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A Chaikin-based variant of Lane-Riesenfeld algorithm
and its non-tensor product extension

Lucia Romania,∗

aDipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy

Abstract

In this work we present a parameter-dependent Refine-and-Smooth (RS ) subdivision algorithm where the refine stage
R consists in the application of a perturbation of Chaikin’s/Doo-Sabin’s vertex split, while each smoothing stage S
performs averages of adjacent vertices like in the Lane-Riesenfeld algorithm [19]. This constructive approach provides
a unifying framework for univariate/bivariate primal and dual subdivision schemes with tension parameter and allows
us to show that several existing subdivision algorithms, proposed in the literature via isolated constructions, can be
obtained as specific instances of the proposed strategy. Moreover, this novel approach provides an intuitive theoretical
tool for the derivation of new non-tensor product subdivision schemes with bivariate cubic precision, which appear as
the natural extension of the univariate family presented in [18].

Keywords: Subdivision; Refine-and-Smooth; Tension parameter; Non-tensor product; Bivariate cubic precision

1. Introduction

The beginning of subdivision for surface modelling goes back to 1978 when the generalizations for bi-quadratic
and bi-cubic B-spline surfaces to quadrilateral meshes of arbitrary topology were published simultaneously by Cat-
mull and Clark [2] and by Doo and Sabin [12]. Then, in 1980 Lane and Riesenfeld [19] provided a unified framework
to represent for all n ∈ N, degree-(n+1) uniform B-spline curves and their tensor product extensions via a subdivision
process where each subdivision step consists in applying one refine stage (aimed at doubling the number of given
vertices) followed by n smoothing stages which modify the vertices position but not their number. In formulas, each
subdivision step consists in the application of the subdivision operator S nR, where R and S denote the refine and
smoothing operators, respectively. All processes of this kind are named Refine-and-Smooth (RS ) algorithms, and the
one proposed by Lane and Riesenfeld is certainly the simplest example that can be found in the literature since the
refine operator R is given by the subdivision scheme for linear splines, while each smoothing operator S averages
adjacent vertices in the current data set. Twenty years later, Stam [23] on the one side and Zorin and Schröder [24]
on the other side, proposed independently a generalization of the Lane-Riesenfeld algorithm to arbitrary meshes, and
showed that Doo-Sabin and Catmull-Clark schemes are nothing but the first two members of a family of surface
subdivision schemes (also known in the literature as the family of midpoint subdivision schemes), which generalizes
uniform tensor product B-spline surfaces of any bi-degree to quadrilateral meshes of arbitrary topology. The n-th
member (n ∈ N) of such a family is shown to produce a Cn continuous limit surface, except at extraordinary vertices
(i.e., vertices of valence other than 4) where the continuity is always C1. Exploiting Reif’s criterion in [22], Zorin
and Schröder were able to show the C1-smoothness of the limit surfaces at extraordinary vertices for the first 8 family
members. A general analysis tool to prove C1 smoothness for any n ≥ 1 appeared only with the publication of [21].
Since the family of midpoint subdivision schemes relies on a smoothing operator S performing midpoint averages
(exactly as the standard Lane-Riesenfeld algorithm), it is made of an alternation of dual/primal members, correspond-
ing to the application of an odd/even number n of smoothing stages, respectively. Indeed, when an odd number of
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smoothing stages is applied, the resulting subdivision scheme is featured by rules performing a vertex split; in con-
trast, the univariate/bivariate scheme obtained by the operator S nR with n even, recursively subdivides a given mesh
via an edge/face split operation.
The goal of this work is to present a new constructive approach to design univariate and bivariate families of alternating
primal/dual subdivision schemes with tension parameter in a unified framework. The approach is based on a RS
subdivision algorithm where the refine stage consists in the application of a perturbation of the standard subdivision
scheme for quadratic splines, while each smoothing stage usually performs averages of adjacent vertices. Therefore, in
the univariate context, the refine stage is based on a parameter-dependent variant of Chaikin’s corner cutting algorithm
[3], whereas in the bivariate context on an analogous modification of Doo-Sabin’s algorithm for polyhedral meshes
with arbitrary faces [12]. Considering n smoothing stages as in Lane-Riesenfeld algorithm, this novel RS algorithm
allows us to derive families of curve and surface subdivision schemes whose structure and properties are very similar
to those of the B-spline schemes. In fact, the members of each family are also enumerated by n, and higher values
of n give schemes with wider masks and support, higher continuity and higher degree of polynomial generation.
The main difference is that, when suitably setting the tension parameter, all schemes from the new family are able
to reproduce cubic polynomials, whereas the B-spline schemes have only linear precision. Moreover, exactly as B-
spline schemes, the new schemes can be conveniently implemented using repeated local operations that only involve
direct neighbors of the newly inserted or updated vertices. In the univariate context, this new construction provides
a whole family of tension-controlled curve subdivision schemes, whose first two members coincide with the well-
known interpolatory 4-point and dual 4-point schemes with tension parameter, presented via isolated constructions
in [14] and [16], respectively. In addition, the new family contains the family of subdivision schemes with cubic
precision proposed in [18], as a special subfamily. The generalization of the tension-controlled univariate family to
quadrilateral meshes of arbitrary topology yields a family of non-tensor product schemes with tension parameter. If
considering a specific setting of the free parameter, we show that the new family results in a subfamily of non-tensor
product subdivision schemes reproducing bivariate cubic polynomials. The first member of the resulting subfamily
(corresponding to n = 1 smoothing stages) coincides with the interpolatory subdivision scheme for quadrilateral
meshes with arbitrary topology already presented in [10], but not yet analyzed. Differently, the second family member
obtained by means of n = 2 smoothing stages, is a completely new dual approximating subdivision scheme for
quadrilateral meshes of arbitrary topology, whose properties are deeply investigated.

