höschler.	759
7153	NEW APPROACH FOR THE JOINT OPTIMIZATION OF THE DESIGN AND MAINTENANCE OF MULTI-COMPONENT SYSTEMS BY INTEGRATION OF LIFE CYCLE COSTS. Oussama Adjoul, Khaled Benfriha, Améziane Aoussat, Yacine Benabid.	771
7155	METHODOLOGICAL FRAMEWORK FOR IMPLEMENTATION OF A PREDICTION RELIABILITY MODEL FOR IGBT POWER MODULES USED IN RAILWAY APPLICATIONS. Essi Dabla, François Pérès, Carmen Martin, Claire Fournier, Michel Piton, Floran Andrianoelison.	783
7157	DEFINITION AND IMPLEMENTATION OF AN INTEGRATED MANAGEMENT PLAN (IMP) APPLIED TO THE EQUIPMENT AT PERIODICAL TECHNIAL INSPECTION (PTI)	785

Casarejos, M.L. Lago.

7159	PRELIMINARY SYSTEM-SAFETY-ANALYSIS AND COMPARISON BETWEEN TWO NEW BROADBAND NOISE ABSORBING ACOUSTIC-LINER CONCEPTS FOR CIVIL AVIATION. Marcel Mischke, Stefan Kazula, David Grasselt, Klaus Höschler.	795
7169	A MECHANICAL AND STATE ANALYSIS OF A GAS TURBINE. Suzana Lampreia, Vitor Lobo, José Requeijo.	797
7180	INTEGRATION OF MAINTENANCE SYSTEMS. Sarje Suhas.	805
	SPECIAL SESSIONS	807
SYMP	OSIUM-1: EXPERIMENTAL MECHANICS FOR RELIABILITY	809
7058	DRAG REDUCTION OF A SWEPT WING BY MEANS OF PLASMA ACTUATORS. Sergey Chernyshev, Marat Gamirullin, Andrey Kiselev, Aleksandr Kuryachii, Sergey Manuilovich, Dmitry Sboev.	811
7127	DUCTILITY OF TITANIUM ALLOYS IN A WIDE RANGE OF STRAIN RATES. Vladimir V. Skripnyak, Vladimir A. Skripnyak, Evgeniya G. Skripnyak.	813
7141	AN IN-SITU EVALUATION OF STRUCTURAL DAMAGE IN A HIGH POWER SPALLATION NUETRON SOURCE. Masatoshi Futakawa, Tao Wan, Hiroyuki Kogawa, Takashi Naoe.	823
7199	INFRARED THERMOGRAPHY AND DIC USED TO INVESTIGATE GUM METAL LOCALIZATION EFFECTS. Elzbieta Pieczyska, K.M. Golasiński, M. Staszczak, M. Maj, T.O. Furuta, S. Kuramoto.	825
7274	APPLICATION OF THREE-AXIS ACCELEROMETER ON VIBRATION ANALYSIS IN MACHINING PROCESSES. R.S. Gonçalves, Thalyta L. Santos, J.G.S. Jesus, Matheus S. Vieira.	827
7323	TRACKING OF DISPLACEMENT FIELD USING STEREO-CORRELATION IMAGES. A. May, A. Mokdad, H. Habouche, T. Rehamnia	829
SYMP	OSIUM-2: MODELING OF FRACTURE AND FRAGMENTATION OF SOLIDS UNDER STATIC AND DYNAMIC LOADING. DETERMINISTIC AND PROBABILISTIC APPROACHES	839
7078	PERIDYNAMICS ANALYSIS OF GLASS FRACTURE UNDER EXPLOSION LOAD. Jian Tu, Li-jun Zhao, Shan Yu, Chun-liang Xin.	841
7079	PROTECTION OF STRUCTURES AGAINST LONG PROJECTILES. Alexander Gerasimov, Sergey Pashkov, Roman O. Cherepanov.	849
7099	MODELLING POROUS STRUCTURES AND MECHANICAL BEHAVIOUR OF CERAMICS USING PROBABALISTIC APPROACH. Igor Yu. Smolin, Valentina A. Mikushina, Pavel V. Makarov, Mikhail O. Eremin.	851
7100	MATHEMATICAL MODEL OF GENERATION AND PROPAGATION OF SLOW DEFORMATION FRONTS. Pavel V. Makarov, A. Yu. Peryshkin, Mikhail O. Eremin.	853
7128	MODELLING OF THE MECHANICAL RESPONSE OF Zr-Nb AND Ti-Nb ALLOYS IN A WIDE TEMPERATURE RANGE. Vladimir A. Skripnyak, Vladimir V. Skripnyak, Evgeniya G. Skripnyak, Nataliya V. Skripnyak.	855

7134	EXPERIMENTAL STUDY AND NUMERICAL MODELLING OF FRACTURE PROCESS TRANSITION TO BLOW-UP MODE. Pavel V. Makarov, Igor Yu. Smolin, Alexey S. Kulkov, Mikhail O. Eremin, Vladimir A. Tunda.	863
7145	PROBABILISTIC FAILURE OF CERAMICS UNDER HIGH-VELOCITY IMPACT. Sergey A. Zelepugin, Vladimir F. Tolkachev, Alexey S. Zelepugin.	865
7147	NUMERICAL SIMULATION OF THE EXPLOSIVE COMPACTION OF MULTI- COMPONENT MIXTURES. Sergey A. Zelepugin, Oksana Ivanova.	871
7185	DISCRETE ELEMENTS SIMULATION OF GEOLOGICAL FAULT FORMATION. Vadim Lisitsa, Vladimir Tcheverda, Victoria Valyanskaya.	877
7225	PENETRATION OF STELL AND ICE BARRIERS BY A PROJECTILE AT LOW INITIAL SPEEDS (<325 m/s). Maxim Yu. Orlov, Yuri N. Orlov, Viktor P. Glazyrin, Yu. N. Orlova.	887
7234	ANALYSIS OF THE PENETRATION OF BARRIERS BY IMPACTORS WITH AN EXPLOSIVE SUBSTANCE. Viktor P. Glazyrin, Maxim Yu. Orlov, Yuri N. Orlov.	893
7263	A METHOD FOR DETERMINING RELIABILITY OF A SELECTED STRUCTURAL COMPONENT OF AN AIRCRAFT FROM THE POINT OF VIEW OF FATIGUE PROCESSES. Mariusz Zieja, Mirosław Zieja, Mariusz Ważny.	899
SYMP	OSIUM-3:FRACTURE BEHAVIOUR AND FATIGUE DAMAGE OF STRUCTURES: THEORY AND EXPERIMENTS	909
7095	FRACTURE FRAMEWORK OF PLASTIC PIPES: EXPERIMENTAL WORK AND FINITE ELEMENT ANALYSIS OF DOUBLE POLYETHYLENE CANTILEVER BEAM SPECIMENS. Federico Rueda, César Hernández, Patricia Frontini.	911
7142	INFLUENCE OF MICROSTRUCTURE ON THE MECHANICAL BEHAVIOUR OF STEEL IN EXTREME ENVIRONMENT. Valeriy Lepov, Albert Grigoriev, Afanasiy Ivanov, V. Achikasova, Anastassia Ivanova, Nikolay Balakleiskii, Boris Loginov, Artem Loginov.	913
7146	EFFECT OF GRAPHITE MORPHOLOGY ON COMPACTED GRAPHITE IRON THERMOMECHANICAL FATIGUE PROPERTIES. Edwin A. Lopez, S. Ghodrat, Leo Kestens.	915
7206	FATIGUE IMPROVEMENT OF WELDED ELEMENTS BY ULTRASONIC IMPACT TREATMENT. Yuri Kudryavtsev.	919
7210	ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED JOINTS. Yuri Kudryavtsev, Jacob Kleiman.	921
SYMP	OSIUM-4: RELIABILITY OF TRIBOLOGICAL SYSTEMS AT VARIED LENGTH SCALES	923
7091	EFFECT OF SURFACE ENERGY ON FRICTION COEFFICIENT OF CARBONACEOUS HARD COATINGS BY IN-SITU MEASUREMENT IN ESEM. Taichi Nakao, Makoto Terada, Noritsugu Umehara, Motoyuki Murashim.	925
7154	THE INFLUENCE OF MOLECULAR CLUSTERS ON LUBRICATING FILM FORMATION. Antoni Jankowski, Miroslaw Kowalski, Andrzej Kulczycki, Wojciech Dziegielewski, Jaroslaw Kaluzny, Jerzy Merkisz.	927

