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Abstract: A flow duration curve (FDC) provides a comprehensive description of the hydrological 

regime of a catchment and its knowledge is fundamental for many water-related applications (e.g., 

water management and supply, human and irrigation purposes, etc.). However, relying on 

historical streamflow records, FDCs are constrained to gauged stations and, thus, typically 

available for a small portion of the world’s rivers. The upcoming Surface Water and Ocean 

Topography satellite (SWOT; in orbit from 2021) will monitor, worldwide, all rivers larger than  

100 m in width (with a goal to observe rivers as small as 50 m) for a period of at least three years, 

representing a potential groundbreaking source of hydrological data, especially in remote areas. 

This study refers to the 130 km stretch of the Po River (Northern Italy) to investigate SWOT 

potential in providing discharge estimation for the construction of FDCs. In particular, this work 

considers the mission lifetime (three years) and the three satellite orbits (i.e., 211, 489, 560) that will 

monitor the Po River. The aim is to test the ability to observe the river hydrological regime, which 

is, for this test case, synthetically reproduced by means of a quasi-2D hydraulic model. We consider 

different river segmentation lengths for discharge estimation and we build the FDCs at four 

gauging stations placed along the study area referring to available satellite overpasses (nearly 52 

revisits within the mission lifetime). Discharge assessment is performed using the Manning 

equation, under the assumption of a trapezoidal section, known bathymetry, and roughness 

coefficient. SWOT observables (i.e., water level, water extent, etc.) are estimated by corrupting the 

values simulated with the quasi-2D model according to the mission requirements. 

Remotely-sensed FDCs are compared with those obtained with extended (e.g., 20–70 years) gauge 

datasets. Results highlight the potential of the mission to provide a realistic reconstruction of the 

flow regimes at different locations. Higher errors are obtained at the FDC tails, where very low or 

high flows have lower likelihood of being observed, or might not occur during the mission lifetime 

period. Among the tested discretizations, 20 km stretches provided the best performances, with 

root mean absolute errors, on average, lower than 13.3%. 

Keywords: remote sensing; SWOT mission; hydrological regime; hydraulic model; Po River 

 

1. Introduction 

The flow duration curves (FDCs) graphically represent the relationship between river 

discharges observed at a given cross-section and the duration (i.e., the percentage of time) they are 
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exceeded, or equal, during a given reference period (e.g., a year, or longer periods; [1,2]). Given 

historical streamflow records, the FDC can be obtained by ranking, in descending order, the 

recorded values and assigning them a corresponding exceedance probability; in other words, the 

FDC represents an empirical cumulative distribution of the river flows at the location where 

discharges have been recorded. 

FDCs provide a general overview of the hydrological regime of a catchment, thus, they are 

widely and routinely used in many water resource investigations, such as water resource 

management, hydropower generation, design and management of water supply systems, irrigation 

planning, and eco-hydrological studies [1,3–5]. Despite their wide use and utility, FDCs have some 

limitations and receive criticism that should not be ignored. For instance, FDCs rely on available 

streamflow data and their representativeness of the hydrological regime of the river depends on the 

period of record used for their calculation [2]. The scientific community has investigated these issues 

and offers a number of different methodologies that are aimed at overcoming the limited 

availability, or complete lack, of discharge records (see, e.g., [6,7] and the references therein). 

River discharge is a hydrological variable of great importance because it determines both the 

water supply (storage, irrigation, hydroelectric power generation, environmental issues, etc.) and 

hydraulic risk (inundation). However, its measurement at the global scale is still an issue since the 

global coverage of the gauging stations is highly heterogeneous and the network density is 

completely inadequate in many countries, especially in low-density housing areas (e.g., [1,8]). 

Current traditional monitoring networks often have problems with reliability and continuity of the 

measured data due to the expansive costs of maintenance, while political and economic reasons 

often prevent data sharing in the case of transboundary rivers and foster water wars [9,10]. 

For the reasons outlined above, the interest of a new source of hydrological data from satellites 

is growing (see, e.g., [11]). Remote sensing from space represents a very useful tool for inland water 

monitoring, mainly due to its large and continuous spatial coverage. The present literature reports 

many investigations and methods aimed at converting satellite observations into discharge values. 

Optical and SAR (synthetic aperture radar) sensors can observe the area, width, and slope of the 

water surface, while radar and LiDAR altimeters measure the surface water level of rivers (see, e.g., 

[3]). Referring to those remotely-sensed observations, many studies noted the usage of empirical 

relationships based on available in situ measurements (e.g., [8,12–14]), while others used those 

variables to solve simplified hydraulic equations (e.g., [15–18]), or as input values for data 

assimilation techniques (e.g., [19,20]). 

However, the most important limitations of current satellite measurements to this scope are 

related to the spatial and temporal resolution of the sensors. Regarding satellite altimetry, tracks of 

the satellite constrain the estimation over specific river cross-sections (i.e., virtual stations), while 

inter-track of the satellite dictates the information of discharge at some river cross-sections and 

prevents the spatiotemporal dynamics of the water surface [21–23]. 

These considerations may be overcome with the launch of the new satellite mission, Surface 

Water and Ocean Topography (SWOT), specifically dedicated to the study of inland water (rivers, 

lakes, wetlands). As a requirement of the mission, river discharge will be provided based on 

concurrent SWOT measurements of slope, width, and height for all rivers wider than 100 m (with a 

goal to observe 50 m wide rivers; (see, e.g., [24–26]), and see Section 2.2 for more details). The 

designed lifetime of the mission is three years (hopefully, extended to five years; [24]). 

Assuming the availability of the hydrological variables expected from SWOT (with given 

resolution and accuracy) the scientific community has proposed several methods to estimate the 

river discharge, which rely on different assumptions and simplifications. Durand et al. [16] recently 

compared the performance on flow rate estimation of five different algorithms that use SWOT-like 

observations in 19 major rivers. Even though in almost each case study (14 out of 19) there is always 

one approach ensuring appropriate performance (root mean square error lower than 35%), the 

results highlight how achieving accurate and reliable discharge estimation is still a concern that 

deserves further investigations. 
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Due to the lack of long-term record and accuracy/resolution issues of current remote sensing 

data, to date, to the best of our knowledge, there are no studies that have investigated the potential 

of the upcoming SWOT mission, as well as of other remotely-sensed products (e.g., satellite 

altimetry), in providing appropriate FDC estimation. SWOT will represent the state of the art in 

terms of remote river monitoring, however, its restricted lifetime might constrain the possibility to 

fully depict the hydrological regime of the observed river, having the possibility to uncover some 

extreme (drought or flood) events. 

