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Abstract:

• Verification bias is a well known problem that can affect the statistical evaluation of the predictive
ability of a diagnostic test when the true disease status is unknown for some of the patients under
study. In this paper, we deal with the assessment of continuous diagnostic tests when an (ordinal)
three-class disease status is considered and propose a fully nonparametric verification bias-corrected
estimator of the ROC surface based on nearest-neighbor imputation. Consistency and asymptotic
normality of the proposed estimator are proved under the missing at random assumption, and its
finite sample behavior is investigated by means of Monte Carlo experiments. Variance estimation
is also discussed and an illustrative example is presented.
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1. INTRODUCTION

The assessment of diagnostic tests is an important issue in modern medicine. In a
two-class problem, i.e. when the disease status has two categories (e.g., “healthy” and “dis-
eased”), for a diagnostic test T that yields a continuous measure, the receiver operating
characteristic (ROC) curve is a popular tool for displaying the ability of the test to dis-
tinguish between the classes. Assuming, without loss of generality, that higher test val-
ues indicate a higher likelihood of disease, the ROC curve is defined as the set of points
{(1− TNR(c),TPR(c)), c ∈ (−∞,∞)} in the unit square, where c is a cut point value,
TPR(c) = Pr(T ≥ c | subject is diseased) is the true positive rate at c and TNR(c) = Pr(T < c |
subject is non–diseased) is the true negative rate at c. The shape of the ROC curve allows

to evaluate the ability of the test. For example, a ROC curve equal to a straight line joining
points (0, 0) and (1, 1) represents a diagnostic test which is the random guess. A commonly
used summary measure of the overall performance of the test is the area under ROC curve
(AUC). Under correct ordering, values of AUC range from 0.5, suggesting that the test is no
better than chance alone, to 1.0, which indicates a perfect test. See, for example, [13] and
[17] as general references.

In some medical studies, the disease status often involves three classes; see, for example,
[5], [6] and [11]. In such situations, quantities used to evaluate the accuracy of tests are the
true class fractions (TCF’s). These quantities are defined as generalizations of TPR and
TNR. For a given pair of cut points (c1, c2) such that c1 < c2, the true class fractions TCF’s
of the continuous test T at (c1, c2) are

TCF1(c1) = Pr(T < c1|class 1) = 1− Pr(T ≥ c1|class 1),

TCF2(c1, c2) = Pr(c1 ≤ T < c2|class 2)

= Pr(T ≥ c1|class 2)− Pr(T ≥ c2|class 2),

TCF3(c2) = Pr(T ≥ c2|class 3) = Pr(T ≥ c2|class 3).

The plot of (TCF1, TCF2, TCF3) at various values of the pair (c1, c2) produces the ROC
surface, a generalization of the ROC curve to the unit cube (see [11],[10],[15]). The ROC
surface is the region defined by the triangle with vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0) if the
three TCF’s are identical for every pair (c1, c2). In this case, we say that the diagnostic test is,
again, the random guess. The ROC surface of an effective test lies in the unit cube above such
region. A summary measure of the overall diagnostic accuracy of the test under consideration
is the volume under the ROC surface (VUS), which can be seen as a generalization of the
AUC. For correctly ordered categories, values of VUS vary from 1/6 to 1, ranging from bad
to perfect diagnostic tests.

The application of a diagnostic test in the clinical practice requires a preliminary rig-
orous statistical assessment of its performance. Clearly, the true ROC curve (or surface) of
the test under assessment and its AUC (or VUS) are unknown, so that the statistical eval-
uation relies on suitable inferential procedures, typically based on measurements collected
on a sample of patients. The assessment requires to ascertain the true disease status of the
patients in the sample, a verification that it is generally done by employing the most accurate
available test, the so-called gold standard (GS) test. Some times, however, the GS test is
too expensive, or too invasive, or both to be used on large samples, so that only a subset
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of patients undergoes disease verification. It happens that statistical evaluations based only
on data from subjects with verified disease status are typically biased, an effect known as
verification bias.

Correcting for verification bias is a well known issue of medical statistics. Various
methods have been developed to deal with the problem, most of which refer to the two-
class case and assume that the true disease status, if missing, is missing at random (MAR,
see [9]). We recall, among others, papers [1], [2], [3], [7], [14] and [17]. In particular, for
continuous tests, [3] proposes four types of partially parametric estimators of TPR and TNR
under the MAR assumption, i.e., full imputation (FI), mean score imputation (MSI), inverse
probability weighting (IPW) and semiparametric efficient (SPE, also known as doubly robust
DR) estimators. [1] and [2], instead, propose a fully nonparametric approach for ROC curve
and AUC estimation, respectively.

The issue of correcting for verification bias in ROC surface analysis is very scarcely
considered in the literature. To the best of our knowledge, only [5] and [16] discuss the
issue. [5] proposes a maximum likelihood approach for estimation of the ROC surface and
corresponding VUS for ordinal diagnostic tests, whereas [16] extends methods in [3] to the
estimation of ROC surfaces of continuous diagnostic tests. It is worth noting that FI, MSI,
IPW and SPE estimators in [16] are partially parametric estimators and their use requires the
specification of parametric regression models for the probability of a subject being correctly
classified with respect to the disease state, or the probability of a subject being verified (i.e.,
tested by GS), or both. As a consequence, a wrong specification of such parametric models
negatively affects the behavior of the estimators, that no longer are consistent.

To avoid problems due to model misspecification, in this paper we propose a fully
nonparametric approach to estimate TCF1, TCF2 and TCF3 in the presence of verification
bias, for continuous diagnostic tests. The proposed approach is based on a nearest-neighbor
(NN) imputation of the missing data and extends an idea developed in [1]. Consistency
and asymptotic normality of the estimators derived from the proposed method are studied.
In addition, estimation of their variance is also discussed. Usefulness of our proposal and
advantages in comparison with partially parametric estimators is assessed with the aid of
some simulation experiments. An illustrative example is also given.

The rest of paper is organized as follows. In Section 2, we review partially parametric
methods for correcting for verification bias in case of continuous tests. The proposed nonpara-
metric method for (pointwise) estimating ROC surfaces and the related asymptotic results are
presented in Section 3. In Section 4, we discuss variance-covariance estimation and in Section
5 we give some simulation results. An application is illustrated in Section 6. Finally, conclu-
sions are drawn in Section 7. Some technical details and other simulation results are available
in a Supplementary Material, downloadable at http://paduaresearch.cab.unipd.it/11221/ .

http://paduaresearch.cab.unipd.it/11221/
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2. PARTIALLY PARAMETRIC ESTIMATORS OF ROC SURFACES

Consider a study with n subjects, for whom the result of a continuous diagnostic test
T is available. For each subject, D denotes the true disease status, that can possibly be
unknown. Hereafter, we will describe the true disease status as a trinomial random vector
D = (D1, D2, D3). Dk is a binary variable that takes 1 if the subject belongs to class k,
k = 1, 2, 3 and 0 otherwise. Here, class 1, class 2 and class 3 can be referred, for example, as
“non-diseased”, “intermediate” and “diseased”, and are assumed to be ordered. Further, let V
be a binary verification status for a subject, such that V = 1 if he/she is undergoes the GS
test, and V = 0 otherwise. In practice, some information, other than the results from the test
T , can be obtained for each patient. Let A be the covariate vector for the patients, that may
be associated both with D and V . We are interested in estimating the ROC surface of T , and
hence the true class fractions TCF1(c1) = Pr(Ti < c1|D1i = 1), TCF2(c1, c2) = Pr(c1 ≤ Ti <

c2|D2i = 1) and TCF3(c2) = Pr(Ti ≥ c2|D3i = 1), for fixed constants c1, c2, with c1 < c2.

When all patients have their disease status verified by a GS, i.e., Vi = 1 for all i =
1, ..., n, for any pair of cut points (c1, c2), the true class fractions TCF1(c1), TCF2(c1, c2) and
TCF3(c2) can be easily estimated by

T̂CF1(c1) = 1−

n∑
i=1

I(Ti ≥ c1)D1i

n∑
i=1

D1i

,

T̂CF2(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)D2i

n∑
i=1

D2i

,

T̂CF3(c2) =

n∑
i=1

I(Ti ≥ c2)D3i

n∑
i=1

D3i

,

where I(·) is the indicator function. It is straightforward to show that the above estimators
are consistent. However, they cannot be employed in case of incomplete data, i.e. when
Vi = 0 for some i = 1, ..., n.