7247	A NEW STOCHASTIC MODEL FOR PARTICULATE MATTER AND DEBRIS EMITTED BY DIESEL ENGINES. Fábio Oliveira, Daniel Lago, Manoel Oliveira Filho, João Medeiros.	939
7302	PROPOSAL OF DEVELOPMENT GUIDLINE FOR LOW FRICTIONAL MATERIAL IN OIL LUBRICATION WITH HIGH PERMITTIVITY MATERIAL. Motoyuki Murashima, See-Jun Oh, Takaaki Miyachi, Noritsugu Umehara, Takayuki Tokoroyama, Kota Konishi, Tatsuya Okamoto.	941
7306	THE WEAR OF DIAMOND-LIKE CARBON BY MOLYBDENUM BASED PARTICLES UNDER BOUNDARY LUBRICATION. Takayuki Tokoroyama, Takahiro Nishino, Makoto Yamaguchi, Khairul Kassim, Noritsugu Umehara.	943
SYMP	OSIUM-5: ADDITIVE MANUFACTURING AND RAPID PROTOTYPING	945
7064	3D PRINTING TECHNIQUES OF CERAMIC CORES USED FOR TURBINE BLADES MANUFACTURING. Rafal Cygan.	947
7124	RESISTANCE OF 3D PRINTED POLYMER STRUCTURES AGAINST FATIGUE CRACK GROWTH. Johannes Knöchel, Michael Kropka, Thomas Neumeyer, Volker Altstädt.	949
7125	FATIGUE RESPONSE OF AS BUILT DMLS PROCESSED MARAGING STEEL AND EFFECTS OF MACHINING, HEAT AND SURFACE TREATMENTS. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Snezana Ciric-Kostic, Aleksandar Vranic, Nusret Muharemovic, Nebojsa Bogojevic.	951
7126	EXPERIMENTAL STUDY ON THE SENSITIVITY OF DMLS MANUFACTURED MARAGING STEEL FATIGUE STRENGTH TO THE BUILD ORIENTATION AND ALLOWANCE FOR MACHINING. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Nusret Muharemovic, Nebojsa Bogojevic, Aleksandar Vranic, Snezana Ciric-Kostic.	971
7214	HOW BUILD ORIENTATION AND THICKNESS OF ALLOWANCE MAY AFFECT THE FATIGUE RESPONSE OF DMLS PRODUCED 15-5 PH STAINLESS STEEL. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Nebojsa Bogojevic, Snezana Ciric-Kostic.	987
7262	EVALUATION OF DIFFERENT NDT TECHNIQUES FOR THE PRODUCTION OF COMPOSITE MATERIALS FABRICATED BY ADDITIVE MANUFACTURING. J.P. Oliveira, Patrick L. Inácio, Fernando Crivellaro, Carlos P. Simão, E. Camacho, Rosa M. Miranda, A. Velhinho, F.M. Braz Fernandes, Telmo G. Santos.	997
SYMP	OSIUM-6: FASTENING AND JOINING TECHNOLOGY	999
7122	A NOVEL FINITE ELEMENT MODEL METHODOLOGY FOR THE GENERIC MODELLING OF ADHESIVE AGEING. Mathias Creyf, Pol Coudeville, Wim Desmet, David Seveno, Stijn Debruyne.	1001
7136	INFLUENCE OF THE STIFFNESS AND FRICTIONAL CHARACTERISTICS ON THE SHANK TORQUE OF SCREWS IN BOLTED JOINTS. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Omar Cavalli, Nicolò Vincenzi.	1003
7235	MECHANICAL PERFORMANCE AND FRACTURE BAHAVIOR OF ADHESIVE-MULTI PIN JOINTS BETWEEN COMPOSITE AND METALLIC MATERIALS. Longquan Liu.	1009

7237	STRUCTURAL VALIDATION OF INTRAMEDULLARY NAILS: FROM EXPERIMENTATION TO VIRTUAL TESTING. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Silvia Funaioli, Giorgio Olmi, Francesco Robusto.	1011
7242	DESIGN INFLUENCES OF PRELOAD RELAXATION BEHAVIOUR IN BOLTED JOINTS USING ALUMINIUM PARTS. Jens Peth, Christoph Friedrich.	1017
SYMP	OSIUM-7: INFLUENCE OF MANUFACTURING PROCESSES IN INTEGRITY OF MECHANICAL OR STRUCTURAL COMPONENTS	1029
7053	RELIABILITY ASSESSMENT OF A SUBSEA ELECTRO-HYDRAULIC CONTROL SYSTEM. António H.M. Silva, Henrique da Hora, Rogrigo Fernandes.	1031
7054	VALUE STREAM MAPPING IN OPTIMIZING TERRESTRIAL PIPELINES ASSEMBLY. Nivaldo L. Coppini, Luíz F.C. Cunha.	1039
7072	EVALUATION AND CHARATERIZATION OF WEAR BEHAVIOUR OF ROLLED STEELS FOR THE PRODUCTION OF A SCREW. Ricardo Paulo, Teresa Morgado, Alexandre Velhinho, Carla Machado, J. Pamies Teixeira.	1041
7073	STUDY OF WEAR BEHAVIOR OF A HELICAL GEAR. Miguel Mousinho, Teresa Morgado, David Braga, Alexandre Velhinho, Carla Machado, J. Pamies Teixeira.	1043
7239	EXPERIMENTAL STUDY OF LASER BEAM MACHINING IN Ti6Al4V ALLOY. Gabriela Belinato, Danielle M.D. Costa, Pedro P. Balestrassi, Pedro A.R.C. Rosa.	1045
7314	INTERACTION BETWEEN LEAN PHILOSOPHY AND INDUSTRY 4.0: EXPLORATORY STUDY. Beatrice P. Santos, Fernando C. Santos, Tânia M. Lima.	1047
SYMP	OSIUM-8: SUSTAINABLE ENERGY SYSTEMS	1049
7056	DATA CENTERS AND THEIR ENERGY CONSUMPTION FOR CLIMATIZATION. Clito F. Afonso, João Moreira.	1051
7088	NUMERICAL INVESTIGATION OF FILM COOLING EFFECTIVENESS USING THE ANTI-VORTEX CONCEPTION. Fadéla Nemdili, Saliha Nemdili, Abbé Azzi.	1061
7115	A METHOD FOR HEAT TRANSFER CALCULATION IN FOUR-STROKE SPARK IGNITION INTERNAL COMBUSTION ENGINES. Pedro Carvalheira.	1063
7116	A METHOD FOR MASS BURNING RATE CALCULATION IN FOUR-STROKE SPARK IGNITION INTERNAL COMBUSTION ENGINES. Pedro Carvalheira.	1073
7281	EXPERIMENTAL AND NUMERICAL STUDY OF DIFFUSER AUGMENTED WIND TURBINE - DAWT. Lino M. Paulo, Jorge Paulo, João E. Ribeiro, Luís F. Ribeiro.	1085
SYMP	OSIUM-9: OPTIMIZATION AND UNCERTAINTY QUANTIFICATION	1101
7069	UNCERTAINTY QUANTIFICATION USING A NEW NON INTRUSIVE STOCHASTIC APPROACH: APPLICATION TO THE ESTABLISHMENT OF INUNDATION MAPS DUE TO DAM BREAK FLOWS. Azzedine Abdedou, Azzeddine Soulaimani.	1103

7093 EFFECTIVE ESTIMATION OF CONFIDENCE IN THE VULNERABILITY ASSESSMENT 1105 OF UNCERTAIN STRUCTURAL SYSTEMS. Marco Vailati, Giorgio Monti.

7104	THE RELIABILITY INDEX APPROACH WITH EVOLUTIONARY ALGORITHMS: APPLICATION TO THE RBRDO PROBLEM OF COMPOSITE STRUCTURES. Gonçalo N. Carneiro, Carlos C. António.	1107
7106	MULTI-OBJECTIVE OPTIMIZATION AIMING THE SUSTAINABLE DESIGN OF FRP COMPOSITE STRUCTURES. Carlos C. António. (<i>Invited Paper</i>)	1115
7107	RESEARCH AND VALIDATION OF GLOBAL MPP IN THE RELIABILITY ANALYSIS OF COMPOSITE STRUCTURES. Luísa N. Hoffbauer, Carlos C. António.	1127
7280	THE USE OF RESPONSE SURFACE OPTIMIZATION METHOD TO MINIMIZE THE VIBRATIONS IN THE MILLING PROCESS. João E. Ribeiro, Manuel B. César, Ana I. Pereira.	1137
7313	RELIABILITY SYSTEM ANALYSIS FOR AIRCRAFT COMPOSITE STRUCTURES. Paola Caracciolo.	1145
SYMP	OSIUM-10: BIOMECHANICS OF CARDIOVASCULAR AND ORTHOPAEDIC DISEASE	1147
7158	FLUID-STRUCTURE INTERACTION FOR HEMODYNAMIC STUDY IN PATIENT CORONARY ARTERIES - VALIDATION. Nelson Pinho, Catarina F. Castro, Carlos C. António, Nuno Bettencourt, Luisa. C. Sousa, Sónia I.S. Pinto.	1149
7161	CORRELATION BETWEEN GEOMETRIC PARAMETERS OF LEFT CORONARY ARTERY AND PLAQUE DEPOSITION IN LEFT ANTERIOR DESCENDING ARTERY. Nelson Pinho, Catarina F. Castro, Carlos C. António, Nuno Bettencourt, Luisa C. Sousa, Sónia I.S. Pinto.	1155
7178	HEMODYNAMICS IN PATIENT-SPECIFIC CORONARY ARTERIES CONSIDERING BLOOD ELASTIC BEHAVIOR: NUMERICAL STUDY. Sónia I.S. Pinto, João B Campos.	1159
7289	LATERAL LUMBAR FUSION, A MINIMALLY INVASIVE SURGICAL APPROACH FOR LUMBAR INTERBODY FUSION. Susana C. Caetano, Luisa C. Sousa, Marco Parente, Renato Natal, Henrique Sousa, João Gonçalves.	1165
7293	VESSEL DETECTION IN CAROTID ULTRASOUND IMAGES USING ARTIFICIAL NEURAL NETWORKS. Catarina F. Castro, Carlos C. António, Luisa C. Sousa.	1169
SYMP	OSIUM-12: MECHATRONICS DESIGN: APPLICATIONS AND CASE STUDIES	1173
7183	DESIGN OF A CONTROL SYSTEM FOR A MEDICAL WRIST REHABILITATION DEVICE. Eurico Seabra, Luis F. Silva, Valdemar Leiras, Ricardo Ferreira.	1175
7184	DESIGN, DEVELOPMENT AND CONSTRUCTION OF A MEDICAL WRIST REHABILITATION DEVICE. Eurico Seabra, Luis Silva, Ricardo Ferreira, Valdemar Leiras.	1177
7249	HAND TENSOR: A FULL MOTION HAND PROSTHESIS WITH MECHANISMS BY ONE SINGLE TRACTION ENGINE. João E. Polis, Cecilia Amélia Zavaglia, Carlos A. Cimini Jr.	1179
7252	ASBGO*: A MECHATRONIC IMPROVED SMART WALKER. Joana Alves, Cristina P. Santos, Eurico Seabra, Luis F. Silva.	1181
7278	TGK DYNAMIC ANALYSIS OF A HUMANOID RESCUE ROBOT. Gerardo García, Enrique Vazquez, Pedro de J. García, Jonathan A. Soto, Isidro Sanchez, Juan G. Sandoval.	1183