Although the mission is still under development, the orbital (i.e., revisit time and mission 

lifetime) and instrumentation characteristics are known. Thus, this study aims at revealing the 

potential of the SWOT mission in providing reliable estimates of river discharges and, considering 

its overall lifetime, FDCs starting from the measurement of slope, width, and height. 

Referring to a portion of the Po River (with a total length of nearly 137 km) as a case study, this 

work (i) considers, for the first time, the temporal coverage ensured by the overall mission lifetime 

(three years); (ii) provides discharge estimation accordingly to mission requirements and different 

river discretization; and (iii) evaluates the expected reliability and representativeness of the 

SWOT-based FDCs at different locations, referring also to traditionally-observed extensive datasets. 

Referring to this latter aspect, this study evaluates whether or not the designed mission lifetime is 

suitable for providing a reliable estimate of the hydrological regime of a river, thus trying to answer 

the underlying question: how much of the hydrologic regime of a river can be detected by a FDC 

based on three-year mission? This is evidently key to fully understand SWOT potential in ungauged 

areas, although the answer to this question would require a more extensive analysis, including other 

case studies with different hydrological regimes. Nonetheless, this study attempts to shed some light 

on FDC estimation using the upcoming SWOT mission. 

The paper is articulated in five sections. Section 2 provides a description of the Po case study, in 

situ dataset with the areas covered by the satellite orbits, and of the SWOT mission. Section 3 briefly 

describes the hydraulic model and the methodology used to estimate the streamflows and builds the 

FDCs. Section 4 analyses and discusses the results, while final considerations are drawn in Section 5. 

2. Materials and Datasets 

2.1. Study Area and Available Data 

This study focuses on the Po River, the longest and widest Italian river, along which a number 

of gauged stations, to provide long series of observed water levels and discharge values  

(see Figure 1). The analysis is carried out for a river reach of 137 km from the gauged station of 

Borgoforte to Po di Goro, the beginning of the river delta, including also three other gauged stations, 

Sermide, Ficarolo, and Pontelagoscuro, which we used for comparison purpose (see the box in 

Figure 1). Along this portion the main river width ranges from 200 m up to nearly 500 m, while the 

lateral floodplains are delimited by a system of major embankments and may reach an extent of 5 km. 

In light of its geometrical characteristics and the amount of available hydrological observations, this 

river portion represents an ideal test case for the satellite mission so that it has been previously 

considered for the investigation of SWOT potential (see, e.g., [19,25,27]). 

Different from previous studies we selected a study period of three years, from January 2008 to 

December 2010, during which the river experienced both major floods and drier periods. Figure 1 

shows the overall Po River Basin, the study area (box) and the gauging stations where mean daily 

discharge values and water levels have been recorded for many decades. 
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Figure 1. Po River Basin, showing the main river network, gauging stations (red dots) and the river 

reach of interest (black box). 

As an example, Figure 2 reports the daily mean discharge values during the period in interest at 

the gauging stations of Borgoforte (upstream station) and Sermide as reproduced by the numerical 

model (see Section 2.3 for more details). As depicted in Figure 2, the Po River in this short period 

experienced two significant floods (May 2009 and 2010) and a series of minor peaks. This reference 

period enables the evaluation of all possible flowing conditions along the river. 

Table 1 summarizes principal hydrological characteristics of the gauging stations with reference 

to the three-year period of interest (2008–2010) and the overall historical monitoring period. 
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Figure 2. Flow hydrograph at the gauging station of (a) Borgoforte and (b) Sermide (blue lines) in the 

period 2008–2010: vertical lines represent an example of the timing of the SWOT overpasses during a 

short period (see Section 2.2 for details). 

Table 1. Hydrological statistics available at the gauging stations of interest. 

   Historical Data Three-Year Period: 2008–2010 

 

Starting 

Year of Obs. 

(-) 

Main 

Channel 

Width (m) 

Min. Q 

(m3/s) 

Mean Q 

(m3/s) 

Max. Q 

(m3/s) 

Min. Q 

(m3/s) 

Mean Q 

(m3/s) 

Max. Q 

(m3/s) 

Borgoforte 1923 326 209 1312 12,047 466 1591 8060 

Sermide 1994 485 123 1422 10,100 452 1661 7660 

Ficarolo 1988 357 245 1557 11,200 560 1766 7580 

Pontelagoscuro 1922 316 156 1509 10,300 534 1728 7090 

2.2. SWOT Mission: Scientific Background and Satellite Coverage 

The SWOT mission is led by the National Aeronautics and Space Administration (NASA) and 

the French space agency (Centre National d’Études Spatiales, CNES), in collaboration with the 

Canadian and UK space agencies (CSA and UKSA, respectively). The purpose of the mission is to 

contribute to the fundamental understanding of the Earth system by providing high spatial 

resolution and global measurements for ocean and inland water. Specifically, for terrestrial water 

bodies, it will provide a global inventory of lakes, reservoirs, and wetlands, whose surface area 

exceeds 62,500 m2 and rivers whose width exceeds 100 m (hopefully 50 m). Moreover, it will enable 

the estimation of river and global storage variation at sub-monthly, seasonal, and annual time scales 

by providing water extent, water surface elevation, and slope (see, e.g., [24,26] for more details). 