The content of this paper is organized in six sections. Section 2 provides the background on d-variate subdivision
schemes and reminds some existing results related to the Refine-and-Smooth mechanism. In Section 3 a new family
of Refine-and-Smooth (RS ) univariate subdivision schemes with tension parameter is introduced and its main prop-
erties are analyzed. Section 4 extends the idea presented in Section 3 to design a new family of tension-controlled
RS subdivision schemes for quadrilateral meshes of arbitrary topology. In Sections 5 and 6 special attention is ad-
dressed to the description and the analysis of the first two family members resulting from the proposed construction.
Conclusions are drawn in Section 7.

2. Background

We start this section by reminding some known facts about scalar d-variate subdivision schemes.

2.1. Basic notions

A binary scalar d-variate (d = 1, 2) subdivision scheme is univocally identified by a scalar finitely supported sequence
a = {ai ∈ R, i ∈ Zd} called mask. For all subdivision levels k ∈ N0 = N ∪ {0}, the operator Sa mapping the data
sequence P(k) = {p(k)

i ∈ R3, i ∈ Zd} into the data sequence P(k+1) = SaP(k) with

(SaP(k))i =
∑
j∈Zd

ai−2j p(k)
j , i ∈ Zd

is called subdivision operator. The iterative algorithm based on the repeated application of the subdivision operator
Sa starting from the initial data P(0) is termed subdivision scheme and is also denoted by Sa. If convergent, this
iterative algorithm produces in the limit a parametric curve/surface with each component being a d-variate function
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which is the limit of Sa applied to the corresponding component of the initial data. Therefore, in order to study
the convergence of a scalar d-variate subdivision scheme Sa it is sufficient to focus on the functional setting and
construct the function F (k) : Rd → R as the piecewise linear interpolant to the k-level data {(2−ki, f (k)

i ) : i ∈ Zd}, with
F(k) = { f (k)

i ∈ R : i ∈ Zd} the set of values obtained as F(k) = Sk
aF(0), and F(0) the sequence of initial values made

of the selected component of the data sequence P(0). The subdivision scheme is defined to be convergent if for any
bounded initial data F(0) the sequence {F (k)(x) : k ∈ N0} is a Cauchy sequence in the norm sup{F (k)(x) : x ∈ Rd},
and the limit is non-zero for the data δ = {δ0 = 1, δi = 0 for i , 0}. The limit S∞a δ is called the basic limit function
(BLF for short) of the subdivision scheme. A well-established tool for analyzing the smoothness properties of the
basic limit function (and hence of the associated subdivision scheme) is given by the so-called mask symbol [15], i.e.
the Laurent polynomial

a(z) =
∑
i∈Zd

ai zi, z = (z1, ..., zd) ∈ (C\{0})d

constructed via the mask entries. Denoting by Ξ = {0, 1}d the set of representatives of Zd/2Zd containing 0 =
(0, 0, ..., 0), the 2d submasks and the associated subsymbols aξ(z) are respectively defined by {aξ+2i, i ∈ Zd} and

aξ(z) =
∑
i∈Zd

aξ+2i zi with ξ ∈ Ξ.

Therefore the mask symbol a(z) can be written in terms of its subsymbols as a(z) =
∑
ξ∈Ξ zξaξ(z2).

Remark 1. Note that, for simplicity of notation, in the univariate case (d = 1), the two subsymbols a0(z) and a1(z)
are usually labeled as aeven(z) and aodd(z), respectively.