SYMP	OSIUM-13: STRUCTURAL DYNAMICS AND CONTROL SYSTEMS: THEORY, EXPERIMENTS AND APPLICATIONS	1185
7114	THE EFFICIENCY OF USING ADDITIONAL ISOLATED UPPER FLOOR (AIUF) IN SEISMIC UPGRADING OF RESIDENTIAL R.C. FRAME BUILDINGS IN ARMENIA. Armen Assatourians, Mohammad Reza Mehrdoust, Sohrab Fallahi.	1187
7143	DETECTION OF DEFECTS IN COMPOSITE HELMETS USING ULTRASONIC IR THERMOGRAPHY. Monika Pracht, Waldemar Swiderski.	1195
7187	MODAL DECOMPOSITION PROCEDURES FOR FE-BASED STUCTURAL MODELS WITH NON-PROPORTIONAL DAMPING. Evgueni Stanoev.	1201
7218	EVALUATION OF DYNAMIC WHEEL LOAD CONSIDERING BALLAST FOULING DURING TRAIN PASSAGE. Chayut Ngamkhanong, Keiichi Goto, Sakdirat Kaewunruen.	1227
7282	DYNAMIC CHARACTERIZATION OF MAGNETORHEOLOGICAL DAMPER AND EXPERIMENTAL ADJUSTMENT OF MODIFIED BOUC-WEN NUMERICAL MODEL. Said Boukerroum, Nadhira Kheznadji, Nacer Hamzaoui.	1229
7284	INFLUENCE OF STIFFNESS AND STRENGTH DEGRADATION OF AN INFILL WALL UPON THE PERFORMANCE OF A TMD. Pedro L.P. Folhento, Manuel T. Braz-César, António M.V. Paula, Rui C. Barros.	1231
7285	STRUCTURAL CONTROL OF A SDOF FRAME WITH NON-LINEAR HYSTERETIC BEHAVIOR USING A TUNED MASS DAMPER. Pedro L.P. Folhento, Manuel T. Braz- César, António M.V. Paula, Rui C. Barros.	1247
7287	NUMERICAL STUDY OF VIBRATIONS IN THE MILLING PROCESS. Ana Isabel Pereira, Manuel Braz-César, João E. Ribeiro.	1271
7288	THERMAL-BRIDGE ASSESSMENT IN GLAZING AND ALUMINIUM FRAMES BY THERMO-IMAGES: A CASE STUDY. Thiago Laignier, Manuel Braz-César, João Ribeiro.	1273
7308	SEISMIC ANALYSIS OF THE IRREGULAR FIRE STATION BUILDING OF L'AQUILA. Marco Scagnetti, Rui C. Barros, Marco Mezzi.	1275
7309	ON THE USE OF RADAR INTERFEROMETRY FOR THE STRUCTURAL MONITORING OF BRIDGES. Rui C. Barros, Fábio M. Paiva.	1287
7310	DYNAMIC STRUCTURAL HEALTH MONITORING OF A TRANSMISSION TOWER USING INTERFEROMETRIC RADAR. Fábio M. Paiva, Rui C. Barros, Luís Guerreiro.	1301
SYMP	OSIUM-14: NEW PRODUCT DEVELOPMENT - DESIGN RESEARCH, MATERIALS SELECTION, INNOVATION SYSTEMS	1303
7065	RELIABILITY AND FAILURE OF POLICY IMPLEMENTATION OF INCLUSIVE DESIGN: CASE STUDIES OF OPEN SPACE IN BEIJING, TAIPEI, AND HONG KONG. Kin W.M. Siu, Yi Lin Wong, Jia Xin Xiao.	1305
7173	FAILURE OF SOCIAL INCLUSION IN PUBLIC SPACE: A CASE STUDY OF CHILDREN'S INCLUSIVE PLAYGROUND AND THEIR ENGINEERING STANDARDS IN HONG KONG. Yi Lin Wong, Mei Seung Lam, Kin W.M. Siu.	1313
7231	TECHNICAL CONTRADITIONS SOLVING TECHNIQUE IN PLANT MAINTENANCE.	1319

Ivan Masin.

7245	GUIDELINES FOR THE ALIGNMENT OF THE INTEGRATED MANAGEMENT SYSTEM WITH THE BUSINESS STRATEGY IN INDUSTRIAL COMPANIES. Luis C. Barbosa, Gilberto Santos, Otávio J. Oliveira.	1321
7253	THE CONTRIBUTION OF DESIGN TO THE SUSTAINABLE DEVELOPMENT BY THE TRANSFORMATION OF "NON-PLACES" IN URBAN GARDENS FOR PRACTICING URBAN AGRICULTURE. António Barroso, Maria João Félix, Gilberto Santos.	1323
7257	MATERIALS SELECTION AND INNOVATION SYSTEMS IN PACKING DESIGN FOR HEALTHY FOOD. Verónica Duarte, Maria João Félix.	1325
7295	LINKING MOULD FILLING AND STRUCTURAL SIMULATIONS. Carlos N. Barbosa, Julio C. Viana, Markus Franzen, Thomas Baranowski, Ricardo Simões.	1327
SYMP	OSIUM-15: QUALITY AND PROCESS MANAGEMENT. THEORY, APPLICATIONS AND CASE STUDIES	1337
7086	FABRICATION LABORATORIES: WHERE NEW DIGITAL TECHNOLOGIES COME TO LIFE. Laura Bravi, Gilberto Santos, Federica Murmura.	1339
7113	DOUBLE-SHEAR W-S-W CONNECTIONS AT AMBIENT TEMPERATURE, WITH DIFFERENT APPLIED TENSILE LOADS AND STEEL DOWELS DIAMETER. Ruben D.A.R. Martins, Elza M.M. Fonseca.	1341
7117	W-W-W CONNECTIONS IN DOUBLE-SHEAR AT AMBIENT TEMPERATURE: EFFECT OF THE APPLIED TENSILE LOAD AND DOWELS DIAMETER. Abderrahim Aissa, Elza M.M. Fonseca, Alvear P.M. Daniel.	1349
7164	USING DMAIC FOR AUTOMATED IDENTIFICATION OF CAUSES AND MEASURES. Patrick Drange, Klaus Seiffert, Roland Jochem.	1357
7175	MAINTENANCE PLANS FOR KNOWN FAULTS EVENTS ADJUSTED WITH FUZZY LOGIC SUPPORT. Joaquin S. Herrera, Jhonny Rodrigues, Miguel Strefezza.	1359
7181	STATISTICAL ANALYSIS OF MAJOR ACCIDENT HAZARDS DATA: LEARNING FROM THE PAST TO DEVELOP A SAFETY CASE. Nasser M. Blahareth, Soliman A. Mahmoud.	1367
7196	ADAPTING KANO'S THEORY FOR WEIGHTING AND IMPLEMENTING CUSTOMER REQUIREMENTS ON A SOFTWARE TOOL FOR ASSESSING HUMAN RELIABILITY IN MANUAL ASSEMBLY. Christian Kern, Robert Refflinghaus.	1369
7211	DEVELOPING AND VALIDATING A MODEL OF ISO 9001 EFFECTIVENESS GAP: EMPIRICAL EVIDENCE FROM CHINA. Xiaojing Sun, Decheng Wen, Dongwei Yan.	1383
7258	THE ANALYSIS OF THE HELICOPTER TECHNICAL READINESS BY MEANS OF THE MARKOV PROCESSES. Józef Żurek, Mariusz Zieja, Jarosław Ziółkowski.	1387
7268	HUMAN FACTOR INFLUENCE ON EDDY CURRENT NON-DESTRUCTIVE TESTINGS. Carlos E. Silva, Rita C. Ferreira, Yasmin S. Martins, Dalton G. Souza, Ana C. Santos.	1401
7272	R&R STUDY FOR VALIDATION OF THE MEASUREMENT SYSTEM OF A PROCESS FOR THE MANUFACTURE OF WIRE COILS IN A TEXTILE INDUSTRY. Fabricio A. Almeida, Vinicius R. Paula, Rachel C. Sabioni, Daniel S. Cortez, José H. Gomes, Pedro P. Balestrassi.	1405

7273	R&R STUDY FOR ANALYSIS OF THE MEASUREMENT SYSTEM OF A PUMP LABELING PROCESS. Vinicius R. Paula, Rachel C. Sabioni, Fabricio A. Almeida, Petra N. Leite, José H. Gomes, Pedro P. Balestrassi.	1407
7279	THE JOURNEY OF MULTI NATIONAL ENTERPRISES INTO BUSINESS AND HUMAN RIGHTS. Pasquale Vetta.	1411
7283	CLUSTER ANALYSIS FOR ENHANCING PROCESS QUALITY IN JOB SHOP PRODUCTION. Antonia Fels, Max Ellerich, Robert Schmitt.	1413
7299	AN ANALYSIS OF QUALITY CONTROL GAME BETWEEN ONLINE SHOPPING PLATFORMS AND SELLERS UNDER COMPLETE INFORMATION. Yaping Li, Decheng Wen, Dongwei Yan.	1423
SYMPO	OSIUM-16: NEW MATERIALS AND DESIGN PROCESSES IN DENTAL MEDICINE	1425
7061	MATHEMATICAL MODELING OF TECHNOLOGIES FOR THE DESIGN OF INNOVATIVE FUNCTIONAL BIO-COATINGS FOR DENTAL IMPLANTS. Alla V. Balueva, Ilia N. Dashevskiy.	1427
7294	SURFACE CHANGES (SCANNING ELECTRON MICROSCOPE) INDUCED BY ARTIFICIAL SALIVA IN TITANIUM-MOLYBDENUM ORTHODONTIC LOOPS. Saul Castro, Maria Ponces, J.C. Reis Campos, Jorge Lopes, Maria Pollmann.	1429
7298	COMPARATIVE STUDY OF FLEXURAL STRENGTH IN THERMOFORMABLE DENTURE BASE RESINS. Tomás Pacheco, José M. Rocha, Nuno V. Ramos, J.C. Reis Campos, Maria H. Figueiral.	1431
7300	MAXILLARY AND MANDIBULAR SUPERIMPOSITIONS IN THE ASSESSMENT OF ORTHODONTIC TREATMENT OUTCOMES. Berta Meireles, Ana C. Braga, Lucinda G. Faria, Saul Castro, Maria João Ponces.	1433
7311	GROWTH PATTERN OF FETAL FACIAL STRUCTURES AND ULTRASOUND DIAGNOSIS MEANS FOR OROFACIAL ANOMALIES. Inês Côrte-Real, Rosete Nogueira, Ana C. Braga, J.C. Reis Campos, Francisco Valente, César Silva, Paula Vaz.	1435
7312	BIS-ACRYL RESIN COLOR EVALUATION BEFORE AND AFTER SURFACE TREATMENTS AND IMMERSION IN COLORING BEVERAGES. Susane L. Gras, Joseane Silva, Paula Vaz, César Silva, J.C. Sampaio Fernandes, Claudia Volpato.	1437
7315	BIOMEDICAL RAPID PROTOTYPING OF FREE-FORM SURFACES BY PLANAR CONTOURS METHOD. Hacene Ameddah, Hammoudi Mazouz.	1439
7316	FORENSIC IDENTIFICATION TOOL IN DENTAL REMOVABLE PROSTHODONTICS. Adélia Fernandes, André Correia, Ana Margarida Silva, Cristina Figueiredo.	1441