The core payload includes a Ka-band radar interferometer (KaRIn, 35.75 GHz, or 8.6 mm 

wavelength) with a near-nadir incidence angle. Regarding the spatial coverage and the revisit time, 

the global measurement ranges between 78°S to 78°N, with a revisit time of about 21 days. Starting 

from radar observations based on pixels having the size of about 6 m in the azimuth direction, and 

ranging from 10 to 60 m in the direction perpendicular to the azimuth, SWOT products will be the 

result of averaging procedures aimed at achieving the mission requirements in terms of observation 

accuracy [24,25,27]. Satellite products will be available within two swaths of 50 km width and 

separated by a gap of 20 km (“nadir gap”), one on each side of the satellite. For additional technical 

details on the SWOT mission the reader can refer to [24,26,28], whilst more information concerning 

SWOT data products are reported in Section 3.1. 
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Looking at designed satellite orbits, the Po River reach under investigation is intercepted by 

three SWOT orbits: 560, 489, and 211. As an example, and referring to Figure 3, orbit 560 observes the 

study area with both swaths (left and right, or also 560 up and 560 down, respectively; orange 

surfaces in the figure), except for the 20 km of the nadir gap. Starting from the upstream gauged 

station of Borgoforte, the upstream swath (560) observes 68.3 km of the river reach. The same river 

portion is observed from orbit 211 (right swath, green area in Figure 3). The 560′s downstream swath 

includes the river from Pontelagoscuro up to the final section of the model. The upstream (left) 

swath of orbit 489 observes 79.3 km of the river, covering the nadir gap of the orbit 560. The 

downstream (right) swath of 489 observes the eastern part of the reach. However, in light of its small 

extent, this portion is considered insignificant for the analysis and, thus, neglected. As depicted in 

Figure 3, the river stretches of about 44.1 km, including the gauged section of Sermide, is monitored 

by the three orbits, and it would receive three observations within the period of 21 days (i.e., satellite 

revisit time). 

Referring to the flow hydrograph at the gauging stations of Borgoforte and Sermide, Figure 2 

shows the satellite coverage of this river portion during the three-year period of interest (vertical 

lines). Under the hypothesis that orbit 560 overpasses the Po River on 1 January 2008, orbit 211 

would cross the river 10 January (nine days later), while the 20th of the same month (19 days later 

than orbit 560) the Po would be monitored along satellite track 489 (see Figures 2 and 3). This 

observation sequence is repeated every 21 days, resulting in a total number of satellite overpasses 

equal to 157, of which 52, 53, and 52 refer to orbit 489, 560, and 211, respectively. 

 

Figure 3. SWOT satellite coverage of the study area: satellite orbits and swaths (different colours) 

over the river portion of interest (dark blue); red dots represent the gauging stations considered in 

the study; and black dots present an example of swath discretization (560 upstream) adopting Δx 

equal to 10 km (see Section 3.1). 

2.3. Hydrodynamic Simulation of the River 

In order to mimic remote observations expected from SWOT, we implemented a quasi-two 

dimensional hydraulic model using UNET code, which solve the one-dimensional Saint Venant 

equations by means of a classic implicit four-point finite scheme [29]. The model refers to the 

software Hydrologic Engineering Centre–River Analysis System, HEC-RAS, developed by the 

United States Army Corps of Engineers. The numerical model is implemented according to a 

quasi-two dimensional structure that considers the one-dimensional flow in the main channel and 

schematizes the dike protected floodplains as storage areas connected to the main channel through 

lateral structures (see, e.g., [30]). In consideration of these structures, the dike-protected floodplains 

start to be flooded when the water level overtops the minor embankment system, and the water 

volume of the storage areas is simulated through depth/flood volume curves retrieved by the digital 

elevation model. The river geometry is described by 107 cross-sections extracted from a 2 m 
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resolution LiDAR survey performed in 2005 and integrated with sonar bathymetry profiles 

performed by the Po River Basin Authority (AdB-Po). Previous analysis performed on the same area 

shows the suitability of the quasi-2D model for the simulation of the hydraulic behaviour of the 

river, enabling the reconstruction of realistic daily flow conditions (the reader is referred to [31,32] 

for additional details on the model calibration and validation). In this context, it is worth mentioning 

that the study aims to investigate the potential of SWOT sensors on the estimation of hydraulic 

variable and river discharges as synthetically generated by the model rather than reproducing the 

real behaviour of the river. Simulations obtained with the numerical model can be considered as a 

synthetic reality that represents the river behaviour, thus, we can use them to mimic SWOT 

observations (see Figure 2). Based on this approach, the comparison of SWOT-derived FDCs with 

those obtained with three years of simulated data is fair and it is not affected by possible biases 

introduced by the numerical simulation. Adopting this approach, the numerical model enables us to 

mimic the spatial coverage of the satellite and provides hydraulic variables that are not available 

from traditional gauging stations. As a result of the hydrodynamic simulations, daily hydraulic 

variables, such as the water surface level, water extent, wetted area, discharge, water depth, etc., are 

available at each river cross-section along the study area (Figure 3; dark blue) for the period of 

interest. For the numerical simulation, daily streamflow values are used at the gauging station of 

Borgoforte, whilst the downstream boundary condition is reproduced by imposing the normal flow 

condition at the beginning of the river delta (see Po di Goro in Figure 3).  

3. Methodology 

Referring to rivers, SWOT will provide information in terms of water surface width, 𝑤, water 

surface elevation, 𝑦, and slope, 𝑆. Although the characteristics of SWOT products are still under 

definition, the results of recent investigations offer useful indications and sustain a cautious 

optimism regarding the achievement of mission requirements [16,25,27]. This work refers to these 

latest experiences for the estimation of river discharges along the study area. 

3.1. River Reach Discretization 

SWOT will provide spatially continuous information along the sensed swath. Radar “raw” 

measurements retrieved from the sensor will be spatially averaged in order to provide the final 

products and ensure the achievement of designed accuracy [25,26,28]. Thus, SWOT products, such 

as water surface elevation, water extent, and water slope, will be delivered with reference to 

different river stretches. Frasson et al. [25] investigated automated strategies for river discretization, 

comparing the effect on product accuracy of dividing the river into reaches of arbitrary lengths, with 

others identified with reference to hydraulic controls (e.g., tributaries, dams, etc.) or changes in river 

sinuosity. Although the analysis shows better performances on discharge estimation for the two 

latter approaches (i.e., hydraulic controls and sinuosity), errors on water heights and slope were 

comparable with those obtained dividing the river into stretches of arbitrary lengths (e.g., lengths 

varying from 2 km to 25 km). In general, the longer the arbitrary stretch length adopted, the lower 

the error, or bias, introduced into the SWOT products [25].  

Based on these conclusions, and for the sake of simplicity, in this study we adopted constant 

stretches. However, in order to evaluate if the extent of the stretches has an effect on our application, 

the analysis is conducted for three different lengths, Δx equal to 5, 10, and 20 km. Table 2 indicates 

the number of stretches included within each swath. Each of these stretches is identified as a 

collection of consecutive river cross-sections within a given Δx distance among those considered. 