When only some subjects are selected to undergo the GS test, we need to make an
assumption about the selection mechanism. We assume that the verification status V and
the disease status D are mutually independent given the test result T and covariate A. This
means that Pr(V |T,A) = Pr(V |D, T, A) or equivalently Pr(D|T,A) = Pr(D|V, T,A). Such
assumption is a special case of the missing at random (MAR) assumption (see [9]).

Under MAR assumption, verification bias-corrected estimation of the true class frac-
tions is discussed in [16], where (partially) parametric estimators, based on four different ap-
proaches, are given. In particular, full imputation (FI) estimators of TCF1(c1), TCF2(c1, c2)
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and TCF3(c2) are defined as

T̂CF1,FI(c1) = 1−

n∑
i=1

I(Ti ≥ c1)ρ̂1i

n∑
i=1

ρ̂1i

,

T̂CF2,FI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)ρ̂2i

n∑
i=1

ρ̂2i

,(2.1)

T̂CF3,FI(c2) =

n∑
i=1

I(Ti ≥ c2)ρ̂3i

n∑
i=1

ρ̂3i

.

This method requires a parametric model (e.g. multinomial logistic regression model) to
obtain the estimates ρ̂ki of ρki = Pr(Dki = 1|Ti, Ai), using only data from verified subjects.
Differently, the mean score imputation (MSI) approach only uses the estimates ρ̂ki for the
missing values of disease status Dki. Hence, MSI estimators are

T̂CF1,MSI(c1) = 1−

n∑
i=1

I(Ti ≥ c1) [ViD1i + (1− Vi)ρ̂1i]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i]
,

T̂CF2,MSI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i]
,(2.2)

T̂CF3,MSI(c2) =

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i]
.

The inverse probability weighting (IPW) approach weights each verified subject by the inverse
of the probability that the subject is selected for verification. Thus, TCF1(c1),TCF2(c1, c2)
and TCF3(c2) are estimated by

T̂CF1,IPW(c1) = 1−

n∑
i=1

I(Ti ≥ c1)Viπ̂
−1
i D1i

n∑
i=1

Viπ̂
−1
i D1i

,

T̂CF2,IPW(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)Viπ̂
−1
i D2i

n∑
i=1

Viπ̂
−1
i D2i

,(2.3)

T̂CF3,IPW(c2) =

n∑
i=1

I(Ti ≥ c2)Viπ̂
−1
i D3i

n∑
i=1

Viπ̂
−1
i D3i

,
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where π̂i is an estimate of the conditional verification probabilities πi = Pr(Vi = 1|Ti, Ai).
Finally, the semiparametric efficient (SPE) estimators are

T̂CF1,SPE(c1) = 1−

n∑
i=1

I(Ti ≥ c1)
{

ViD1i
π̂i

− ρ̂1i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD1i

π̂i
− ρ̂1i(Vi−π̂i)

π̂i

} ,

T̂CF2,SPE(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)
{

ViD2i
π̂i

− ρ̂2i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD2i

π̂i
− ρ̂2i(Vi−π̂i)

π̂i

} ,(2.4)

T̂CF3,SPE(c2) =

n∑
i=1

I(Ti ≥ c2)
{

ViD3i
π̂i

− ρ̂3i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD3i

π̂i
− ρ̂3i(Vi−π̂i)

π̂i

} .

Estimators (2.1)-(2.4) represent an extension to the three-classes problem of the estimators
proposed in [3]. SPE estimators are also known to be doubly robust estimators, in the sense
that they are consistent if either the ρki’s or the πi’s are estimated consistently. However,
SPE estimates could fall outside the interval (0, 1). This happens because the quantities
ViDkiπ̂

−1
i − ρ̂ki(Vi − π̂i)π̂−1

i can be negative.

3. NONPARAMETRIC ESTIMATORS

3.1. The proposed method

All the verification bias-corrected estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2)
revised in the previous section belong to the class of (partially) parametric estimators,
i.e., they need regression models to estimate ρki = Pr(Dki = 1|Ti, Ai) and/or πi = Pr(Vi =
1|Ti, Ai). In what follows, we propose a fully nonparametric approach to the estimation
of TCF1(c1),TCF2(c1, c2) and TCF3(c2). Our approach is based on the K-nearest neigh-
bor (KNN) imputation method. Hereafter, we shall assume that A is a continuous random
variable.

Recall that the true disease status is a trinomial random vector D = (D1, D2, D3) such
that Dk is a n Bernoulli trials with success probability θk = Pr(Dk = 1). Note that θ1 +
θ2 + θ3 = 1. Since parameters θk are the means of the random variables Dk, we can use the
KNN estimation procedure discussed in [12] to obtain nonparametric estimates θ̂k,KNN. More
precisely, we define

θ̂k,KNN =
1
n

n∑
i=1

[ViDki + (1− Vi)ρ̂ki,K ] , K ∈ {1, 2, 3, ...},

where ρ̂ki,K =
1
K

K∑
l=1

Dki(l), and
{
(Ti(l), Ai(l), Dki(l)) : Vi(l) = 1, l = 1, ...,K

}
is a set of K ob-

served data triplets and (Ti(l), Ai(l)) denotes the l-th nearest neighbor to (Ti, Ai) among all
(T,A)’s corresponding to verified patients, i.e., patients with V = 1.
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Let βjk = Pr(T ≥ cj , Dk = 1), with j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j. Then, we can
define the KNN estimates of βjk as

β̂jk,KNN =
1
n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρ̂ki,K ] .

It follows that the KNN imputation estimators for TCFk are

T̂CF1,KNN(c1) = 1− β̂11

θ̂1
=

n∑
i=1

I(Ti < c1) [ViD1i + (1− Vi)ρ̂1i,K ]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i,K ]
,

T̂CF2,KNN(c1, c2) =
β̂12 − β̂22

θ̂2

=

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i,K ]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i,K ]
,(3.1)

T̂CF3,KNN(c2) =
β̂23

θ̂3
=

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i,K ]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i,K ]
.

Note that KNN estimators (3.1) can be seen as nonparametric versions of the MSI estimators
(2.2).

3.2. Asymptotic distribution

Let ρk(t, a) = Pr(Dk = 1|T = t, A = a) and π(t, a) = Pr(V = 1|T = t, A = a). The KNN
imputation estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2) are consistent and asymp-
totically normal. In fact, we have the following theorems.

Theorem 3.1. Assume the functions ρk(t, a) and π(t, a) are finite and first-order

differentiable. Moreover, assume that the expectation of 1/π(T,A) exists. Then, for a fixed

pair of cut points (c1, c2) such that c1 < c2, the KNN imputation estimators T̂CF1,KNN(c1),
T̂CF2,KNN(c1, c2) and T̂CF3,KNN(c2) are consistent.

Proof: Since the disease status Dk is a Bernoulli random variable, its second-order
moment, E(D2

k), is finite. According to the first assumption, we can show that the conditional
variance of Dk given T and A, Var(Dk|T = t, A = a), is equal to ρk(t, a) [1− ρk(t, a)] , which
is clearly finite. Thus, by an application of Theorem 1 in [12], the KNN imputation estimators
θ̂k,KNN are consistent.
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Now, observe that, for j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j,

β̂jk,KNN − βjk =
1
n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρki]

+
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)− βjk

=
1
n

n∑
i=1

I(Ti ≥ cj)Vi [Dki − ρki] +
1
n

n∑
i=1

[I(Ti ≥ cj)ρki − βjk]

+
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)

= Sjk +Rjk + Tjk.

Here, the quantities Rjk, Sjk and Tjk are similar to the quantities R,S and T in the proof of
Theorem 2.1 in [4] and of Theorem 1 in [12]. Thus, we have that

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→ N
(
0,E

[
π(T,A)δ2jk(T,A)

])
,

where δ2jk(T,A) is the conditional variance of I(T ≥ cj , Dk = 1) given T,A. From proof of
Theorem 1 in [12], we also get Tjk = Wjk + op(n−1/2), where

Wjk =
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)

[
1
K

K∑
l=1

(
Vi(l)Dki(l) − ρki(l)

)]
,

with E(Wjk) = 0,
√
nWjk

d→ N
(
0, σ2

Wjk

)
, and

(3.2) σ2
Wjk

=
1
K

E
[
(1− π(T,A))δ2jk(T,A)

]
+ E

[
(1− π(T,A))2δ2jk(T,A)

π(T,A)

]
.