AUTHOR INDEX

1445

Proceedings IRF2018: 6th International Conference Integrity-Reliability-Failure Lisbon/Portugal 22-26 July 2018. Editors J.F. Silva Gomes and S.A. Meguid. Publ. INEGI/FEUP (2018); ISBN: 978-989-20-8313-1

PAPER REF: 7125

FATIGUE RESPONSE OF AS BUILT DMLS PROCESSED MARAGING STEEL AND EFFECTS OF MACHINING, HEAT AND SURFACE TREATMENTS

Dario Croccolo¹, Massimiliano De Agostinis¹, Stefano Fini¹, Giorgio Olmi^{1(*)}, Francesco Robusto¹, Snezana Ciric-Kostic², Aleksandar Vranic², Nusret Muharemovic³, Nebojsa Bogojevic²

¹Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy

²Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Serbia

³Plamingo d.o.o., Gračanica, Bosnia and Herzegovina

(*)Email: giorgio.olmi@unibo.it

ABSTRACT

The main motivations for this study arise from the need for an assessment of the fatigue performance of DMLS produced Maraging Steel MS1, when it is used in the "as fabricated" state. The literature indicates a lack of knowledge from this point of view, moreover the great potentials of the additive process may be more and more incremented, if an easier and cheaper procedure could be used after the building stage. The topic has been tackled experimentally, investigating the impact of heat treatment, machining and micro-shot-peening on the fatigue strength with respect to the "as built state". The results indicate that heat treatment significantly enhances the fatigue response, probably due to the relaxation of the post-process tensile residual stresses. Machining can also be effective, but it must be followed (not preceded) by micro-shot-peening, to benefit from the compressive residual stress state generated by the latter.

Keywords: DMLS, maraging steel, "as built" state, machining, heat treatment.

INTRODUCTION

The Additive Manufacturing (AM) process is based on layer manufacturing, without any additional tools or machining processes (Bourell, 2009; Aliakbari, 2012; Pandey, 2010; Herderick, 2011) Direct Metal Laser Sintering (DMLS) and Selective Laser Melting are the two most important Additive Manufacturing technologies. Both of them are powder bed-based technologies.

Concept of layered built parts dates from more than one century. AM enables manufacturing without tools, using just one AM machine fed by a CAD model. This is split into twodimensional layers with constant thickness, by specific software; the layers can be regarded as areas that will be melted with proper thickness. Every new layer is fused with the previous one during the AM process. The part is progressively built, repeating this process until the last layer is stacked.

There are several AM technologies, depending on the handled material, on how the material is applied or fused, etc. Powder Bed technology is based on material application on the entire building surface; afterwards, the laser or electron beam melts the area that corresponds to the sliced surface. The process is repeated, until part completion. Wire or powder feed technology is based on the step-by-step material application and melting, until the surface that corresponds to the sliced layer is formed. In this case, the material is applied to the surface that is being manufactured only. A further classification of the AM techniques deals with the principle of material melting (laser beam, electro beam, electro-arc etc.). In almost all the technologies for AM of metal parts, the material is completely melted and bonding between layers is achieved during solidification. DMLS and SLM are nowadays quite close technologies and their different names mostly arise from different trademarks (Shellabear, 2004; Nicoletto, 2018). At the early stages of development of these technologies, components after manufacturing were remarkably porous, as not full density could be achieved, due to partial fusion. The smelting and sintering processes were different and the processed materials were mainly based on Iron, Copper and Nickel alloy. Moreover, additional processing was mandatory, to achieve better density and fusion (Campanelli, 2010; Naiju, 2011).

AM technologies are and more and more used in the industrial field and is also attracting interest with regard to biomechanics. Using 3D CT scanners, it is possible to model custom implants that perfectly fit the person's need (Parthasarathy, 2011; Jardini, 2016; Jardini, 2014). Materials with good bio-compatibility can be processed by AM, which gives them good potentials for dental and medical purposes (Bertol, 2010).

The layer based manufacturing provides a particular microstructure affecting the build parts that is different the casted structure of the same wrought material. In AM, material melting and cooling rates are very high. Fast melting is the result of high energy concentration, whereas fast cooling arises from the small amount of melted material with low surrounding temperature. This high temperature gradient usually induces high tensile residual stresses. Part building starts on thick steel plate (base-plate). Part can be built directly on the plate or with an additional support structure, generated between the plate and the part. Its purpose is part constraining; moreover it facilitates heat flow from the part during the scanning (melting) process. The support structure needs to be strong enough, to efficiently restrain any kind of deformation that residual stress can cause. The generation of a residual stress state affecting the fabricated component is indeed a drawback of this process that is usually tackled by suitable heat of surface treatments. Machine manufacturers usually provide some data regarding the mechanical properties of AM built parts in the material datasheets (https://www.eos.info/material-m). However, these mainly deal with static properties, such as ultimate tensile strength, yield strength, hardness, mechanical characteristics after ageing etc. Therefore, there is a great interest towards the fatigue response and the impact of the post manufacture treatments.

Maraging steel is one of the most promising materials, for use in Additive Manufacturing (Brookes, 2016). Density of AM built parts is generally higher than 90%. Hardness of AM built parts from Maraging Steel is similar to those made by conventional ways like casting. It has good mechanical properties and it can be a good candidate for high-carbon steel substitution. It is resistant to corrosion and crack initiation during tempering and has good machinability (Yasa, 2010; Kempen, 2011; Casalino, 2015). It has a relatively high ultimate tensile strength (UTS) after the heat treatment, around 2000MPa. Thanks to its high UTS, it is a promising material to be used for structures operating under high states of load in many fields. This becomes more attractive, considering that AM technologies gives the chance to build multi-part object as a single part (https://www.eos.info/industries_markets/aerospace /engines), making it possible to built monolithic complexly shaped components in small batches. Research contributions on the Fatigue limit (FL) and the fatigue strength (FS) of Maraging steel made by some of AM processes are quite limited, to the best of the authors' knowledge. This paper presents a follow-up of a previous research by the same authors (Croccolo, 2016).

Components produced by AM can have different orientation with respect to the stacking direction of the layers. The aim of the previous research was to explore the effect of build orientation on the fatigue strength of Maraging Steel samples built by DMLS EOS M280 machine. The obtained results indicate that part orientation did not have significant effect on FS and FL, when the part were treated by micro-shot peening and heat treatment after the stacking process, thus meeting the powder producer recommendations. The components had than been machined with 0.5 mm allowance, in order to get an optimal surface finishing. The aforementioned outcomes were also confirmed by the study (Croccolo (IRF2018), 2018), involving the same material. A further research (Croccolo, 2018)was then focused on Stainless Steel PH1 and led to a partial confirmation: some effect was observed in this case, probably due to different material properties and stacking parameters.

Literature studies dealing with the effects of the stacking process on the mechanical properties of the parts made by AM are few. Most the research deals with the effects of the process parameters as well as of post-processing on tensile static strength (Casati, 2016; Gibson, 1997; Baufeld, 2010). Few papers are concerned with the fatigue strength of Aluminium alloy (Edwards, 2014; Bača, 2016; Konečná, 2016), Inconel alloy (Smith, 2016) and Titanium alloy samples (Brandl, 2012). Review papers have been written, trying to collect all the technologies and all the available mechanical testing results (Lewandowski, 2016). However, a lack of consistency between the testing procedures and the obtained results can be noticed, when all these data are merged together.

There is nowadays an increasing interest in lowering down post-manufacturing expenses in AM, and in speeding up the process from design to installation. Sometimes, post processing is not possible, for instance, when treating lattice structures, cooling channels in injection moulds or in turbine blades. In particular, machining or shot-peening cannot be performed on internal surfaces, on the other hand, running an heat treatment could be expensive and time consuming. This interest is also testified by some recent studies (Nicoletto, 2018; Kahlin, 2017) that have dealt with the fatigue properties of Ti-6Al-4V in its as built state. It is clear that the as built surface condition is likely to introduce a detrimental effect on fatigue with respect to the machined condition. Therefore, an intensive study is needed to clarify if postprocessing treatments, including machining or heat treatment, can be skipped and, if so, how the best compromise between costs and the strength that can be accomplished. This was the main motivation that led to this study, whose aim was to investigate the effects of heat treatment, machining and shot-peening on the fatigue response of DMLS built Maraging Steel. This topic has been tackled experimentally: for this purpose, an experimental campaign has been arranged as a factorial plane, with a total amount of five treatment combinations. Fatigue tests have been run on all the sample types, finally working out the fatigue curves in the finite life domain and the fatigue limits. These results have then been compared and discussed, based on statistical methods.