Based on these assumptions, simulated variables obtained from the hydraulic modelling (i.e., water 

elevation, slope, water extent; see Section 2.3) are averaged with reference to those river stretches. As 

an example, black dots in Figure 3 identify those river stretches identified along one of the satellite 

swaths (i.e., 560 upstream) adopting a discretization length of 10 km. 
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Table 2. Number of stretches identified for each swath based on the length of the discretization, Δx. 

Δx [km] 560 Up 560 Down 489 211 

5 14 8 16 14 

10 7 4 8 7 

20 4 2 4 4 

3.2. Simulation of SWOT Hydraulic Variables and River Discharge Estimation 

Since investigative studies are needed before the planned launch of the satellite in 2021, and in 

line with previous studies that investigated SWOT potential [10,15,16,33], we reproduce the satellite 

observations by corrupting the simulated hydraulic variables (such as water level, water surface 

width, and slope) with errors consistent with the expected performance requirements [26]. In other 

words, for the scope of the analysis, water levels and other hydraulic variables obtained from the 

numerical simulations represent the synthetic reality that we refer to in order to simulate SWOT 

observations. 

In this study, the estimation of the river discharge from SWOT observation follows the 

approach previously used by Frasson et al. [25] and Durand et al. [15], who applied the Manning 

equation for each day of passage and for each branch. We assumed that the water surface slope (𝑆) 

can approximate the friction slope (𝐽) and that the width of the river is significantly larger of its 

height, thus reducing the wet perimeter equal to 𝑤  (water extent). Under these assumptions, the 

Manning equation is: 

𝑄𝑖𝑗 =
1

𝑛
𝐴𝑖𝑗

5 3⁄
𝑤𝑖𝑗

−2 3⁄
𝑆𝑖𝑗

1 2⁄
 

(1) 

where 𝐴  denotes the wetted area and 𝑛  (m−1/3s) is the Manning coefficient. Once the day of 

passage, j is identified, we discretized in i-branches of length ∆x the river portion observed in the 

satellite swath (see Section 3.1 and Figure 3). The average value of the hydraulic variables, such as wij 

and Aij, is calculated by averaging, in space, the values observed during the j-th day at all the 

cross-sections included in the i-branch. 

The wet flow area at a given location in a specific day can be written as: 

𝐴𝑖𝑗 = 𝐴𝑖0 + 𝛿𝐴𝑖𝑗 (2) 

where 𝐴𝑖0 represents the average value of the minimum wet areas recorded for the i-th branch 

during the entire period of study. 𝛿𝐴𝑖𝑗  indicates the flow area variation with respect to the 

minimum 𝐴𝑖0 value and it is calculated as: 

𝛿𝐴𝑖𝑗 =
𝑤𝑖0 + 𝑤𝑖𝑗

2
(𝑦𝑖𝑗 − 𝑦𝑖0) (3) 

where 𝑤𝑖0 is the average value of the minimum width recorded for the i-th branch. 

The roughness coefficients, n, vary from 0.025 to 0.044 (m−1/3s) moving from downstream to 

upstream and are derived from previous investigations performed along the study area [32], in 

accordance with the literature [34]. Since 𝐴𝑖0, 𝑤𝑖0, 𝑦𝑖0 cannot be inferred from SWOT we adopted a 

simplified approach in which those variables are extracted from the hydraulic model with reference 

to the minimum flow condition experienced in the period of interest. 

The water surface slope, S, is evaluated by interpolating the water height values, y, considered 

for all river cross-sections of each branch, as follows: 

𝑦 = 𝑆 ∙ 𝑥 + 𝑥0 (4) 

where x represents the progressive abscissa along the river. The interpolation to obtain 𝑆𝑖𝑗  values 

required in Equation (1) is performed along each i-th river stretch considering every j-th sensing day. 

Similarly to the simplifications adopted in previous studies [24,26], errors attributed to remote 

measurements are simulated by corrupting the values extracted by the hydraulic model with 

Gaussian random errors, with mean equal to 0 and standard deviation equal to the expected 
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performance requirement specified for each variable. Specifically, 𝜎𝑦 = 0.1 m for the height (𝑦), 𝜎𝑆  = 

1.7 × 10−5 for the slope (𝑆) and 𝜎𝑤 = 0.15 times the water surface extent ([24]). 

Based on these assumptions, given a specific orbit overpass, j, and a river discretization length, 

Δx, we first calculate the spatial mean of the hydraulic variables based on the data simulated at all 

river cross-sections within a i-th stretch (yij, wij, Aij). Finally, those values are corrupted with random 

errors and used to solve the Manning equation (Equation (1)) for the calculation of reach-averaged 

discharge, 𝑄̂𝑖𝑗. 

Equation (1) can finally be written as: 

𝑄̂𝑖𝑗 =
1

𝑛
(𝐴𝑖0 + 𝛿𝐴̂𝑖𝑗)5 3⁄ 𝑤̂𝑖𝑗

−2 3⁄
𝑆̂𝑖𝑗

1 2⁄
 (5) 

where the hat symbol identifies variables estimated from SWOT and, thus, the variable corrupted 

with random errors. 

To consider the uncertainty on the error generation process we refer to a Monte Carlo technique 

obtaining 1000 values, 𝑁, of simulated discharge 𝑄̂𝑖𝑗 for each branch and for each satellite passage. 

The mean of the 𝑁 iterations can be depicted as the following: 

𝑄̂𝑖𝑗,𝑠𝑤𝑜𝑡 =
1

𝑁
 ∑ 𝑄̂𝑖𝑗,𝑘

𝑁

𝑘=1

 (

(6) 

where k is the k-th value of simulated discharge. 

The benchmark discharge, called 𝑄̂𝑖𝑗,𝑠𝑖𝑚, is calculated referring to river flows provided by the 

hydraulic model, 𝑄𝑖𝑗 , and spatially averaged considering the adopted river stretches as follows: 

𝑄̂𝑖𝑗,𝑠𝑖𝑚 =
1

𝑁𝑐𝑠

 ∑ 𝑄𝑖𝑗,𝑘

𝑁𝑐𝑠

𝑘=1

 (

(7) 

where 𝑁𝑐𝑠 is the number of river cross-section within a given stretch of length Δx (5, 10, or 20 km). 

3.3. Flow Duration Curve 

Discharge estimated by means of Equation (5) can be used to construct the FDC of a given river 

stretch and provide information on the percentage of time that a discharge is equally, or exceeded, 

during a reference period. In particular, the FDC is obtained by sorting the discharge time series in 

descending order, assigning to them a duration calculated as a percentage, from 0 (higher value) to 

100 (minimum value), of the observation period. 