This leads to the consistency of β̂jk,KNN, i.e, β̂jk,KNN
p→ βjk. It follows that T̂CF1,KNN(c1) =

1− β̂11

θ̂1
, T̂CF2,KNN(c1, c2) = β̂12−β̂22

θ̂2
and T̂CF3,KNN(c2) = β̂23

θ̂3
are consistent.

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold. We get

(3.3)
√
n


 T̂CF1,KNN(c1)

T̂CF2,KNN(c1, c2)
T̂CF3,KNN(c2)

−

 TCF1(c1)
TCF2(c1, c2)
TCF3(c2)


 d→ N (0,Ξ),

where Ξ is a suitable matrix.

Proof: From proof of Theorem 3.1, we have

β̂jk,KNN − βjk = Sjk +Rjk +Wjk + op(n−1/2),

√
nRjk

d→N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→N
(
0,E

[
π(T,A)δ2jk(T,A)

])
and

√
nWjk

d→
N (0, σ2

Wjk
). Moreover, arguments in the proof of Theorem 2.1 in [4] and of Theorem 1 in [12],
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allows to state that Wjk asymptotically behaves as a sample mean, Sjk, Rjk and Wjk

are jointly asymptotically normal, and
√
n(β̂jk,KNN − βjk)

d→ N (0, σ2
jk), with σ2

jk =[
βjk (1− βjk) + ω2

jk

]
and

ω2
jk =

(
1 +

1
K

)
E
[
I(T ≥ cj)ρk(T,A)(1− ρk(T,A))(1− π(T,A))

]
+ E

[
I(T ≥ cj)ρk(T,A)

(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.4)

Finally, a direct application of Theorem 1 in [12] gives that
√
n(θ̂k,KNN − θk) converges to a

normal random variable with mean 0 and variance σ2
k =

[
θk(1− θk) + ω2

k

]
, where

ω2
k =

(
1 +

1
K

)
E [ρk(T,A)(1− ρk(T,A))(1− π(T,A))]

+ E
[
ρk(T,A)(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.5)

Since
√
n
(
θ̂1,KNN, θ̂2,KNN, β̂11,KNN, β̂12,KNN, β̂22,KNN, β̂23,KNN

)> is asymptotically normally dis-
tributed with mean (θ1, θ2, β11, β12, β22, β23)> and suitable covariance matrix Ξ∗, result (3.3)
follows by applying the multivariate delta method to

h(θ̂1, θ̂2, β̂11, β̂12, β̂22, β̂23) =

(
1− β̂11

θ̂1
,
(β̂12 − β̂22)

θ̂2
,

β̂23

(1− θ̂1 − θ̂2)

)
.

Let us denote elements in the asymptotic covariance matrix Ξ as follows

Ξ =

 ξ21 ξ12 ξ13
ξ12 ξ22 ξ23
ξ13 ξ23 ξ23

 .

Recall that, from proof of Theorem 3.2, σ2
k =

[
θk(1− θk) + ω2

k

]
and σ2

jk = βjk(1− βjk) +ω2
jk,

where ω2
k and ω2

jk are given in (3.5) and (3.4), respectively. In Section S1, Supplementary
Material, we show that

ξ21 =
β2

11

θ4
1

σ2
1 +

σ2
11

θ2
1

− β11

θ3
1

(σ2
1 + σ2

11 − ζ2
11),

ξ22 = σ2
2

(β12 − β22)2

θ4
2

+
λ2

θ2
2

− β12 − β22

θ3
2

(σ2
12 − σ2

22 − ζ2
12 + ζ2

22),

ξ23 =
β2

23σ
2
3

θ4
3

+
σ2

23

θ2
3

− β23

θ3
3

(σ2
3 + σ2

23 − ζ2
23),

ξ12 =
1

θ1θ2

[
ψ2

1212 + β11(β12 − β22)
]
− β11

θ2
1θ2

[
ψ2

1212 + θ1(β12 − β22)
]

− β12 − β22

θ2
2θ1

(
β11

θ1
σ∗12 + ψ2

112 + θ2β11

)
,(3.6)

ξ13 =
1
θ3

[
−β11

θ2
1

(ψ2
213 + θ1β23) +

ψ2
213 + β11β23

θ1

]
+

β23

θ1θ2
3

×
[
β11

θ1

(
σ2

1 + σ∗12

)
− ψ2

113 − θ3β11

]
,

ξ23 =
1

θ2θ3

[
−β23(β12 − β22) +

β12 − β22

θ2
(ψ2

223 + θ2β23)
]

+
β23

θ2θ2
3

[
ψ2

1223 + θ3(β12 − β22)−
β12 − β22

θ2
(σ2

2 + σ∗12)
]
,
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where ζ2
jk = γjk(1− γjk) + η2

jk, λ
2 = (β12− β22)[1− (β12− β22)] +ω2

12−ω2
22, σ

∗
12 = −(θ1θ2 +

ψ2
12), with γjk = Pr (T < cj , Dk = 1) and

η2
jk =

K + 1
K

E
[
I(T < cj)ρk(T,A){1− ρk(T,A)}{1− π(T,A)}

]
+ E

[
I(T < cj)ρk(T,A)

{1− ρk(T,A)}{1− π(T,A)}2

π(T,A)

]
,

ψ2
12 =

(
1 +

1
K

)
E {[1− π(T,A)]ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2ρ1(T,A)ρ2(T,A)
π(T,A)

}
,

ψ2
1212 =

(
1 +

1
K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)
}

+ E
{

[1− π(T,A)]2I(c1 ≤ T < c2)
ρ1(T,A)ρ2(T,A)

π(T,A)

}
,

ψ2
112 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ2(T,A)
π(T,A)

}
,

ψ2
213 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c2)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ1(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
113 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
223 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c2)ρ2(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ2(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
1223 =

(
1 +

1
K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ2(T,A)ρ3(T,A)
}

+ E
{

[1− π(T,A)]2I(c1 ≤ T < c2)
ρ2(T,A)ρ3(T,A)

π(T,A)

}
.

Therefore, from (3.6), the elements of Ξ depend, among others, on quantities as ω2
k, ω

2
jk,

γjk, η2
jk, ψ

2
1212, ψ

2
112, ψ

2
213, ψ

2
12, ψ

2
113, ψ

2
223 and ψ2

1223. As a consequence, to obtain consistent
estimates of the asymptotic variances and covariances, we ultimately need to estimate these
quantities.
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3.3. Choice of K and of the distance measure

The proposed method is based on nearest-neighbor imputation, which requires the
choice of a value for K as well as a distance measure.

In practice, the selection of a suitable distance is typically dictated by features of the
data and possible subjective evaluations; thus, a general indication about an adequate choice
is difficult to express. In many cases, the simple Euclidean distance may be appropriate.
Other times, the researcher may wish to consider specific characteristics of data at hand, and
then make a different choice. For example, the diagnostic test result T and the auxiliary
covariate A could be heterogeneous with respect to their variances (in particular when the
variables are measured on different scales). In this case, the choice of the Mahalanobis
distance may be suitable. A further discussion on this topic in the context of medical studies
can be found in [8]. Therein, we refer the reader to results relative to numerical datasets.

As for the choice of the size of the neighborhood, [12] argue that nearest-neighbor
imputation with a small value of K typically yields negligible bias of the estimators, but a
large variance; the opposite happens with a large value of K. The authors suggest that the
choice of K ∈ {1, 2} is generally adequate when the aim is to estimate a mean. A similar
comment is also raised by [1] and [2], i.e., a small value of K, within the range 1–3, may
be a good choice to estimate ROC curves and AUC. However, the authors stress that, in
general, the choice of K may depend on the dimension of the feature space, and propose to
use cross–validation to find K. Specifically, the authors indicate that a suitable value of the
size of neighbor could be found by

K∗ = arg min
K

1
nver

‖D − ρ̂K‖1 ,

where D is a binary disease status, ‖ · ‖1 denotes L1 norm for vector and nver is the number of
verified subjects. The formula above can be generalized to our three–class case. In fact, when
the disease status has q categories (q ≥ 3), the difference between D and ρ̂K is a nver× (q− 1)
matrix. In such situation, the selection rule could be

(3.7) K∗ = arg min
K

1
nver(q − 1)

‖D − ρ̂K‖1,1 ,

where ‖A‖1,1 denotes L1,1 norm of matrix A, i.e.,

‖A‖1,1 =
q−1∑
j=1

(
nver∑
i=1

|aij |

)
.