MATERIALS AND METHODS

The testing procedure was based on ISO 1143 Standard for rotating bending fatigue testing (ISO 1143, 2010). The Standard defines the testing procedure, the load scheme and the specimen geometry. Specimens were designed with cylindrical smooth geometry with uniform 6mm diameter at the gage. The smallest recommended dimension by the Standard has been chosen as the best compromise, between Standard consistency and manufacturing costs. A drawing of the specimen is shown in Figure 1. The specification regarding surface quality was not considered for the "as built", to properly account for the influence of machining.

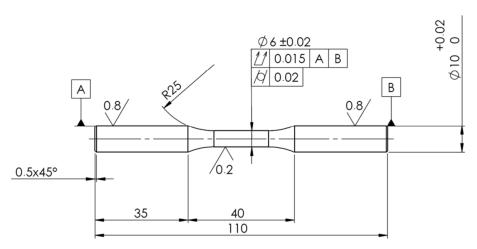


Fig. 1 - Technical drawing of the sample for fatigue tests under rotating bending (all dimensions in mm)

The specimens have been manufactured by M280 DMLS machine (EOS GmbH - Electro Optical Systems, Germany), equipped by Ytterbium fibre laser with 200W power and thickness 1064nm emitting 0.2032mm and wavelength infrared light beam (https://www.eos.info/systems solutions/metal/systems equipment/eosint m280). Specimen material was MS1 maraging steel MS1 (by EOS GmbH - Electro Optical Systems, Germany), equivalent to 1.2709 steel (https://www.eos.info/material m/werkstoffe/download/EOS MaragingSteel MS1.pdf) and also reported as 18% Ni Maraging 300 or AISI 18Ni300. The chemical composition of the material is provided in Table 1. Specimen manufacturing was done in the processing chamber of the machine with working area of 250×250mm in horizontal plane and with maximum building height up to 325mm. The base plate was preheated to the temperature of 40°C.

Ni [%]	Co [%]	Mo [%]	Ti [%]	Al [%]	Cr [%]	Cu [%]	C [%]	Mn [%]	Si [%]	P [%]	S [%]	Fe [%]
17-19	8.5- 9.5	4.5- 5.2	0.6- 0.8	0.05- 0.15	≤ 0.5	≤ 0.5	≤ 0.03	≤ 0.1	≤ 0.1	≤ 0.01	≤ 0.01	Bal.

Table 1 - Chemical composition of Maraging steel MS1

Manufacturing process typically takes place in nitrogen inert atmosphere, generated from compressed air by nitrogen generator that is built inside machine. The process chamber consists of three platforms and recoater: The Dispenser platform, where material powder is contained, the Building platform, on which the base plate is set and the building process is done, the Collector platform for the collection of excess material. A scheme of the building chamber is shown in Figure 2.

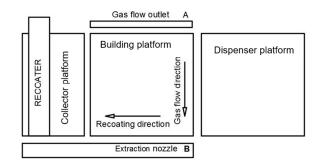


Fig. 2 - A scheme of the chamber of the utilised EOS machine

The material was applied with 40μ m thickness that corresponds to the recommended layer thickness for the MS1 Maraging Steel. The building parameters (laser speed, laser power, laser offset, layer thickness etc.) of the EOSINT M280 for MS1 sample manufacturing were kept constant for all the stacking tasks. They were provided by the EOS as a predetermined set of parameters named "PERFORMANCE". This parameter set can be regarded as a good compromise between surface quality and manufacturing speed.

The canning strategy consisted in parallel traces on every layer; for next layer, scanning strategy was rotated by an angle of 67° . The contour of the scanned surface was finally rescanned, in order to get better surface quality. Example of the scanning process is shown in Figure 3(a).

The specimens were built directly on the base plate, with vertical orientation, without using a support structure, Figure 3(c). Proceeding this way, the surface quality of the specimens in the as fabricated state was unaffected by the support structure teeth traces on the surface. After the building process, the specimens were taken from the process chamber, cleaned from excessive powder by micro-shot-peening, using stainless steel spherical shots with 400 μ m diameter under a flow pressure of 5 bar. This treatment is usually performed, to close the process induced porosities and to generate compressive residual stresses that slightly reduce the tensile residual state induced upon fabrication. The samples were then cut off from the base plate, by wire cutting with Electrical Discharge Machining (EDM).

Fig. 3 - (a) As Built specimens during scanning, (b) Specimens cleaning from powder, (c) Specimens after micro-shot-peening

The samples planned for heat treatment underwent age-hardening by heating in oven. The temperature was increased from room temperature to 490 °C in 1h, afterwards, they were kept at constant temperature for additional 5h (total 6h process), before gradual cooling in fresh air. This heat treatment is usually recommended, to achieve a reduction of the process induced tensile residual stresses, with a potential beneficial effect on the fatigue response of the built parts (Sanz, 2013; Aboulkhair, 2016). Then, the specimens planned for machining, were ground with 0.5 mm allowance with the aim of achieving the surface quality required by the ISO 1143 Standard as well as to improve the fatigue performance (ISO 1143, 2010).

The experimental campaign was arranged, according to the scheme in Table 2: in particular, the 2-by-2 design was run first, in order to investigate the impacts of heat treatment and machining with surface refinement. The sample set named N involved samples that underwent micro-shot-peening, but neither heat treatment not machining. The samples from

set M were micro-shot-peened and then machined, whereas those of set H underwent microshot-peening and subsequent aging treatment. Finally, for the HM condition, consisting in peened, heat treated and machined samples, the global curve determined in (Croccolo (IRF2018), 2018) was used. As explained in this reference, it can be regarded as the most general and reliable model for the fatigue behaviour in the full treatment condition at the current state of the art.

			Machining				
		No	Yes	Yes, with subsequent shot-peening			
Aging Heat	No	Set N	Set M	Set MP			
Treatment	Yes	Set H	Set HM				

Table 2 - Design of the experiment

The experimental design was then completed by the addition of a further combination, named MP: in this case, the samples underwent machining just after fabrication and then shotpeening by steel shots with 0.7 mm diameter. This surface treatment was carried out with shot flow under 5 bar pressure. This latest combination was added, to investigate the effect of the different post-processing order on the fatigue response. The main motivation supporting this choice was that, despite the material manufacturer recommendations, the beneficial residual stress state yielded by post-fabrication peening was likely to be completely removed by the subsequent machining with 0.5 allowance.

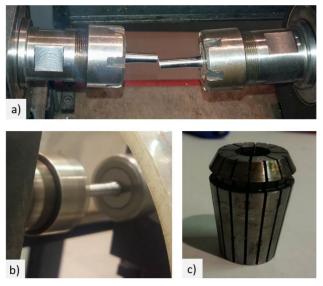


Fig. 4 - (a) Clamped specimen after breakage, (b) Specimen running, (c) Chuck collet

The specimens were mounted on the testing rig, tightening their heads into chuck collet, on both sides of the specimen Figure 4. Load was kept constant and bending moment was constant at gage during testing. The Testing rig, for four-point rotating bending was described in (Croccolo, 2016).

The samples were tested until failure or until 10^7 cycles, to be regarded as run-out. Each sample set consisted of 7 to 15 specimens. Using the aforementioned procedure, it was possible to obtain FL and the S-N curve for finite life domain. The fatigue limit was obtained by the Dixon stair-case method for small number of sample trials with failure or non-failure outcomes (Dixon, 1969). The Dixon method is a modified stair-case method that makes it possible to estimate FL even from small series of nominal trials (in this case four to seven).

Standard deviation was estimated to estimate the uncertainty and to determine the confidence band for FL at the 90% confidence level. ISO 12107 was used for processing the data in finite life domain (ISO 12107, 2012). Data were linearly interpolated in logarithmic diagram. Upper and lower bounds of the logarithmic curve were determined, based on the standard deviation of fatigue life, with the probability of failure of 90% for upper limit and 10% for lower limit and with the confidence level of 90%.

EXPERIMENTAL PROCEDURE

All the samples have undergone geometry measurement, to check requirements accomplishment. Diameter dimension and surface roughness have been measured at the head and at the gage. For this purpose, a micrometre screw gauge, (with the resolution of 0.01mm) and a portable surface roughness tester (with the resolution of 0.01 μ m, Handysurf E-30A; Carl Zeiss AG, Oberkochen, Germany) have been used.

Diameter measurement checks have been done at two points at the heads, replicating measurement with 90° rotations at each point, for a total of eight replications, including both the specimen heads. Diameter at the gauge was measured at three points, with two replications for each, by 90° rotation, for an overall number of 6 replications.

Surface roughness on both heads and on the gage was measured over eight replications. In particular, roughness was averaged over 4 mm runs along the longitudinal axis, considering 90° angled spots with two repetitions for each. Measurement at the gage was performed only on the samples that got broken during the fatigue testing, due to the impossibility to correctly align the roughness tester in the unbroken ones. The retrieved measurements were anyway sufficient to get evidence of the roughness mean value at gage.

Some average values of the diameter and surface roughness measurements are provided in Table 3 with reference to Set N. Specimen types 1 and M are well consistent with the drawing requirements presented in Figure1. Surface roughness values for the unmachined specimen types were almost five times higher than specifications, which is reasonable, considering that these specimens were in as-built condition.