Both simulated and estimated discharge time series are represented in terms of FDC. In 

addition, within the scope to evaluate the representativeness of SWOT lifetime for the estimation of 

the river flow regime, FDCs based on SWOT-like observations are compared with those based on 

long observation periods, thus using discharge values recorded at the gauging stations reported in 

Table 1. 

3.4. Performance Indices 

We evaluate the performance of the applied approach for the estimation of the river discharge 

through the calculation of different performance indices: the coefficient of determination, R2, the root 

mean square error, RMSE, and the mean absolute error, MAE, which have been evaluated both in 

terms of absolute (m3/s) and relative (rRMSE and rMAE expressed as a percentage) values. Those 

performance indices have been evaluated referring to each sensed river stretch (RMSEij, MAEij, 

rRMSEij, rMAEij) for each satellite overpass: 

𝑅𝑀𝑆𝐸𝑖𝑗 = √
1

𝑁
∑(

𝑁

𝑘=1

𝑄̂𝑖𝑗,𝑘 − 𝑄𝑖𝑗,𝑠𝑖𝑚)2  
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𝑀𝐴𝐸𝑖𝑗 =  
1
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where N represents the number of iterations within the Monte Carlo framework. 

4. Results and Discussion 

4.1. Discharge Estimation 

The scatterplot in Figure 4 illustrates the comparison between the estimated 𝑄̂𝑖𝑗,𝑠𝑤𝑜𝑡  and the 

simulated, 𝑄̂𝑖𝑗,𝑠𝑖𝑚 discharge for each discretization Δx, considering all satellite overpasses in the 

study area during the three years. Referring to discharges estimated with Equation (5), Figure 5 

shows the errors in terms of rRMSE and rMAE in relation to the streamflows for the left swath of 

orbit 560 (also named 560 upstream, 560 up; see Table 2), and orbit 211, which partially monitor the 

same river portion (see Figure 3). Table 3 summarizes all the errors, reporting the mean performance 

indices values for each orbit and discretization. For the sake of brevity, plots regarding other SWOT 

orbits are reported as Supplementary Materials (Figures S1–S4). 

Generally, points lie above the bisector, even if, for high discharge values, a larger spread is 

observed. Larger errors are obtained in the case of Δx equal to 5 km (red points in Figure 4), 

especially during high flows. The adoption of Δx equal to 10 and 20 km (blue and green points, 

respectively) provides comparable results, except for high flows, where the longer the averaging 

length, the lower the expected error. Between these two options, Δx = 20 km is the one associated 

with better performances, especially in the range of low flows where the difference compared to Δx = 

5, 10 km is more evident (see Figure 5). Adopting this discretization, the rRMSE and rMAE always 

remain lower than 20% for medium to high flows, with the only exception of the swath 560 

downstream (see Figure 5 and Figures S2 and S4 in the Supplementary Materials). Determination 

coefficients (R2) reported in Figure 4 provide a measure of the performance of the applied 

methodology in estimating the flowrates, with values always higher than 0.9. Δx equal to 10 km 

ensures the larger R2 value, while a lower performance is obtained in the case of longer discretization 

(i.e., Δx equal to 20 km) because of the overestimation of low flows (green dots in Figure 4). 
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Figure 4. Scatter plot of synthetic (reproduced by the hydraulic model) and estimated (SWOT-based) 

discharges for each river stretch (Δx = 5, 10, 20 km) and for all satellite overpasses during the study 

period (2008–2010). The figure also reports the coefficient of determination (R2) between the 

discharge series for different Δx. 

 

Figure 5. Example of rRMSE and rMAE for two swaths observed by SWOT: orbit 560 (left swath) and 

orbit 211 (right swath; see also Figure 2). 
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Table 3. Mean values of RMSE and MAE (m3/s), rRMSE and rMAE (%) for each swath considering all 

overpasses over the Po River during the reference period. 

 MAE (m3/s) RMSE (m3/s) 

Swath 5 km 10 km 20 km 5 km 10 km 20 km 

560 upstream 146 144 118 177 173 175 

560 downstream  366 274 373 425 333 429 

489 199 167 151 238 206 190 

211 152 145 117 183 176 174 

 rMAE (%) rRMSE (%) 

560 upstream 10.3  10.1 8.4 12.5 12.3 12.7 

560 downstream 31.2 23.3 33.3 35.6 27.7 37.5 

489 13.0 11.6 10.6 15.7 14.4 13.4 

211 10.3 10.0 8.2 12.5 12.2 12.6 

Looking at the panels in Figure 5 (and others in the Supplementary Materials) it is evident that 

large errors on the discharge estimation are expected in the case of adopting short averaging lengths: 

Δx equal to 5 km. This result is somewhat expected, since the information averaged along a short 

reach is more affected by local errors than along a longer reach. This appears evident for a small 

number of river reaches (the lower set of red points in Figure 4) where the limited averaging length 

adopted does not remove possible local errors introduced by the assumptions of Equation (5). This is 

confirmed by the values of Table 3, with the only exception of orbit 560 downstream, where the 

average error is comparable to the one found for Δx = 20 km. Worse results associated to swath 560 

downstream are probably related to the hydraulic characteristics of the river near the delta, where 

the low river slope and its limited width in this portion significantly affect the discharge estimation, 

especially for low flow values.  

Confirming the results of Frasson et al. [25], the larger the streamflow, the lower the expected 

relative error: in general, both rRMSE and rMAE decrease when discharge increases. Larger errors in 

the case of low flows are probably due to the effect of hydraulic simplifications adopted in Equation 

(5), which become more significant when only a small portion of the river section is flooded. This 

also explains the error peak that is generally observed (at all stations, and for all river discretizations) 

for discharges between 1000 and 1500 m3/s, when the river flowrates start flooding the lateral 

floodplains and the assumption of a rectangular river shape appears far from the real conveyance 

conditions.  