4. VARIANCE-COVARIANCE ESTIMATION

Consider first the problem of estimating the variances of T̂CF1,KNN(c1), T̂CF2,KNN(c1, c2)
and T̂CF3,KNN(c2). In a nonparametric framework, quantities as ω2

k, ω
2
jk and η2

jk in Section
3.2 can be estimated by their empirical counterparts, using also the plug–in method. Here,
we consider an approach that uses a nearest-neighbor rule to estimate the functions ρk(T,A)
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and the propensity score π(T,A), that appear in the expressions of ω2
k, ω

2
jk and η2

jk. In par-
ticular, for the conditional probabilities of disease, we can use KNN estimates ρ̃ki = ρ̂ki,K̄ ,
where the integer K̄ must be greater than one to avoid estimates equal to zero. For the
conditional probabilities of verification, we can resort to the KNN procedure proposed in [1],
which considers the estimates

π̃i =
1
K∗

i

K∗
i∑

l=1

Vi(l),

where
{
(Ti(l), Ai(l), Vi(l)) : l = 1, ...,K∗

i

}
is a set of K∗

i observed triplets and (Ti(l), Ai(l)) de-
notes the l-th nearest neighbor to (Ti, Ai) among all (T,A)’s. When Vi equals 0, K∗

i is
set equal to the rank of the first verified nearest neighbor to the unit i, i.e., K∗

i is such
that Vi(K∗

i ) = 1 and Vi = Vi(1) = Vi(2) = ... = Vi(K∗
i −1) = 0. In case of Vi = 1, K∗

i is such that
Vi = Vi(1) = Vi(2) = ... = Vi(K∗

i −1) = 1, and Vi(K∗
i ) = 0, i.e., K∗

i is set equal to the rank of the
first non–verified nearest neighbor to the unit i. Such a procedure automatically avoids zero
values for the π̃i’s.

Then, based on the ρ̃ki’s and π̃i’s, we obtain the estimates

ω̂2
k =

K + 1
nK

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i) +
1
n

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

ω̂2
jk =

K + 1
nK

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1
n

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

η̂2
jk =

K + 1
nK

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1
n

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

from which, along with θ̂k,KNN, β̂jk,KNN and

γ̂jk,KNN =
1
n

n∑
i=1

I(Ti < cj) [ViDki + (1− Vi)ρ̂ki,K ] ,

one derives the estimates of the variances of the proposed KNN imputation estimators.

To obtain estimates of covariances, we need to estimate also the quantities ψ2
1212, ψ

2
112,

ψ2
213, ψ

2
12, ψ

2
113, ψ

2
223 and ψ2

1223. However, estimates of such quantities are similar to those
given above for ω2

k, ω
2
jk and η2

jk. For example,

ψ̂2
1212 =

K + 1
nK

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)

+
1
n

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)
2

π̃i
.

Of course, there are other possible approaches to obtain variance and covariance esti-
mates. For instance, one could resort to a standard bootstrap procedure.
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5. SIMULATION STUDY

In this section, the ability of KNN method to estimate TCF1, TCF2 and TCF3 is
evaluated by using Monte Carlo experiments. We also compare the proposed method with
partially parametric approaches, namely, FI, MSI, IPW and SPE approaches. As already
mentioned, partially parametric bias-corrected estimators of TCF1, TCF2 and TCF3 require
parametric regression models to estimate ρki = Pr(Dki = 1|Ti, Ai), or πi = Pr(Vi = 1|Ti, Ai),
or both. A wrong specification of such models may affect the estimators. Therefore, in the
simulation study we consider two scenarios: in the parametric estimation process,

(i) the disease model and the verification model are both correctly specified;

(ii) the disease model and the verification model are both misspecified.

In both scenarios, we execute 5000 Monte Carlo runs at each setting; we set three sample
sizes, i.e., 250, 500 and 1000 in scenario (i) and a sample size of 1000 in scenario (ii).

We consider KNN estimators based on the Euclidean distance, with K = 1 and K = 3.
This in light of the discussion in Section 3.4 and some results of a preliminary simulation study
presented in Section S5, Supplementary Material. In such preliminary study, we compared
the behavior of the KNN estimators for several choices of the distance measure (Euclidean,
Manhattan, Canberra and Mahalanobis) and the size of the neighborhood (K = 1, 3, 5, 10, 20).

5.1. Correctly specified parametric models

The true disease is generated by a trinomial random vector (D1, D2, D3), such thatDk is
a Bernoulli random variable with success probability θk, k = 1, 2, 3. We set θ1 = 0.4, θ2 = 0.35
and θ3 = 0.25. The continuous test result T and a covariate A are generated from the following
conditional models

T,A|Dk ∼ N2 (µk,Σ) , k = 1, 2, 3,

where µk = (2k, k)> and

Σ =

(
σ2

T |D σT,A|D
σT,A|D σ2

A|D

)
.

We consider three different values for Σ, specifically(
1.75 0.1
0.1 2.5

)
,

(
2.5 1.5
1.5 2.5

)
,

(
5.5 3
3 2.5

)
,

giving rise to a correlation between T and A equal to 0.36, 0.69 and 0.84, respectively.
The verification status V is generated by the following model

logit {Pr(V = 1|T,A)} = δ0 + δ1T + δ2A,

where we fix δ0 = 0.5, δ1 = −0.3 and δ2 = 0.75. This choice corresponds to a verification rate
of about 0.65. We consider six pairs of cut points (c1, c2), i.e., (2, 4), (2, 5), (2, 7), (4, 5), (4, 7)
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and (5, 7). Since the conditional distribution of T given Dk is the normal distribution, the
true parameters values are

TCF1(c1) = Φ
(
c1 − 2
σT |D

)
,

TCF2(c1, c2) = Φ
(
c2 − 4
σT |D

)
− Φ

(
c1 − 4
σT |D

)
,

TCF3(c2) = 1− Φ
(
c2 − 6
σT |D

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal random
variable.

In this set–up, FI, MSI, IPW and SPE estimators are computed under correct working
models for both the disease and the verification processes. Therefore, the conditional veri-
fication probabilities πi are estimated from a logistic model for V given T and A with logit
link. Under our data–generating process, the true conditional disease model is a multinomial
logistic model

Pr(Dk = 1|T,A) =
exp (τ0k + τ1kT + τ2kA)

1 + exp (τ01 + τ11T + τ21A) + exp (τ02 + τ12T + τ22A)

for suitable τ0k, τ1k, τ2k, where k = 1, 2.

Tables 1–3 show Monte Carlo means and standard deviations of the estimators for
the three true class factions. Results concern the estimators FI, MSI, IPW, SPE, and the
KNN estimator with K = 1 and K = 3 computed using the Euclidean distance. Also, the
estimated standard deviations are shown in the tables. The estimates are obtained by using
asymptotic results. To estimate standard deviations of KNN estimators, we use the KNN
procedure discussed in Section 4, with K̄ = 2. Each table refers to a chosen value for Σ. The
sample size is 250. The results for sample sizes 500 and 1000 are presented in Section S2 of
Supplementary Material.

As expected, the parametric approaches work well when both models for ρk(t, a) and
π(t, a) are correctly specified. FI and MSI estimators seem to be the most efficient ones,
whereas the IPW approach seems to provide less powerful estimators, in general. The new
proposals (1NN and 3NN estimators) yield also good results, comparable, in terms of bias
and standard deviation, to those of the parametric competitors. Moreover, estimators 1NN
and 3NN seem to achieve similar performances, and the results about estimated standard
deviations of KNN estimators seem to show the effectiveness of the procedure discussed in
Section 4.