Sussimon	Gage diameter			Head diameter (left side)			Head diameter (right side)		
Specimen ID	Mean	St. dev.	Roughness	Mean	St. dev.	Roughness	Mean	St. dev.	Roughness
ID	[mm]	[mm]	Ra [µm]	[mm]	[mm]	Ra [µm]	[mm]	[mm]	Ra [µm]
N.1	6.09	0.012	4.24	10.07	0.020	5.54	10.06	0.024	3.92
N.2	6.09	0.010	4.12	10.08	0.004	5.48	10.07	0.004	4.47
N.3	6.08	0.008	3.97	10.06	0.010	5.19	10.05	0.014	4.49
N.4	6.09	0.008	4.37	10.07	0.013	4.74	10.05	0.017	4.53
N.5	6.09	0.005	4.57	10.07	0.019	5.28	10.05	0.015	5.49
N.6	6.09	0.009		10.07	0.012	4.75	10.06	0.014	4.68
N.7	6.09	0.010		10.08	0.007	4.43	10.06	0.009	4.77
N.8	6.09	0.007		10.07	0.008	4.24	10.05	0.018	4.76
N.9	6.09	0.007	4.07	10.06	0.010	4.76	10.05	0.019	4.18
N.10	6.09	0.009	5.12	10.08	0.011	5.65	10.05	0.019	6.02
N.11	6.10	0.012	4.54	10.08	0.014	4.72	10.06	0.018	4.83
N.12	6.08	0.012	2.30	10.07	0.015	4.86	10.05	0.006	4.34
N.13	6.08	0.009	3.75	10.08	0.008	5.10	10.06	0.012	4.57
N.14	6.09	0.014	4.21	10.05	0.003	4.48	10.05	0.018	4.07

Table 3 Dimensional and roughness (Ra) measurements with regard to the samples of Set N

The fatigue tests were carried out, loading the samples under four-point rotary bending. Tightening was done in such a way that specimen heads could not have any chance to revolve inside chuck collets. After specimen was mounted, radial misalignment of the gage section

was checked, as recommended by the aforementioned Standard. Testing was done under rotating bending load with stress ratio R=-1 and with the frequency of 60Hz. Fractographic and micrographic analysis have been done as well for some samples, after the end of the testing campaign to examine fracture initiation and propagation areas. In particular, some specimens were cut, embedded into phenolic resin, and polished for micrographic analysis, as in Figure 5.

Fig. 5 - Sample preparation for micrographies, in particular the resin embedded sample (longitudinal and cross sections) is depicted on the right

Specimen surface was etched with combination of 150cc of water (H2O), 50cc of Chloridric Acid (HCl), 25cc of Nitric Acid (HNO3) and 1g of Calcium Chloride. Etching was done at room temperature for 70 seconds.

RESULTS

The results of the testing campaign are collected in Tables 4 to 7. The Tables provide data regarding specimen ID, nominal stress value at the gage, observed life and comment regarding the trial outcome. In particular, "Run-out" indicates that the specimen survived testing at given load after 10^7 cycles, whereas "Y" indicates that failure occurred. In this case, the number of cycles to failure is also reported.

Specimen ID	Stress [MPa]	Life [N]	Failure
N.1	610	175,804	Y
N.2	550	236,637	Y
N.3	490	3,577,212	Y
N.4	430	8,336,653	Y
N.5	400	9,659,056	Y
N.6	370	Run-out	Ν
N.7	400	Run-out	Ν
N.8	430	Run-out	Ν
N.9	460	8,069,582	Y
N.10	430	Run-out	Ν
N.11	460	9,900,777	Y
N.12	610	151,212	Y
N.13	N.13 550		Y
N.14	490	687,908	Y

Table 4 - Results of the fatigue tests on the samples of Set N

Specimen ID	Stress [MPa]	Life [N]	Failure
H.2	579	65,841	Y
H.4	550	73,082	Y
H.7	520	169,324	Y
H.15	490	779,587	Y
H.1	460	Run-out	Ν
Н.3	490	8,503,786	Y
H.5	460	198,385	Y
Н.6	460	2,589,275	Y
H.16	430	Run-out	Ν
H.8	460	2,614,325	Y
H.9	579	100,886	Y
H.10	550	2,245,442	Y
H.17	490	Run-out	Ν
H.11	520	124,220	Y
H.12	490	131,030	Y
H.13	490	20,111,214	Ν
H.14	550	640,238	Y

Table 5 - Results of the fatigue tests on the samples of Set H

Table 6 - Results of the fatigue tests on the samples of Set M

Specimen ID	Stress [MPa]	Life [N]	Failure
M.1	610	81,160	Y
M.2	520	219,333	Y
M.3	460	2,415,186	Y
M.4	400	7,885,879	Y
M.5	370	3,035,027	Y
M.6	340	Run-out	Ν
M.7	370	7,879,073	Y
M.8	340	Run-out	Ν
M.9	370	Run-out	Ν
M.10	400	5,662,050	Y

Table 7 - Results of the fatigue tests on the samples of Set MP

Specimen ID	Stress [MPa]	Life [N]	Failure
19.12	400	Run-out	Ν
19.1	430	7,156,630	Y
19.3	460	7,486,110	Y
19.7	490	3,327,981	Y
19.8	520	1,513,780	Y
19.2	580	1,424,868	Y
19.4	520	2,397,072	Y
19.5	490	1,968,952	Y
19.6	460	5,462,365	Y
19.10	430	5,398,139	Y
19.9	400	Run-out	Ν
19.11	430	Run-out	Ν
19.13	460	4,550,671	Y
19.15	820	29,369	Y

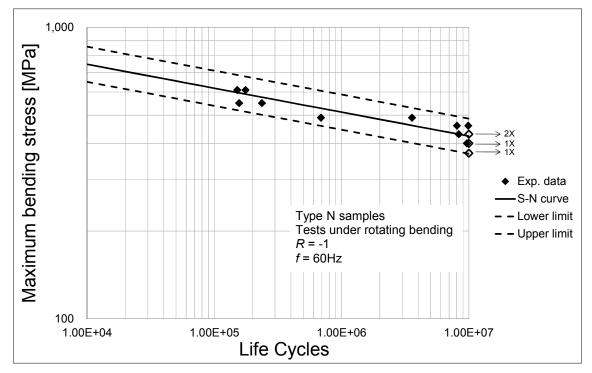


Fig. 6 - S-N curve along with its confidence band with regard to Set N

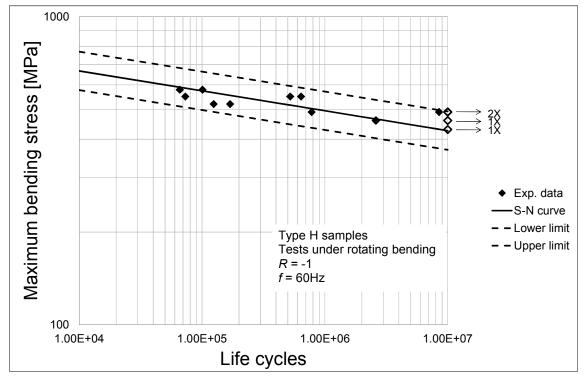


Fig. 7 - S-N curve along with its confidence band with regard to Set H

The results of the fatigue tests were processed, to obtain the S-N curves in the finite life domain (ISO 12107, 2012). Curves trends together with their upper (90% failure probability) and lower (10% failure probability) bounds at the 90% confidence level, are shown in Figures

6 to 9 (with reference to Sets N, H, M, MP), using double logarithmic scale, including also details regarding specimen type, load ratio and testing frequency, and arrows indicating run outs. The related equations are provided in Table 8, in the terms of the coefficients of the formulas in Eq.s (1) and (2), considering the linear model that proved to be the most suitable, based on (ISO 12107, 2012).

$$Log(N) = b_0 + b_1 \cdot Log(S) \tag{1}$$

$$S = 10^{-\frac{b_0}{b_1}} \cdot N^{\frac{1}{b_1}}$$
(2)

Table 8 - Coefficients of the determined S-N curves, according to the linear model of (ISO, 2012), with reference to Eq.s (1-2)

Set ID	b_0	b_1	$10^{-b} {}^{/b}_{0}$	1/b1
N	38.99	-12.18	1,592	-0.082
Н	47.73	-15.49	1,207	-0.065
М	30.20	-9.06	2,146	-0.110
MP	28.69	-8.26	2,970	-0.121

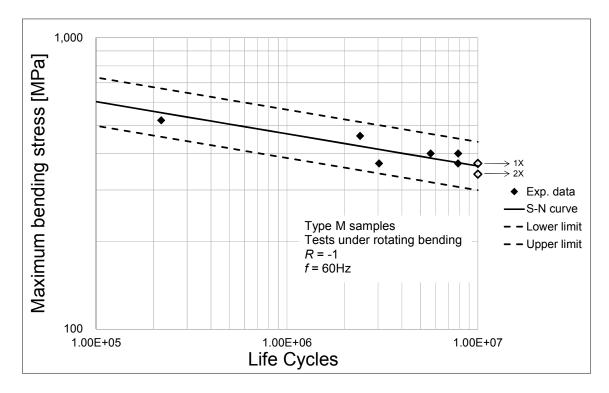


Fig. 8 - S-N curve along with its confidence band with regard to Set M

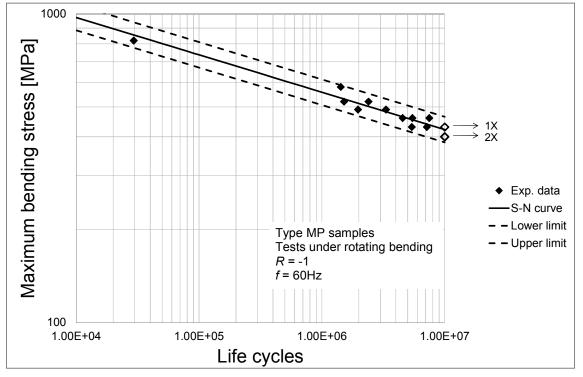


Fig. 9 - S-N curve along with its confidence band with regard to Set MP

DISCUSSION

The S-N curves in the finite life domain were processed by the ANOVA-based methodology that was introduced in (Olmi, 2012) and successfully applied in (Croccolo, 2016; Croccolo (IRF2018), 2018). The 2-by-2 plane was treated first, following the procedure that is described in more details in (Croccolo, 2016). The Analysis of Variance was followed by the Fisher test, to discuss the significance of the effects of the heat treatment and of machining along with their interaction. The outcome (reported in Table 9), based on a lifespan ranging from 10^4 and 10^7 , was that both factors were highly significant, accepting a probability of error, commonly regarded as p-value, in the order of 10^{-5} . The interaction is also significant with a p-value around 10^{-6} .