4.2. Spatial and Temporal Monitoring of the Study Area 

To provide an overview of the spatial and temporal monitoring expected from SWOT Figure 6 

reports an example of the river monitoring estimated from one of the satellite overpasses (namely 

560, overpasses no. 53) simulated during the three year of mission lifetime. Referring to ∆x = 10 km, 

red segments in Figure 6 indicate the mean discharge values obtained from the numerical model 

(i.e., 𝑄̂𝑖𝑗,𝑠𝑖𝑚 , Equation (7)), while blue triangles report SWOT-based streamflows ( 𝑄̂𝑖𝑗,𝑆𝑊𝑂𝑇 ;  

Equation (6)). The spatial distribution of the estimated values (triangles) depicts the coverage of the 

two satellite swaths (left and right), which are separated by a nadir gap (~20 km) where no data will 

be observed by the satellite (see also Figure 3). 
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Figure 6. Example of the spatial discharge monitoring expected from SWOT: synthetic true (red 

segments) and SWOT-based (blue triangle) discharges from orbit 560 (overpasses no. 53) considering 

Δx equal to 10 km. 

In order to provide an overall view of the temporal sampling of the flow hydrograph, and 

corresponding errors, we compared the estimated and simulated discharges at the four gauged 

stations along the river (Borgoforte, Sermide, Ficarolo, and Pontelagoscuro; see also Figures 1 and 3). 

The comparison is made referring to river flow values averaged along the river stretch, of length Δx, 

within which each gauging station falls. 

Figure 7 reports the boxplots of the N estimated discharges (𝑄̂𝑖𝑗; Equation (5)) along with the 

synthetic values (𝑄̂𝑖𝑗,𝑠𝑖𝑚, Equation (7); red triangular) at the gauging station of Sermide, Ficarolo, and 

Pontelagoscuro. Similar plots regarding other gauging stations are reported in the Supplementary 

Materials (Figures S5–S8). Each boxplot gives an idea of the dispersion of the N (1000) discharge 

values simulated in that specific river stretch during a given SWOT overpass. It is worth 

highlighting that the total number of boxplots (i.e., x-axes) indicates the number of times the river 

stretch has been monitored by the satellite during the mission lifetime (see Section 2.2). For brevity, 

we report here only the discretization of 20 km, but similar results are available for 5 and 10 km in 

the Supplementary Materials. 

Figure 8 provides a final overview of the temporal sampling overlapping the daily flow 

hydrograph with discharge estimations considering different discretization lengths (Δx). In 

particular, referring to the mean discharge value obtained from Equation (6) (𝑄̂𝑖𝑗,𝑠𝑤𝑜𝑡), plots of  

Figure 8 summarize the potential of SWOT in observing the variability of the streamflows during the 

mission lifetime overlapping the discharge estimation with flow hydrographs observed at the 

available gauging stations. Vertical lines indicate the satellite overpasses, while different symbols 

indicate the discharge estimations for the considered Δx. 

As depicted in Figure 6, each SWOT overpass will guarantee the monitoring of a large river 

extent and, although the errors on reproducing the observed values (red segment), the satellite will 

enable the possibility to spatially monitor the river discharge and detect the rising and decreasing 

limbs. The availability of this data with a temporal resolution that varies from two to four visits 

within 21 days (see, e.g., [26]) will ensure a never before experienced knowledge of the river 

dynamic, with the opportunity to disclose new insights on flow propagation along the sensed rivers. 

Results of Figure 7 further confirm that a longer averaging extent typically ensures lower 

estimation errors. The performances on discharge estimation appear quite variable along the river of 

interest, with the lower portion of the Po River characterized by larger biases (see, e.g., 

Pontelagoscuro). This is likely due to the geomorphologic characteristics of this river stretch, which 
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denotes smaller river sections and lateral floodplains compared to the upstream part. Different river 

geometries may result on different performances on the estimation of the river flows according to 

the hypothesis introduced in this study (e.g., Equations (1)–(4)). In other terms, the impact of the 

simplifications introduced for inferring the river flow (e.g., the assumption of uniform flow, or 

concerning the estimation of the hydraulic radius; see Section 3.2) may not be the same along the 

overall river, introducing large errors in the same parts of the river. This also explains why, in some 

cases, a given gauging station experiences different errors in relation to the considered orbit (see, for 

example, the discharge estimation at Sermide when sensed by orbit 489 or 560). In fact, different 

swaths entail different river discretizations and, thus, the use of a different set of river cross-sections 

that fall within the river stretch of length Δx. 

Results in Figure 7 highlight how performances are different for low and high flows: the range 

of variability of the errors is generally wider during floods than for low to medium flow conditions. 

Considering other gauging stations (see Supplementary Materials), the upstream section of 

Borgoforte underestimates high flows, whereas the approach at Ficarolo tends to overestimate low 

flows. This said, it is worth highlighting that observed discharges are generally included between 

the lower and upper extremes of the boxplot and, very often, they are in the range between the 25th 

and the 75th percentile. 
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Figure 7. Boxplots of SWOT-based discharges compared with ones provided by the model (synthetic 

true; red triangle) at the gauging stations of (a) Sermide, (b) Ficarolo, and (c) Pontelagoscuro, as 

sensed by orbit 489 and considering Δx equal to 20 km. 

Referring to the temporal sampling of Figure 8 it is evident how the sampling frequency varies 

in relation to the location. Ficarolo is monitored only by orbit 489 (52 observations in total during the 

mission lifetime), whereas the gauging station of Sermide is covered by three orbits (489, 560, and 

211) and can rely on more observations during the mission (i.e., 157 in total). 

This temporal sampling evidently influences the likelihood of the satellite to observe extreme 

events. Although peak flows in the Po River has a limited celerity and lasts for few days [35], it is 

evident from Figure 8 that high streamflows are generally missed by the satellite, even at Sermide, 

where the temporal sampling is more frequent than in other cases. 
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Figure 8. Flow hydrograph sampling of the satellite at the four gauging stations considering all 

possible orbits and different river discretization lengths. 

4.3. Estimation of Flow Duration Curve (FDC) 

Figure 9 shows the results in terms of FDCs at the considered gauging stations, providing the 

percentage of occurrence of the estimated discharge during the monitoring period: duration values 

equal to 1% and 100% indicate the maximum and the minimum discharge value monitored during 

the observation period, respectively. 