Finally, some results of simulation experiments performed to explore the effect of a
multidimensional vector of auxiliary covariates are given in Section S3, Supplementary Mate-
rial. A vector A of dimension 3 is employed. The results in Table 7, Supplementary Material,
show that KNN estimators still behave satisfactorily.
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Table 1: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the first value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.4347 0.9347
FI 0.5005 0.4348 0.9344 0.0537 0.0484 0.0269 0.0440 0.0398 0.0500

MSI 0.5005 0.4346 0.9342 0.0550 0.0547 0.0320 0.0465 0.0475 0.0536
IPW 0.4998 0.4349 0.9341 0.0722 0.0727 0.0372 0.0688 0.0702 0.0420
SPE 0.5010 0.4346 0.9344 0.0628 0.0659 0.0364 0.0857 0.0637 0.0363
1NN 0.4989 0.4334 0.9331 0.0592 0.0665 0.0387 0.0555 0.0626 0.0382
3NN 0.4975 0.4325 0.9322 0.0567 0.0617 0.0364 0.0545 0.0608 0.0372

cut points = (2, 5)

True 0.5000 0.7099 0.7752
FI 0.5005 0.7111 0.7761 0.0537 0.0461 0.0534 0.0440 0.0400 0.0583

MSI 0.5005 0.7104 0.7756 0.0550 0.0511 0.0566 0.0465 0.0467 0.0626
IPW 0.4998 0.7108 0.7750 0.0722 0.0701 0.0663 0.0688 0.0667 0.0713
SPE 0.5010 0.7106 0.7762 0.0628 0.0619 0.0627 0.0857 0.0604 0.0611
1NN 0.4989 0.7068 0.7738 0.0592 0.0627 0.0652 0.0555 0.0591 0.0625
3NN 0.4975 0.7038 0.7714 0.0567 0.0576 0.0615 0.0545 0.0574 0.0610

cut points = (2, 7)

True 0.5000 0.9230 0.2248
FI 0.5005 0.9229 0.2240 0.0537 0.0236 0.0522 0.0440 0.0309 0.0428

MSI 0.5005 0.9231 0.2243 0.0550 0.0285 0.0531 0.0465 0.0353 0.0443
IPW 0.4998 0.9238 0.2222 0.0722 0.0374 0.0765 0.0688 0.0360 0.0728
SPE 0.5010 0.9236 0.2250 0.0628 0.0362 0.0578 0.0857 0.0348 0.0573
1NN 0.4989 0.9201 0.2233 0.0592 0.0372 0.0577 0.0555 0.0366 0.0570
3NN 0.4975 0.9177 0.2216 0.0567 0.0340 0.0558 0.0545 0.0355 0.0563

cut points = (4, 5)

True 0.9347 0.2752 0.7752
FI 0.9347 0.2763 0.7761 0.0245 0.0412 0.0534 0.0179 0.0336 0.0583

MSI 0.9348 0.2758 0.7756 0.0271 0.0471 0.0566 0.0220 0.0404 0.0626
IPW 0.9350 0.2758 0.7750 0.0421 0.0693 0.0663 0.0391 0.0651 0.0713
SPE 0.9353 0.2761 0.7762 0.0386 0.0590 0.0627 0.0377 0.0568 0.0611
1NN 0.9322 0.2734 0.7738 0.0374 0.0572 0.0652 0.0342 0.0553 0.0625
3NN 0.9303 0.2712 0.7714 0.0328 0.0526 0.0615 0.0332 0.0538 0.0610

cut points = (4, 7)

True 0.9347 0.4883 0.2248
FI 0.9347 0.4881 0.2240 0.0245 0.0541 0.0522 0.0179 0.0444 0.0428

MSI 0.9348 0.4885 0.2243 0.0271 0.0576 0.0531 0.0220 0.0495 0.0443
IPW 0.9350 0.4889 0.2222 0.0421 0.0741 0.0765 0.0391 0.0713 0.0728
SPE 0.9353 0.4890 0.2250 0.0386 0.0674 0.0578 0.0377 0.0646 0.0573
1NN 0.9322 0.4867 0.2233 0.0374 0.0680 0.0577 0.0342 0.0633 0.0570
3NN 0.9303 0.4852 0.2216 0.0328 0.0630 0.0558 0.0332 0.0615 0.0563

cut points = (5, 7)

True 0.9883 0.2132 0.2248
FI 0.9879 0.2118 0.2240 0.0075 0.0435 0.0522 0.0055 0.0336 0.0428

MSI 0.9882 0.2127 0.2243 0.0096 0.0467 0.0531 0.0084 0.0388 0.0443
IPW 0.9887 0.2130 0.2222 0.0193 0.0653 0.0765 0.0177 0.0618 0.0728
SPE 0.9888 0.2130 0.2250 0.0191 0.0571 0.0578 0.0184 0.0554 0.0573
1NN 0.9868 0.2133 0.2233 0.0177 0.0567 0.0577 0.0172 0.0532 0.0570
3NN 0.9860 0.2139 0.2216 0.0151 0.0519 0.0558 0.0168 0.0516 0.0563
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Table 2: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the second value of Σ is consid-
ered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.3970 0.8970
FI 0.4999 0.3974 0.8973 0.0503 0.0421 0.0362 0.0432 0.0352 0.0466

MSI 0.5000 0.3975 0.8971 0.0521 0.0497 0.0416 0.0461 0.0451 0.0515
IPW 0.4989 0.3990 0.8971 0.0663 0.0685 0.0534 0.0647 0.0681 0.0530
SPE 0.5004 0.3980 0.8976 0.0570 0.0619 0.0516 0.0563 0.0620 0.0493
1NN 0.4982 0.3953 0.8976 0.0587 0.0642 0.0537 0.0561 0.0618 0.0487
3NN 0.4960 0.3933 0.8970 0.0556 0.0595 0.0494 0.0548 0.0600 0.0472

cut points = (2, 5)

True 0.5000 0.6335 0.7365
FI 0.4999 0.6337 0.7395 0.0503 0.0436 0.0583 0.0432 0.0379 0.0554

MSI 0.5000 0.6330 0.7385 0.0521 0.0508 0.0613 0.0461 0.0469 0.0612
IPW 0.4989 0.6335 0.7386 0.0663 0.0676 0.0728 0.0647 0.0663 0.0745
SPE 0.5004 0.6333 0.7390 0.0570 0.0622 0.0682 0.0563 0.0612 0.0673
1NN 0.4982 0.6304 0.7400 0.0587 0.0645 0.0721 0.0561 0.0615 0.0672
3NN 0.4960 0.6283 0.7396 0.0556 0.0600 0.0670 0.0548 0.0597 0.0654

cut points = (2, 7)

True 0.5000 0.8682 0.2635
FI 0.4999 0.8676 0.2655 0.0503 0.0316 0.0560 0.0432 0.0294 0.0478

MSI 0.5000 0.8678 0.2660 0.0521 0.0374 0.0583 0.0461 0.0364 0.0512
IPW 0.4989 0.8682 0.2669 0.0663 0.0507 0.0698 0.0647 0.0484 0.0692
SPE 0.5004 0.8681 0.2663 0.0570 0.0476 0.0608 0.0563 0.0459 0.0600
1NN 0.4982 0.8672 0.2672 0.0587 0.0495 0.0629 0.0561 0.0458 0.0609
3NN 0.4960 0.8657 0.2671 0.0556 0.0452 0.0610 0.0548 0.0442 0.0601

cut points = (4, 5)

True 0.8970 0.2365 0.7365
FI 0.8980 0.2363 0.7395 0.0284 0.0367 0.0583 0.0239 0.0301 0.0554

MSI 0.8976 0.2356 0.7385 0.0318 0.0437 0.0613 0.0292 0.0386 0.0612
IPW 0.8975 0.2345 0.7386 0.0377 0.0594 0.0728 0.0373 0.0578 0.0745
SPE 0.8974 0.2353 0.7390 0.0364 0.0529 0.0682 0.0361 0.0522 0.0673
1NN 0.8958 0.2352 0.7400 0.0388 0.0540 0.0721 0.0373 0.0524 0.0672
3NN 0.8946 0.2350 0.7396 0.0362 0.0502 0.0670 0.0361 0.0510 0.0654

cut points = (4, 7)