	Sum of squares	Degrees of freedom	Failure	Fisher's ratio	p-value		
SSBR: Effect of the heat treatment	0.0164	1	0.0164	19.71	3.10-5		
SSBC: Effect of machining	0.0187	1	0.0187	22.51	10-5		
SSI: Interaction	0.0236	1	0.0236	28.39	10-6		
SSE: Error	0.0633	76	0.0008				

Table 9 - ANOVA Table for the two-factor design (lifespan between 10^4 and 10^7)

The four curves, corresponding to the sets referenced as N, M, H, and HM are plotted together in the graph in Figure 10. It can be observed that, starting from the curve for Set N, coloured in black, the red one for Set H is very close, whereas the yellow one for Set M indicates a slightly lower strength.

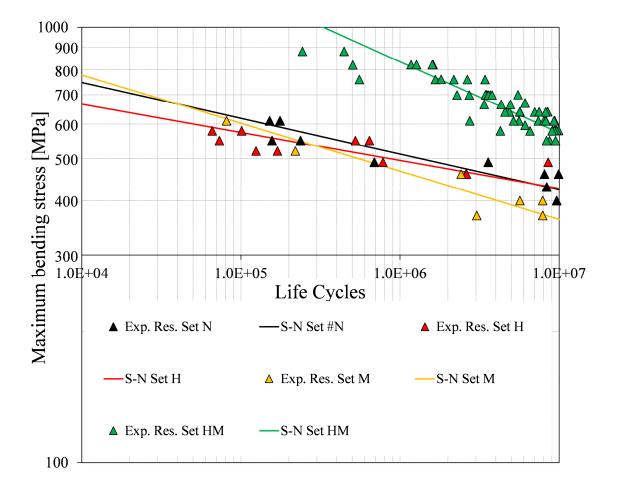


Fig. 10 - Comparison between the S-N curves in the finite life domain for Sets N, M, H, and HM

These results were interpreted in the light of a further analysis. The same procedure being described in (Croccolo (IRF2018), 2018), regarding one-way ANOVA, was here applied to compare the two curves (black and red) corresponding to the Sets (N and H) in the as built state with and without heat treatment. The same procedure was subsequently applied to compare the S-N plots (black and yellow) for the samples without heat treatment in the as fabricated state or that underwent machining. In both cases, the outcome was the differences are not significant, i.e. the curves are statistically the same. Regarding the effect of heat treatment without machining, it must be remarked that the build process of a Maraging Steel usually leads to a not high tensile residual stress field, due to the low coefficient of thermal expansion (CTE), if compared to that of other materials, e.g. Stainless Steel (Croccolo 2016). In fact, the lower CTE, the lower the induced residual stresses (Fergani, 2017; Croccolo, 2018). Therefore, considering the lower amount of residual stresses, being also reduced by shot-peening, the application of heat treatment becomes ineffective. In other words, the peening treatment seems to provide a sufficient contribution against the process induced not remarkably high tensile residual stresses.

The further outcome of the performed analysis, i.e. the counter-intuitive slightly detrimental effect of machining, can be explained with reference to the beneficial compressive residual stresses induced by micro-shot-peening being removed by machining. This result indicates that the positive effect of surface finishing is compensated by the simultaneous removal of the

surficial layers, where the peening induced compressive state was able to provide some protection against crack propagation. This effect can be observed in the not heat treated samples, where micro-shot-peening plays indeed an important role at relaxing the detrimental tensile residual stresses, as also remarked in the previous paragraph.

Finally, regarding the forth curve, the green one for the HM condition, it keeps much higher than all the others. It indicates the high positive interaction between the two considered factors: in other words, if they are applied together, they have a synergic effect at remarkably enhancing the fatigue strength. On one hand, the heat treatment becomes highly beneficial, when the effect of shot peening is removed through machining, and machining is also significantly beneficial, as it refines the surface, while simultaneously the heat treatment drops down the residual stress state induced by the stacking process.

A final analysis was conducted, including also the curve for the MP Set. The S-N curves for Sets N, M and MP, i.e. for all the Sets, which did not undergo the aging treatment, are plotted together in Figure 11. The tool of one-way ANOVA with three levels has been utilised again to compare the three curves. The result was that the fatigue strength in the finite life domain is significantly incremented, when shot-peening is performed after machining, i.e, when the curve for the MP Set is compared to the other two ones. This outcome is a further proof for the importance of shot-peening: applying it after machining makes it possible to take advantage of both the induced compressive residual stress (which compensates that induced by the building process, in absence of heat treatment) and the better surface finishing.

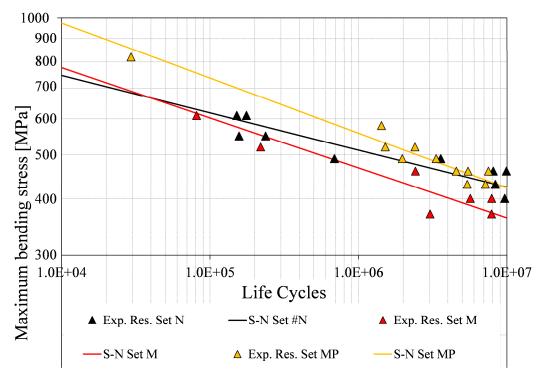


Fig. 11 - Comparison between the S-N curves in the finite life domain for Sets N, M, and MP

The fatigue limits for all the sample types with their confidence band (90% confidence level) are shown in the bar graph in Figure 12. As mentioned above, the fatigue limits were worked out by the Dixon method with related confidence analysis, except for Set HM: in this case, the fatigue limited was extrapolated by the S-N curve as the stress corresponding to an expected life of 10^7 cycles. The scatter evaluated in the finite life region was also applied at the fatigue

limit, while keeping the same level of confidence for comparison purposes (Meneghetti, 2017). The estimated value of FL for sample type HM is 573MPa, for sample type H is 471MPa, for sample type N is 426MPa, for sample type M is 363MPa, finally for Set MP is 423 MPa. The sample sets named H and HM underwent heat treatment, whereas the other three ones were without heat treatment. The UTS of MS1 Maraging Steel is 1100MPa in the as built condition, after hardening it is incremented up to 2050MPa, corresponding to almost 100% increase of UTS, following heat treatment (https://www.eos.info/material_m/ werkstoffe/download/EOS_MaragingSteel_MS1.pdf).

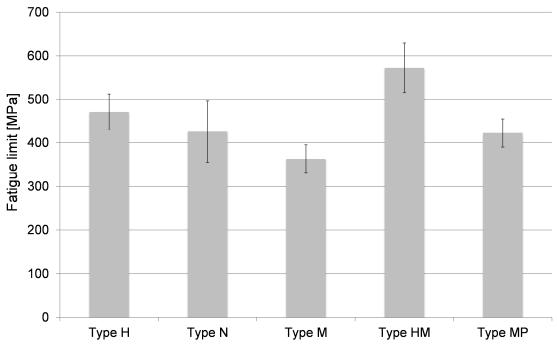


Fig. 12 - Fatigue limits for 10 million cycle run-out with regard to all the sample Sets in the experimental design.

Regarding Sample types HM and H, their FL is respectively 28% and 23% of UTS. Sample types N, M and MP were without hardening and their FL is indeed lower, but respectively 38%, 33%, 38% of the corresponding UTS without heat treatment. Moreover, the Sets N and MP have very close FLs, whereas the latter yields much better performance for finite life, as remarked above. These ratios are much lower than the commonly accepted ratios of FL over UTS of 50% for machined samples, but are in agreement with some literature research, when considering as built parts (Stoffregen, 2014; Niemann, 2005). This is not surprising, due to the layered characteristic of specimens. Sample type N proved to have a greater FL than machined sample type M.

During fractographic and micrographic analysis some porosities were observed. During fractographic analysis of break surface of both sides of the broken sample, it was found that crack initiation and nucleation starts at one point on the surface or just beneath it, at a distance of about 80 μ m from the surface, as shown in Figure 13. Some amount of voids and inclusions were noticed on fractured surface of all samples. It is indeed possible that voids or inclusions were responsible for crack initiation: most cracks actually seem to start from such defects. Only one crack initiation point was generally observed.

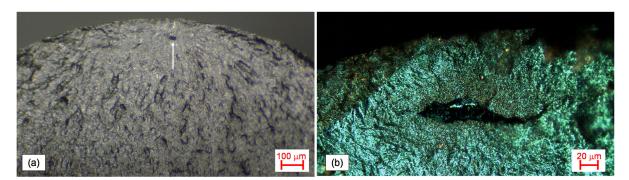


Fig. 13 - (a) A crack initiating from a porosity in a sample of Set M; (b) a large void that triggered a failure in a specimen of Set H.

It must be pointed out that laser scanning traces were visible both in longitudinal and in transverse sections, regardless of heat treatment execution.

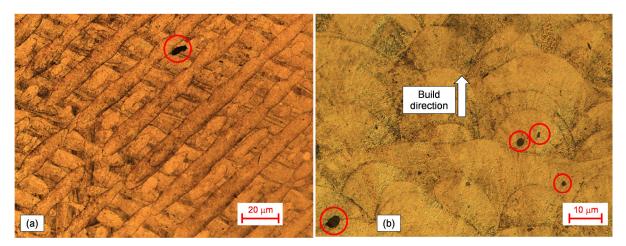


Fig. 14 - Micrographies on a sample of Set N (without heat treatment) depicting (a) laser scans over the build plane and (b) stacked layers along the build direction. Inclusions are highlighted.