Black dashed lines indicate the FDCs based on daily discharge data simulated by the model 

(i.e., synthetic true) along the three-year period and are used as benchmarks for those based on 

discharge values sensed from the satellite. The comparison with these curves, even though built 

with synthetic discharge values, provides useful insights into the possible contribution of the future 

satellite mission in estimating FDCs. Curves of different colours refer to different river discretization 

lengths (Δx) and are constructed referring to discharge values estimated at the gauging stations at 

each satellite overpass. Specifically, these FDCs are obtained considering the median of the N 

discharge values, 𝑄̂𝑖𝑗  (see Equation (5)), estimated within the Monte Carlo framework. Adopting a 

discretization length of 20 km, the grey area in Figure 9 depicts the range of variability (90% of 

occurrence) of FDCs expected from SWOT in relation to the randomness of errors on the 

measurements of the water surface width, elevation, and slope (see Section 3). Similar areas can be 

drawn with reference to Δx = 5, 10 km, but are not shown in order to provide a clearer 

representation. In order to further investigate the potential of the mission for the characterization of 

the hydrological regime of the river Figure 9 also provides the comparison of FDCs constructed 

considering three-year (mission lifetime) data (black dashed lines) with those based on extensive 

(i.e., from 20 to 70 years) historical data (black solid lines; see also Table 1). 

Figure 10 summarizes the variability of the errors between observed (black dashed line) and 

SWOT-based FDCs reporting the 90% confidence interval of the N errors on discharge values 

obtained for the different river discretizations (Equation (5)). Lines of different colours indicate the 

range of variability of the errors (90%) for the different discharge duration, referring to the 

considered river discretizations. Considering those ranges, Table 4 summarizes the results and 

reports the mean rMAE and rRMSE relative to the three-year observed FDC (the black dashed line in 

Figure 9). 
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Figure 9. FDCs at the gauging stations for the three-year period based on observed daily data (black 

dashed line) and estimated from SWOT-like observations, considering different river discretizations; 

grey area represents the 90% confidence interval of streamflow estimation with ∆x = 20 km; black 

solid lines show FDCs based on historical data recorded at the gauging stations. 

 

Figure 10. The 90% confidence intervals of the errors between FDCs obtained with synthetic true 

data (black dashed line in Figure 9) and those based on SWOT data at different duration and 

adopting different river discretizations. 
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Table 4. Mean rMAE (%) and rRMSE (%) obtained from the comparison of simulated and 

remotely-sensed FDCs at the gauging stations. 

 rMAE (%) rRMSE (%) 

Station 5 km 10 km 20 km 5 km 10 km 20 km 

Borgoforte 4.2 4.3 4.3 6.8 6.9 6.0 

Sermide  28.3 14.6 5.7 29.2 15.2 6.6 

Ficarolo 22.4 13.3 11.9 23.8 14.1 13.0 

Pontelagoscuro 12.3 22.0 13.3 14.5 26.3 15.7 

Results from Figure 9 show a general overlapping among observed and SWOT-derived FDCs. 

Among the different discretizations, Δx = 20 km always ensures better performances, with the black 

dashed line always comprised within the 90% confidence interval (grey areas). This is also proven by 

the mean rMAE and rRMSE values obtained comparing observed and satellite-based FDCs and 

reported in Table 4: apart for the exception of Pontelagoscuro, error values associated with Δx equal 

to 20 km are the lowest. However, in general, mean errors are not significant and lower than 30%, 

27%, and 16% for Δx equal to 5, 10, and 20 km, respectively. 

Looking at Figures 9 and 10, errors increase considering lower discharge. Results show a 

general overestimation of the streamflow values, which likely derives from the hypotheses 

introduced in the estimate of the river discharges. Simplifications on hydraulic radius and wet area 

estimation appear more robust for high flows while, for higher streamflows durations (i.e., low 

discharge on the river), the errors become more relevant. 

The gauging station of Borgoforte is the one with higher performance, while higher biases are 

found at the remaining locations of interest. Referring to Sermide, the general discharge 

overestimation seen in Figure 9 decreases by considering longer river discretization (green curve; 

rRSME and rMAE equal to 6.6% and 5.7%, respectively). Similar behaviour can be seen at the 

gauging station of Ficarolo where the sensed FDCs have a similar shape as the observed one, apart 

from a limited overestimation that is not completely removed by also adopting Δx equal to 20 km.  

In general, although the moderate number of observations provided by the satellite, which 

varies in relation to the location (see Section 3), the sensed FDCs seem able to reproduce the general 

shape of the ones built on daily data. As expected, the limited temporal sampling of the satellite 

reduces the likelihood of observing very large or low flows, resulting in large inaccuracies for the 

extreme values, both for high and low flows. This is evident also referring to Figure 8, which clarifies 

the sampling of the flow hydrograph at each gauging station. Referring to low flows, SWOT is 

expected to provide a large number of observations ensuring a significant coverage of streamflows 

associated with large durations. However, in this range of values, considering the limited river 

extent, water surface slope, and the possible effect of vegetation and infrastructures (e.g., embankments), 

the accuracy on streamflow estimation might be lower than for higher flows (e.g., [27]). On the 

contrary, high flows are rare and typically associated with a low duration in time, which reduce the 

likelihood of being monitored by the satellite. Figure 8 clearly highlights this aspect: the maximum 

flow values recorded during the study period would not have been sensed by the satellite. Thus, 

although high flows can be sensed with considerable accuracy, SWOT would probably not be 

suitable for the monitoring of low-frequency (i.e., one-day, two-day) streamflows. 

While comparing short-period (i.e., three-year data; black dashed lines) with long-period (i.e., 

based on extensive historical data; black solid line) FDCs (Figure 9) it is worth noting that historical 

data are compared with discharge values derived from the numerical simulations, which may be 

affected by inaccuracies. Nonetheless, the representativeness and the performances ensured by the 

applied numerical model limit this risk (see also [31]). In general, the graphical comparison shows 

that an observation period of three years might provide a good understanding of the general 

hydrological behaviour of the catchment. As a matter of fact, the mean relative error calculated 

considering all possible discharge durations, long- and short-period FDCs (FDCs obtained using all 

historical datasets, or only a three-year period of data, respectively), is lower than 15%, precisely: 

14.6% and 15% for Borgoforte and Sermide, respectively (panels (a) and (b) of Figure 9, respectively); 
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4.8% and 4.1% for the gauging stations of Ficarolo and Pontelagoscuro, respectively (panels (c) and 

(d) of Figure 9). Of course, flow over- or underestimation depend on the fact of observing a humid or 

dry period, while large inaccuracies are generally always expected for very high (low duration) or 

very low (high frequency) flows. Figure 9 clearly demonstrates these inaccuracies since both 

maximum and minimum flows historically observed at all the gauging stations are not properly 

sensed during the period considered in the study. 