True 0.8970 0.4711 0.2635
FI 0.8980 0.4703 0.2655 0.0284 0.0512 0.0560 0.0239 0.0413 0.0478

MSI 0.8976 0.4703 0.2660 0.0318 0.0561 0.0583 0.0292 0.0490 0.0512
IPW 0.8975 0.4692 0.2669 0.0377 0.0693 0.0698 0.0373 0.0679 0.0692
SPE 0.8974 0.4701 0.2663 0.0364 0.0638 0.0608 0.0361 0.0629 0.0600
1NN 0.8958 0.4719 0.2672 0.0388 0.0666 0.0629 0.0373 0.0630 0.0609
3NN 0.8946 0.4724 0.2671 0.0362 0.0627 0.0610 0.0361 0.0611 0.0601

cut points = (5, 7)

True 0.9711 0.2347 0.2635
FI 0.9710 0.2339 0.2655 0.0124 0.0407 0.0560 0.0104 0.0336 0.0478

MSI 0.9709 0.2348 0.2660 0.0166 0.0461 0.0583 0.0156 0.0412 0.0512
IPW 0.9709 0.2347 0.2669 0.0204 0.0568 0.0698 0.0202 0.0562 0.0692
SPE 0.9709 0.2348 0.2663 0.0202 0.0531 0.0608 0.0199 0.0524 0.0600
1NN 0.9701 0.2368 0.2672 0.0217 0.0549 0.0629 0.0213 0.0533 0.0609
3NN 0.9695 0.2375 0.2671 0.0200 0.0519 0.0610 0.0206 0.0517 0.0601
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Table 3: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the third value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.3031 0.8031
FI 0.5009 0.3031 0.8047 0.0488 0.0344 0.0495 0.0418 0.0284 0.0467

MSI 0.5005 0.3032 0.8045 0.0515 0.0448 0.0544 0.0460 0.0410 0.0542
IPW 0.5015 0.3030 0.8043 0.0624 0.0632 0.0649 0.0618 0.0620 0.0640
SPE 0.5007 0.3034 0.8043 0.0565 0.0576 0.0628 0.0564 0.0574 0.0614
1NN 0.4997 0.3021 0.8047 0.0592 0.0602 0.0682 0.0571 0.0584 0.0621
3NN 0.4984 0.3018 0.8043 0.0561 0.0565 0.0632 0.0556 0.0566 0.0601

cut points = (2, 5)

True 0.5000 0.4682 0.6651
FI 0.5009 0.4692 0.6668 0.0488 0.0384 0.0616 0.0418 0.0323 0.0536

MSI 0.5005 0.4687 0.6666 0.0515 0.0495 0.0658 0.0460 0.0455 0.0610
IPW 0.5015 0.4681 0.6670 0.0624 0.0671 0.0753 0.0618 0.0670 0.0743
SPE 0.5007 0.4690 0.6665 0.0565 0.0624 0.0721 0.0564 0.0622 0.0704
1NN 0.4997 0.4676 0.6668 0.0592 0.0661 0.0780 0.0571 0.0634 0.0717
3NN 0.4984 0.4670 0.6666 0.0561 0.0619 0.0729 0.0556 0.0614 0.0695

cut points = (2, 7)

True 0.5000 0.7027 0.3349
FI 0.5009 0.7030 0.3358 0.0488 0.0375 0.0595 0.0418 0.0318 0.0501

MSI 0.5005 0.7027 0.3360 0.0515 0.0474 0.0637 0.0460 0.0435 0.0563
IPW 0.5015 0.7026 0.3366 0.0624 0.0625 0.0730 0.0618 0.0618 0.0716
SPE 0.5007 0.7032 0.3362 0.0565 0.0591 0.0677 0.0564 0.0583 0.0657
1NN 0.4997 0.7024 0.3366 0.0592 0.0633 0.0712 0.0571 0.0592 0.0675
3NN 0.4984 0.7016 0.3362 0.0561 0.0590 0.0680 0.0556 0.0572 0.0660

cut points = (4, 5)

True 0.8031 0.1651 0.6651
FI 0.8042 0.1660 0.6668 0.0383 0.0277 0.0616 0.0323 0.0231 0.0536

MSI 0.8037 0.1655 0.6666 0.0415 0.0372 0.0658 0.0380 0.0333 0.0610
IPW 0.8039 0.1651 0.6670 0.0473 0.0503 0.0753 0.0473 0.0493 0.0743
SPE 0.8036 0.1655 0.6665 0.0456 0.0465 0.0721 0.0458 0.0455 0.0704
1NN 0.8032 0.1655 0.6668 0.0487 0.0481 0.0780 0.0472 0.0466 0.0717
3NN 0.8020 0.1651 0.6666 0.0460 0.0450 0.0729 0.0457 0.0451 0.0695

cut points = (4, 7)

True 0.8031 0.3996 0.3349
FI 0.8042 0.3999 0.3358 0.0383 0.0426 0.0595 0.0323 0.0349 0.0501

MSI 0.8037 0.3995 0.3360 0.0415 0.0522 0.0637 0.0380 0.0463 0.0563
IPW 0.8039 0.3996 0.3366 0.0473 0.0658 0.0730 0.0473 0.0645 0.0716
SPE 0.8036 0.3998 0.3362 0.0456 0.0618 0.0677 0.0458 0.0606 0.0657
1NN 0.8032 0.4003 0.3366 0.0487 0.0660 0.0712 0.0472 0.0619 0.0675
3NN 0.8020 0.3998 0.3362 0.0460 0.0617 0.0680 0.0457 0.0600 0.0660

cut points = (5, 7)

True 0.8996 0.2345 0.3349
FI 0.9003 0.2338 0.3358 0.0266 0.0351 0.0595 0.0224 0.0292 0.0501

MSI 0.9004 0.2340 0.3360 0.0308 0.0443 0.0637 0.0285 0.0398 0.0563
IPW 0.9005 0.2345 0.3366 0.0355 0.0555 0.0730 0.0353 0.0550 0.0716
SPE 0.9004 0.2342 0.3362 0.0349 0.0523 0.0677 0.0346 0.0517 0.0657
1NN 0.9000 0.2348 0.3366 0.0373 0.0556 0.0712 0.0361 0.0531 0.0675
3NN 0.8992 0.2346 0.3362 0.0349 0.0520 0.0680 0.0349 0.0515 0.0660
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5.2. Misspecified models

We start from two independent random variables Z1 ∼ N (0, 0.5) and Z2 ∼ N (0, 0.5).
The true conditional disease is generated by a trinomial random vector (D1, D2, D3) such
that

D1 =
{

1 if Z1 + Z2 ≤ h1

0 otherwise
, D2 =

{
1 if h1 < Z1 + Z2 ≤ h2

0 otherwise
,

and

D3 =
{

1 if Z1 + Z2 > h2

0 otherwise
.

Here, h1 and h2 are two thresholds. We choose h1 and h2 to make θ1 = 0.4 and θ3 = 0.25.
The continuous test results T and the covariate A are generated to be related to D through
Z1 and Z2. More precisely,

T = α(Z1 + Z2) + ε1, A = Z1 + Z2 + ε2,

where ε1 and ε2 are two independent normal random variables with mean 0 and the common
variance 0.25. We choose α = 0.5. The verification status V is simulated by the following
logistic model

logit {Pr(V = 1|T,A)} = −1.5− 0.35T − 1.5A.

Under this model, the verification rate is roughly 0.276. For the cut-point, we consider six
pairs (c1, c2), i.e., (−1.0,−0.5), (−1.0, 0.7), (−1.0, 1.3), (−0.5, 0.7), (−0.5, 1.3) and (0.7, 1.3).
Within this set–up, we determine the true values of TCF’s as follows:

TCF1(c1) =
1

Φ(h1)

∫ h1

−∞
Φ
(
c1 − αz√

0.25

)
φ(z)dz,

TCF2(c1, c2) =
1

Φ(h2)− Φ(h1)

∫ h2

h1

[
Φ
(
c2 − αz√

0.25

)
− Φ

(
c1 − αz√

0.25

)]
φ(z)dz,

TCF3(c2) = 1− 1
1− Φ(h2)

∫ ∞

h2

Φ
(
c2 − αz√

0.25

)
φ(z)dz,

where φ(·) denotes the density function of the standard normal random variable.