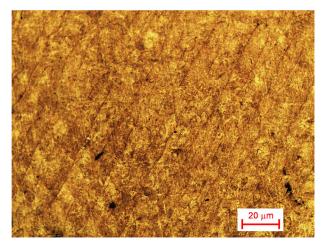


Fig. 15 - Micrography on a sample of Set H (with heat treatment), depicting laser scans over the build plane (cross section)

Some inclusions were noticed and marked with arrows in Figure 14. The scanning pattern in build plane section in Figure14 (a) indicates some scanning traces underneath with rotation angles corresponding to the aforementioned angle of 67°. Specimens without heat treatment had more pronounced scanning traces than those that had undergone the heat treatment by age hardening, which had conversely a more uniform microstructure. The microstructure of a sample of Set H is shown in Figure 15. This outcome indicates that heat treatment had some effect on fusion of the laser traces but was not effective at completing deleting these traces. For all the four sample types a comparable amount of inclusion was observed. Heat treatment had no effect on the presence of porosities in material.

CONCLUSIONS

This paper aims at a study on machining and heat treatment effects on fatigue limit and fatigue strength of Maraging Steel specimens manufactured by DMLS EOSINT M280 machine. Five sample sets were considered, all with vertical stacking direction during building. All the four initial sets underwent micro-shot-peening after the building process. One Set was tested in the as built condition, without heat treatment, a second one underwent an aging heat treatment but was kept in the as fabricated state. A third set was machined without heat treatment. Finally, an S-N curve coming from previous studies was used for comparison reason: it refers to samples that underwent heat treatment and then machining, as recommended by the material manufacturer. All the experimental results were processed for the determination of S-N curves in the finite life domain and fatigue limits. Statistical methods were used to compare the curves and their outcomes indicated that heat treatment without machining has a negligible effect, as shot-peening is able to reduce the process induced residual stress state, which is not particularly high due to material properties. The generally positive effect of machining is compensated by the removal of the surface layers treated by micro-shot-peening, when heat treatment is not performed. Finally, when heat treatment and machining are applied together, they have a synergic beneficial effect and the fatigue strength is remarkably incremented.

A fifth set was added to the experiment to investigate, if performing the peening treatment after machining without heat treatment could have a positive effect on the fatigue strength. The statistical analysis confirmed this outcome: refining the surface and then applying a compressive residual stress state leads to a fatigue enhancement in the finite life domain. It is important to remark that a good tuning of the post-process parameters can lead to a fatigue limit in the order of almost 40% the ultimate tensile strength, just ten points lower than the commonly accepted 50% ratio for wrought material.

The study was completed by fractographic and micrographic analyses. The first ones made it possible to individuate some porosities, which were the main sources for crack initiation at approximately $80 \mu m$ from the surface. The second one made it possible to compare the microstructures with and without the heat treatment. In the first case, the scanning traces are still visible, but the microstructure is made more uniform.

As a future development of this research, the case of shot peening being performed on heattreated and machined samples will be considered. Moreover, it will be also the chance to investigate the effect of the position on the chamber on the fatigue response.

ACKNOWLEDGMENTS

The research presented in this paper has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 734455.

REFERENCES

[1] Bourell DL, Beaman JJ, Leu MC, Rosen DW. A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead. In Proceedings of RapidTech, 2009, pp. 24-25.

[2] Aliakbari M. Additive manufacturing: State-of-the-art, capabilities, and sample applications with cost analysis. Master of Science Thesis, Production Engineering and Management, Department of Industrial Production, KTH, Stockholm, Sweden, 2012.

[3] Pandey PM. Rapid prototyping technologies, applications and part deposition planning. Department of Mechanical Engineering Indian Institute of Technology, India, 2010.

[4] Herderick E. Additive manufacturing of metals: A review. Materials Science & Technology, 2011, pp. 1413-1425.

[5] Shellabear M, Nyrhilä O. DMLS-Development history and state of the art. In Laser Assisted Netshape Engineering 4, Proceedings of the 4th LANE, 2004, pp. 21-24.

[6] Nicoletto G. Directional and notch effects on the fatigue behavior of as-built DMLS Ti6Al4V. International Journal of Fatigue, 2018, 106, pp. 124-131.

[7] Campanelli SL, Contuzzi N, Angelastro A, Ludovico AD. Capabilities and performances of the selective laser melting process. In New Trends in Technologies: Devices, Computer, Communication and Industrial Systems. InTech, 2010.

[8] Naiju CD, Adithan M, Radhakrishnan P. An Investigation of Process Variables Influencing Fatigue Properties of Components Produced by Direct Metal Laser Sintering. KMUTNB: International Journal of Applied Science and Technology, 2011, 4(1), pp. 63-69.

[9] Parthasarathy J, Starly B, Raman S. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 2011, 13(2), pp.160-170.

[10] Jardini AL, Larosa MA, Macedo MF, Bernardes LF, Lambert CS, Zavaglia CAC, Maciel Filho R, Calderoni DR, Ghizoni E, Kharmandayan P. Improvement in Cranioplasty: Advanced Prosthesis Biomanufacturing. Procedia CIRP, 2016, 49, pp. 203-208.

[11] Jardini AL, Larosa MA, Maciel Filho R, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. Journal of Cranio-Maxillofacial Surgery, 2014, 42(8), pp.1877-1884.

[12] Bertol LS, Júnior WK, da Silva FP, Aumund-Kopp C. Medical design: direct metal laser sintering of Ti-6Al-4V, 2010, Materials and Design, 31(8), pp.3982-3988.

[13] https://www.eos.info/material-m.

[14] Brookes KJ. Maraging steel for additive manufacturing - Philipp Stoll's paper at DDMC 2016. Metal Powder Report, 2016, 71(3), pp.149-152.

[15] Yasa E, Kempen K, Kruth JP, Thijs L, Van Humbeeck J. Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In Solid Freeform Fabrication Symposium Proceedings, 2010, pp. 383-396.

[16] Kempen K, Yasa E, Thijs L, Kruth JP, Van Humbeeck J.. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Physics Procedia, 2011, 12, pp. 255-263.

[17] Casalino G, Campanelli SL, Contuzzi N, Ludovico AD. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optics & Laser Technology, 2015, 65, pp.151-158.

[18] https://www.eos.info/industries_markets/aerospace/engines.

[19] Croccolo D, De Agostinis M, Fini S, Olmi G, Vranic A, Ciric-Kostic S. Influence of the build orientation on the fatigue strength of EOS Maraging steel produced by additive metal machine. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39, pp. 637-647.

[20] Croccolo D, De Agostinis M, Fini S, Olmi G, Robusto F, Muharemovic N, Bogojevic N, Vranic A, Ciric-Kostic S. Experimental study on the sensitivity of DMLS manufactured Maraging Steel fatigue strength to the build orientation and allowance for machining. In Proceedings of the 6th International Conference Integrity-Reliability-Failure (IRF2018), Lisbon, Portugal, 2018.

[21] Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, Ciric-Kostic S. Effects of build orientation and thickness of allowance on the fatigue behaviour of 15-5 PH stainless steel manufactured by DMLS. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41, pp. 900-916.

[22] Casati R, Lemke JN, Tuissi A, Vedani M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals, 2016, 6(9), 218, pp. 1-13

[23] Gibson I, Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping Journal, 1997, 3(4), pp.129-136.

[24] Baufeld B, Van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. Materials & Design, 2010, 31, Supplement 1, pp. S106-S111.

[25] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Materials Science and Engineering: A, 2014, 598, pp.327-337.

[26] Bača A, Konečná R, Nicoletto G, Kunz L. Influence of build direction on the fatigue behaviour of Ti6Al4V alloy produced by direct metal laser sintering. Materials Today: Proceedings, 2016, 3(4), pp. 921-924.

[27] Konečná R, Kunz L, Bača A, Nicoletto G. Long fatigue crack growth in Ti6Al4V produced by direct metal laser sintering. Procedia Engineering, 2016, 160, pp. 69-76.

[28] Smith DH, Bicknell J, Jorgensen L, Patterson BM, Cordes NL, Tsukrov I, Knezevic M. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Materials Characterization, 2016, 113, pp. 1-9.

[29] Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design, 2012, 34, pp. 159-169.

[30] Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annual Review of Materials Research, 2016, 46, pp. 151-186.

[31] Kahlin M, Ansell H, Moverare JJ. Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading. International Journal of Fatigue 2017, 103, pp. 353-362.

[32] International Organization for Standardization ISO 1143:2010 (E) Metallic Materials - Rotating Bar Bending Fatigue Testing, International Organization for Standardization (ISO), Geneva, Switzerland, 2010.

[33] https://www.eos.info/systems_solutions/metal/systems_equipment/eosint_m280.

[34] https://www.eos.info/material_m/werkstoffe/download/EOS_MaragingSteel_MS1.pdf.

[35] Sanz C, Navas VG. Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments. Journal of Materials Processing Technology, 2013, 213(12), pp. 2126-2136.

[36] Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials & Design, 2016, 104, pp. 174-182.

[37] Dixon WJ, Massey FJ. Introduction to statistical analysis (Vol. 344). McGraw-Hill, New York, United States, 1969.

[38] International Organization for Standardization ISO 12107:2012, Metallic Materials -Fatigue Testing - Statistical Planning and Analysis of Data, International Organization for Standardization (ISO), Geneva, Switzerland, 2003.

[39] Olmi G. Low cycle fatigue experiments on Turbogenerator steels and a new method for defining confidence bands. Journal of Testing and Evaluation, 2012, 40 (4), Paper ID JTE104548.

[40] Fergani O, Berto F, Welo T, Liang SY. Analytical modelling of residual stress in additive manufacturing. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40, pp. 971-978.

[41] Meneghetti G, Dengo C, Lo Conte F. Bending fatigue design of case-hardened gears based on test specimens. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, DOI: 10.1177/0954406217712278.

[42] Stoffregen HA, Butterweck K, Abele E. Fatigue analysis in selective laser melting: review and investigation of thin-walled actuator housings. In 25th Solid Freeform Fabrication Symposium, 2014.

[43] Niemann G, Winter H, Hohn BR. Maschinenelemente, Springer-Verlag, Berlin, Germany, 2005.