4.4. Potential and Limitations of the SWOT Mission for FDC Monitoring 

Outcomes of this preliminary analysis show optimistic scenarios on the matters of SWOT-based 

FDCs. This first test case performed along the Po River demonstrates that the temporal sampling 

ensured by the mission should guarantee a river monitoring that enables a reliable estimation of the 

hydraulic regime of river. Considering a mission lifetime of three years, two or three overpasses 

within the satellite revisit time (21 days) appear sufficient to detect the range of variability of the 

river flows, even though extreme events (e.g., very high or low flows) might never be experienced 

during the mission lifetime or missed from the satellite. Starting from planned satellite orbits and 

satellite revisit periods, the scientific community is working on procedures that are aimed to 

synthetically improve the sampling of the hydrological observations, overcoming both temporal and 

spatial data sparsity. Amongst these approaches, data assimilation (DA) has been shown capable of 

providing valuable results for interpolating the flowrates along the river network observed by the 

satellite (see, e.g., [19,20]). Similar results have been obtained with statistical interpolation methods, 

such as kriging based approaches (see, e.g., [36,37]) or other spatiotemporal interpolation criteria 

(e.g., Inverse Streamflow Routing, [38]). These methods, even though they might require additional 

knowledge of the study area and heavier computational costs, they would allow a larger number of 

observations, thus enabling a more reliable representation of the hydrological regime of the rivers. 

The comparison between observed and remotely-sensed FDCs highlights that the accuracy on 

the estimation of the river flows is probably the most relevant open issue to deal with for the 

estimation of FDCs, rather than the temporal sensing or the extent of the mission lifetime. In this 

context, under the assumption that the mission requirements will be achieved, the limited 

knowledge of the submerged river portions (i.e., river bathymetry, shape of the main channel) 

represents a relevant obstacle that strongly constrains the accuracy of the estimation. The lack of this 

information forces the adoption of simplifications and assumptions that do not always stand for all 

the river and flow conditions. This study overcomes these problems by using only a few 

fundamental assumptions, which include the adoption of the Manning equation to estimate the 

flowrate and the consideration of a rectangular shape with known bathymetry and friction 

coefficient. Regarding the first assumption, the Manning equation has been tested in previous works 

and, despite its simplicity, it was shown to provide results comparable with those from other, more 

complex, methodologies, especially in the case of large rivers, such as the one considered in our 

study [16,25]. On the other hand, the very limited availability, at the global scale, of high accuracy 

digital elevation models and river bathymetry data [39,40] would likely represent the most 

significant aspects confining the potential of the mission. The complexity of estimating river 

flowrates alongside the bathymetry and friction coefficient have led, up to now, to the development 

of simplified models based on Saint-Venant equations, as the one adopted in this case study. 

However, in the near future, DA may provide valuable techniques to overcome some of those 

constraints. For example, Oubanas et al. [19] have recently proposed a variant of the classical 

variational DA method (“4D-Var) that solves a nonlinear dynamic system where several variables, 

e.g., discharge, roughness, and bathymetry are estimated simultaneously. Mimicking SWOT 

observations over the Sacramento and the Po Rivers they were able to estimate the discharge in 

ungauged basins using only remote sensing information with promising results (with a relative root 

mean square error lower than 30%; [19]). 
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5. Conclusions 

This study was aimed at investigating the potential role of the upcoming SWOT satellite 

mission for the estimation of flow duration curves (FDCs). These curves have a wide range of use in 

many hydraulic and hydrology-related activities, however, their generation relies on the availability 

of discharge records measured along the river. Since the progressive decline in stream gauge 

networks worldwide, the upcoming SWOT mission will definitely ensure a step forward for global 

freshwater monitoring, offering a proficient opportunity to extend our knowledge about the 

hydraulic regime of poorly-gauged rivers. 

The analysis presented in this work refers to the 137 km portion of the Po River (Northern Italy) 

in light of the availability of traditionally-observed data and a quasi-2D hydrodynamic model of the 

river. Considering an artificial mission lifetime (three years, from January 2008 to December 2010) 

and the three planned satellite orbits (211, 486, and 560; see Figure 3) we mimicked the satellite 

observations by referring to the water surface width, elevation, and slope obtained from the 

numerical simulation and corrupted those with random errors according to the mission 

requirements [24]. Referring to those variables, discharge values have been estimated by adopting 

three different river stretch resolutions (Δx equal to 5, 10, and 20 km) following the approach of 

Frasson et al. [25] and Durand et al. [15]. 

The comparison between synthetic true and SWOT-based FDCs at the gauging stations 

demonstrates the satellite potential: discharge records expected from the satellite appear suitable to 

provide a reliable estimation of the flow regime at different locations. Among the tested 

discretizations, 20 km stretches provide better performances, with mean rMAE and rRMSE lower 

than 13.3% and 15.7% (see Table 4). Higher errors are expected at FDC tails, where very low or high 

flows have lower likelihood of being observed or might not occur during a limited mission lifetime 

period. Future applications will investigate the potential of spatiotemporal interpolation criteria 

(e.g., DA or statistical approach) that, within the limit of the mission lifetime (i.e., three years), are 

expected to ensure a denser spatial and temporal coverage of the river network. 

Apart from encouraging results obtained with this analysis, it is worth noting here that the 

reliability and completeness of the acquired information on the hydrological regime will also 

depend on the hydrologic characteristics of the rivers (i.e., discharge variability, seasonality, etc.). 

Rivers with a limited variability of discharge will ensure a greater accuracy on the estimation of the 

FDCs, whereas for rivers characterized by fast flood waves and higher discharge variability, satellite 

monitoring might fail to capture all the hydraulic conditions. Future analysis will further investigate 

these aspects focusing on FDC sensitivity to the satellite overpass period, as well as on the 

importance of the river’s hydrologic regime. 

Supplementary Materials: the following are available online at www.mdpi.com/xxx/s1, Figures S1–S4: MAE, 

rMAE, RMSE and rRMSE for all satellite overpasses and swaths considering different discretization lengths (∆x 

= 5, 10, 20 km), respectively. Figures S5–S8: Boxplots of SWOT-based discharges compared with ones provided 

by the model (synthetic true; red triangle) at the gauging stations of Borgoforete, Sermide, Ficarolo and 

Pontelagoscuro, respectively, considering all sensing orbits.  
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