The aim in this scenario is to compare FI, MSI, IPW, SPE and KNN estimators when
both the estimates for π̂i and ρ̂ki in the parametric approach are inconsistent. Therefore,
ρ̂ki is obtained from a multinomial logistic regression model with D = (D1, D2, D3) as the
response and T as predictor. To estimate πi, we use a generalized linear model for V given T
and A2/3 with logit link. Clearly, the two fitted models are misspecified. The KNN estimators
are obtained by using K = 1 and K = 3 and the Euclidean distance. Again, we use K̄ = 2 in
the KNN procedure to estimate standard deviations of KNN estimators. As a large sample
size is required to guarantee that FI, MSI, IPW, SPE and KNN estimators reach a substantial
stability, we set n = 1000. For KNN estimators, results based on smaller sample sizes are
reported in Section S4, Supplementary Material.

Table 4 presents Monte Carlo means and standard deviations (across 5000 replications)
for the estimators of the true class fractions, TCF1, TCF2 and TCF3. The table also gives the
means of the estimated standard deviations (of the estimators), based on the asymptotic theory.
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Table 4: Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when both models for ρk(t, a) and π(t, a) are mis-
specified and the sample size n = 1000. “True” denotes the
true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (−1.0,−0.5)

True 0.1812 0.1070 0.9817
FI 0.1290 0.0588 0.9888 0.0153 0.0133 0.0118 0.0170 0.0126 0.0423

MSI 0.1299 0.0592 0.9895 0.0154 0.0153 0.0131 0.0171 0.0144 0.0427
IPW 0.1231 0.0576 0.9889 0.0178 0.0211 0.0208 0.0174 0.0201 0.2878
SPE 0.1407 0.0649 0.9877 0.0173 0.0216 0.0231 0.0171 0.0207 0.0125
1NN 0.1809 0.1036 0.9817 0.0224 0.0304 0.0255 0.0210 0.0257 0.0180
3NN 0.1795 0.0991 0.9814 0.0214 0.0258 0.0197 0.0207 0.0240 0.0190

cut points = (−1.0, 0.7)

True 0.1812 0.8609 0.4469
FI 0.1290 0.7399 0.5850 0.0153 0.0447 0.1002 0.0170 0.0403 0.0919

MSI 0.1299 0.7423 0.5841 0.0154 0.0453 0.1008 0.0171 0.0408 0.0926
IPW 0.1231 0.7690 0.5004 0.0178 0.0902 0.2049 0.0174 0.0824 0.1844
SPE 0.1407 0.7635 0.5350 0.0173 0.0702 0.2682 0.0171 0.0646 0.2171
1NN 0.1809 0.8452 0.4406 0.0224 0.0622 0.1114 0.0210 0.0503 0.0895
3NN 0.1795 0.8285 0.4339 0.0214 0.0521 0.0882 0.0207 0.0479 0.0929

cut points = (−1.0, 1.3)

True 0.1812 0.9732 0.1171
FI 0.1290 0.9499 0.1900 0.0153 0.0179 0.0550 0.0170 0.0203 0.0440

MSI 0.1299 0.9516 0.1902 0.0154 0.0184 0.0552 0.0171 0.0206 0.0442
IPW 0.1231 0.9645 0.1294 0.0178 0.0519 0.1795 0.0174 0.0268 0.0898
SPE 0.1407 0.9567 0.1760 0.0173 0.0425 0.3383 0.0171 0.0311 0.2127
1NN 0.1809 0.9656 0.1124 0.0224 0.0218 0.0448 0.0210 0.0272 0.0544
3NN 0.1795 0.9604 0.1086 0.0214 0.0172 0.0338 0.0207 0.0262 0.0567

cut points = (−0.5, 0.7)

True 0.4796 0.7539 0.4469
FI 0.3715 0.6811 0.5850 0.0270 0.0400 0.1002 0.0244 0.0353 0.0919

MSI 0.3723 0.6831 0.5841 0.0271 0.0409 0.1008 0.0246 0.0361 0.0926
IPW 0.3547 0.7114 0.5004 0.0325 0.0883 0.2049 0.0321 0.0815 0.1844
SPE 0.3949 0.6986 0.5350 0.0318 0.0687 0.2682 0.0312 0.0637 0.2171
1NN 0.4783 0.7416 0.4406 0.0361 0.0610 0.1114 0.0310 0.0526 0.0895
3NN 0.4756 0.7294 0.4339 0.0341 0.0499 0.0882 0.0303 0.0500 0.0929

cut points = (−0.5, 1.3)

True 0.4796 0.8661 0.1171
FI 0.3715 0.8910 0.1900 0.0270 0.0202 0.0550 0.0244 0.0218 0.0440

MSI 0.3723 0.8924 0.1902 0.0271 0.0211 0.0552 0.0246 0.0226 0.0442
IPW 0.3547 0.9068 0.1294 0.0325 0.0535 0.1795 0.0321 0.0384 0.0898
SPE 0.3949 0.8918 0.1760 0.0318 0.0451 0.3383 0.0312 0.0368 0.2127
1NN 0.4783 0.8620 0.1124 0.0361 0.0349 0.0448 0.0310 0.0373 0.0544
3NN 0.4756 0.8613 0.1086 0.0341 0.0285 0.0338 0.0303 0.0355 0.0567

cut points = (0.7, 1.3)

True 0.9836 0.1122 0.1171
FI 0.9618 0.2099 0.1900 0.0122 0.0317 0.0550 0.0114 0.0263 0.0440

MSI 0.9613 0.2093 0.1902 0.0125 0.0320 0.0552 0.0116 0.0265 0.0442
IPW 0.9548 0.1955 0.1294 0.0339 0.0831 0.1795 0.0278 0.0764 0.0898
SPE 0.9582 0.1932 0.1760 0.0332 0.0618 0.3383 0.0290 0.0577 0.2127
1NN 0.9821 0.1204 0.1124 0.0144 0.0494 0.0448 0.0109 0.0449 0.0544
3NN 0.9804 0.1319 0.1086 0.0138 0.0404 0.0338 0.0108 0.0429 0.0567
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The table clearly shows limitations of the (partially) parametric approaches in case of mis-
specified models for Pr(Dk = 1|T,A) and Pr(V = 1|T,A). More precisely, in term of bias,
the FI, MSI, IPW and SPE approaches perform almost always poorly, with high distortion
in almost all cases. As we mentioned in Section 2, the SPE estimators could fall outside
the interval (0, 1). In our simulations, in the worst case, the estimator T̂CF3,SPE(−1.0,−0.5)
gives rise to 20% of the values greater than 1. Moreover, the Monte Carlo standard deviations
shown in the table indicate that the SPE approach might yield unstable estimates. Finally,
the misspecification also has a clear effect on the estimated standard deviations of the esti-
mators. On the other side, the estimators 1NN and 3NN seem to perform well in terms of
both bias and standard deviation. In fact, KNN estimators yield estimated values that are
near to the true values. In addition, we observe that the estimator 3NN has larger bias than
1NN, but with slightly less variance.

6. AN ILLUSTRATION

We use data on epithelial ovarian cancer (EOC) extracted from the Pre-PLCO Phase
II Dataset from the SPORE/Early Detection Network/Prostate, Lung, Colon and Ovarian
Cancer Ovarian Validation Study. 1

As in [16], we consider the following three classes of EOC, i.e., benign disease, early
stage (I and II) and late stage (III and IV) cancer, and 12 of the 59 available biomarkers, i.e.
CA125, CA153, CA72–4, Kallikrein 6 (KLK6), HE4, Chitinase (YKL40) and immune costim-
ulatory protein–B7H4 (DD–0110), Insulin–like growth factor 2 (IGF2), Soluble mesothelin-
related protein (SMRP), Spondin–2 (DD–P108), Decoy Receptor 3 (DcR3; DD–C248) and
Macrophage inhibitory cytokine 1 (DD–X065). In addition, age of patients is also considered.

After cleaning for missing data, we are left 134 patients with benign disease, 67 early
stage samples and 77 late stage samples. As a preliminary step of our analysis we ranked
the 12 markers according to value of VUS, estimated on the complete data. The observed
ordering, consistent with medical knowledge, led us to select CA125 as the test T to be used
to illustrate our method.

To mimic verification bias, a subset of the complete dataset is constructed using the
test T and a vector A = (A1, A2) of two covariates, namely the marker CA153 (A1) and
age (A2). Reasons for using CA153 as a covariate come from the medical literature that
suggests that the concomitant measurement of CA153 with CA125 could be advantageous in
the pre-operative discrimination of benign and malignant ovarian tumors. In this subset, T
and A are known for all samples (patients), but the true status (benign, early stage or late
stage) is available only for some samples, that we select according to the following mechanism.
We select all samples having a value for T , A1 and A2 above their respective medians, i.e.
0.87, 0.30 and 45; as for the others, we apply the following selection process

Pr(V = 1|T,A) = 0.05 + 0.35I(T > 0.87) + 0.25I(A1 > 0.30) + 0.35I(A2 > 45),

leading to a marginal probability of selection equal to 0.634.
1The study protocol and data are publicly available at the address:

https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation .

https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation
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Since the test T and the covariates A1, A2 are heterogeneous with respect to their
variances, the Mahalanobis distance is used for KNN estimators. Based on the discussion
in Section 3.4, we use the selection rule (3.7) to find the size K of the neighborhood. This
leads to the choice of K = 1 for our data. In addition, we also employ K = 3 for the sake
of comparison with 1NN result, and produce the estimate of the ROC surface based on full
data (Full estimate), displayed in Figure 1.

Figure 1: Estimated ROC surface for CA125, based on full data.

Figure 2 shows the 1NN and 3NN estimated ROC surfaces for the test T (CA125).

(a) 1NN (b) 3NN

Figure 2: Bias–corrected estimated ROC surfaces for CA125, based on incomplete data.

In this figure, we also give the 95% ellipsoidal confidence regions (green color) for (TCF1,

TCF2,TCF3) at cut points (−0.56, 2.31). These regions are built using the asymptotic nor-
mality of the estimators. Compared with the Full estimate, KNN bias-corrected method
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proposed in the paper appears to well behave, yielding reasonable estimates of the ROC sur-
face with incomplete data. A closer inspection to the behavior at some chosen points can be
taken by looking at Table 5.

Table 5: Comparison between Full and KNN estimates of the true class
fractions for CA125, for some values of c1 and c2.

Full 1NN 3NN

(c1, c2) TCF1 TCF2 TCF3 TCF1 TCF2 TCF3 TCF1 TCF2 TCF3

(0, 0.5) 0.500 0.104 0.922 0.516 0.171 0.938 0.497 0.170 0.933
(0, 1) 0.500 0.254 0.883 0.516 0.271 0.838 0.497 0.275 0.858

(0, 2.6) 0.500 0.567 0.688 0.516 0.557 0.663 0.497 0.550 0.667
(0, 3) 0.500 0.612 0.623 0.516 0.614 0.612 0.497 0.605 0.617
(0, 4) 0.500 0.731 0.325 0.516 0.714 0.312 0.497 0.710 0.317

(0.4, 0.5) 0.694 0.030 0.922 0.688 0.043 0.938 0.670 0.040 0.933
(0.4, 1) 0.694 0.179 0.883 0.688 0.143 0.838 0.670 0.145 0.858

(0.4, 2.6) 0.694 0.493 0.688 0.688 0.429 0.663 0.670 0.420 0.667
(0.4, 3) 0.694 0.537 0.623 0.688 0.486 0.612 0.670 0.475 0.617
(0.4, 4) 0.694 0.657 0.325 0.688 0.586 0.312 0.670 0.580 0.317

(1, 2.6) 0.813 0.313 0.688 0.789 0.286 0.663 0.787 0.275 0.667
(1, 3) 0.813 0.358 0.623 0.789 0.343 0.612 0.787 0.330 0.617
(1, 4) 0.813 0.478 0.325 0.789 0.443 0.312 0.787 0.435 0.317

(2, 2.6) 0.955 0.149 0.688 0.945 0.143 0.663 0.942 0.130 0.667
(2, 3) 0.955 0.194 0.623 0.945 0.200 0.612 0.942 0.185 0.617
(2, 4) 0.955 0.313 0.325 0.945 0.300 0.312 0.942 0.290 0.317

(3.5, 4) 0.993 0.045 0.325 0.992 0.043 0.312 0.990 0.045 0.317

7. CONCLUSIONS

A general suitable strategy for reducing the effects of model misspecification in sta-
tistical inference is to resort on fully nonparametric methods. This paper proposes a non-
parametric estimator of the ROC surface of a continuous diagnostic test. The estimator is
based on nearest-neighbor imputation and works under MAR assumption. It represents an
alternative to (partially) parametric estimators discussed in [16]. Our simulation results and
the presented illustrative example show usefulness of the proposal.

Generally speaking, performances of our estimator depend on various intrinsic factors,
and on some user-defined choices. Among intrinsic factors, we mention the unknown values
of parameters TCF1, TCF2 and TCF3 to be estimated, the rate of verified units in the
sample at hand, and the nature of the unknown processes generating the observations. In
particular, extreme values of the true class fractions, i.e. values close to 0 or 1, are difficult
to estimate in an accurate way, especially when sample data are characterized by a low
verification rate, which limits the amount of information available. On the basis of discussions
in Section 3.3 (and in the last part of this section) and of simulation results in Section 5 (and
in Supplementary Material), we offer some recommendations for tackling the user-defined
choices. More precisely, we recommend: (a) to use the Euclidean distance, as the first choice,
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and the Mahalanobis distance in case of heterogeneity among variables; (b) to keep small,
from 1 to 3, say, the number of neighbors K. Our simulation results show satisfactory
performances of the KNN estimator of the ROC surface when about 70 verified observations
are present in the sample.

As in [1], a simple extension of our estimator, that could be used when categorical
auxiliary variables are also available, is possible. Without loss of generality, we suppose that
a single factor C, with m levels, is observed together with T and A. We also assume that
C may be associated with both D and V . In this case, the sample can be divided into m

strata, i.e. m groups of units sharing the same level of C. Then, for example, if the MAR
assumption and first-order differentiability of the functions ρk(t, a) and π(t, a) hold in each
stratum, a consistent and asymptotically normally distributed estimator of TCF1 is

T̂CF
S

1,KNN(c1) =
1
n

m∑
j=1

njT̂CF
cond

1j,KNN(c1),

where nj denotes the size of the j-th stratum and the quantity T̂CF
cond

1j,KNN(c1) denotes the
KNN estimator of the conditional TCF1, i.e., the KNN estimator in (3.1) obtained from the
patients in the j-th stratum. Of course, we must assume that, for every j, ratios nj/n have
finite and nonzero limits as n goes to infinity.

In our approach, the KNN method is used to estimate the probabilities ρk(t, a) for non–
verified subjects. A referee pointed out that KNN estimators might suffer from boundary
effects, i.e., increases in bias when estimates are computed near the boundary of the support
of the covariates. Indeed, near the boundaries, any smoothing method is less accurate, as
fewer observations can be averaged, so that bias of estimators can be affected. In contrast to
other nonparametric regression methods, however, KNN estimators always involve the same
number of observations. Boundary effects, therefore, act on neighborhoods’ sizes more than
on the number of observations involved in the local fitting. For this reason, a prominent source
of bias of KNN estimators is the shape at the boundary of the functions to be estimated.
Steeper functions are more likely associated to a larger bias, an aspect pointing to small
values of K as good choices to limit boundary effects. Moreover, it is worth noting that in
the domain of our interest, i.e., evaluation of diagnostic tests, is hard to deal with test and
covariate values close to the boundary of their support. More likely, one faces sparsity of data
in some regions of the features space and, therefore, one has to deal with situations in which,
for a fixed sample size, information brought by data on those regions is structurally low. This
aspect also impacts on the neighborhoods’ sizes, and probably amounts to a primary source
of bias in our application contest. This remark is supported by results of some simulations
that we carried out to evaluate possible bias due to boundary effects and/or sparsity of data
(see Section S5, Supplementary Material). Overall, simulation results seem to show that the
bias, when present, is driven more by sparsity of data issues than by boundary effects and
that KNN estimators have their poorest performances on largest values of K, regardless of
the position of points in the domain.
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