For the work done in this paper, it is also important to remind that, when studying the convergence properties of a
subdivision scheme, the choice of the parameter values t(k)

i to which the k-level values f (k)
i ∈ R, i ∈ Zd, are associated

to construct the piecewise linear interpolant F (k)(x), is totally irrelevant and thus usually set to t(k)
i =

i
2k . Differently,

when checking the capability of a subdivision scheme to reproduce polynomials, the choice of the parameter values
t(k)
i becomes crucial and the standard setting t(k)

i =
i

2k , i ∈ Zd, is not always optimal. Thus, a more general expression
depending on a shift parameter τ ∈ Rd as follows

t(k)
i =

i + τ
2k , i ∈ Zd, k ∈ N0 (2.1)

has been proven to be more convenient [4, 6, 7, 8]. The correct choice of τ is given by

τ =
(Dϵ1 a(1), ...,Dϵd a(1))

2d , (2.2)

where ϵ j denotes the j-th unit vector of Rd (see [4, Proposition 2.3]). For instance, in the univariate case (d = 1)

we have τ = D(1)a(1)
2 (see [7, Theorem 3.1]) and in the bivariate case (d = 2), τ ≡ (τ1, τ2) = (D(1,0)a(1,1),D(0,1)a(1,1))

4 . If
(2.2) provides τ = (0, ..., 0) then t(k)

i =
i

2k and the parametrization is called either standard or primal. If (2.2) provides

τ = ( 1
2 , ...,

1
2 ) then t(k)

i =
i+( 1

2 ,...,
1
2 )

2k and the parametrization is called dual (see [4, 6, 7, 8]).

Let Πd denote the space of all d-variate polynomials with real coefficients and Πd
g the subspace of polynomials of

total degree at most g. The following results summarize the algebraic conditions that the subdivision symbol of a
convergent and non-singular d-variate subdivision scheme Sa (i.e., such that S∞a F(0) = 0 if and only if F(0) = 0)
has to satisfy in order to generate or reproduce Πd

g. We remind that the generation degree of a subdivision scheme is
the maximum degree of polynomials that can potentially be generated by the scheme, provided that the initial data
is chosen correctly. Obviously, it is not less than the reproduction degree. For the precise definition of polynomial
generation and reproduction the reader can consult [4, 7, 13].

Proposition 2.1. [7, 8] A univariate subdivision scheme Sa
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(i) generates Π1
g if and only if

a(1) = 2, a(−1) = 0 and D( j)a(−1) = 0, j = 1, ..., g;

(ii) reproduces Π1
g with respect to the parametrization {t(k)

i =
i+τ
2k }i∈Z with τ = D(1)a(1)

2 , if and only if it generates Π1
g

and

D( j)a(1) = 2
j−1∏
h=0

(τ − h), j = 1, ..., g.

The following result recently appeared as a natural generalization of the previous proposition.

Proposition 2.2. [4, 6] A d-variate (d ≥ 1) subdivision scheme Sa

(i) generates Πd
g if and only if

a(1) = 2d, a(u) = 0 for u ∈ U := {e−iπξ, ξ ∈ Ξ}\{1}

and

Dja(u) = 0 for u ∈ U, j = ( j1, ..., jd) ∈ Nd
0 with j1 + ... + jd ≤ g;

(ii) reproduces Πd
g with respect to the parametrization {t(k)

i =
i+τ
2k }i∈Zd with τ in (2.2), if and only if it generates Πd

g
and

Dja(1) = 2d
d∏
ℓ=1

jℓ−1∏
hℓ=0

(τℓ − hℓ) for j = ( j1, ..., jd) ∈ Nd
0 with j1 + ... + jd ≤ g.

2.2. Refine-and-Smooth (RS ) subdivision schemes

Refine-and-Smooth algorithms define a subdivision process where each subdivision step Sa : P(k−1) → P(k) first
refines the current data and then applies n smoothing stages to the refined data, as shown in the following algorithm.

Algorithm 1.

A Refine-and-Smooth (RS ) algorithm

Input: P(0) initial data;
k∗ ∈ N number of subdivision steps;
n ∈ N number of smoothing stages;

For k = 1, . . . , k∗

• Set Pk−1,0:= P(k−1)

• Apply the refine stage (R): Pk−1,1 = R Pk−1,0

• Apply n smoothing stages (S ): Pk−1,ℓ+1 = S Pk−1,ℓ, ℓ = 1, . . . , n
• Set P(k):= Pk−1,n+1

Output: P(k∗) k∗-th level subdivided data
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Since the subdivision step Sa : P(k−1) → P(k) can be represented in terms of Laurent polynomials via

p(k)(z) = a(z) p(k−1)(z2)

where
p(k−1)(z) =

∑
i∈Zd

p(k−1)
i zi, z ∈ (C\{0})d,

it turns out that the symbol associated to a RS algorithm featured by n smoothing stages is given by

an(z) = (s(z))n r(z), n ∈ N.

The most famous family of RS algorithms is the one proposed by Lane and Riesenfeld [19], generating in the limit
degree-(n + 1) uniform B-splines. This proposal is featured by a refine and a smoothing stage both based on local
linear interpolation. In fact, in the univariate case (d = 1), r(z) = (1+z)2

2 is the symbol of the interpolating 2-point
scheme (i.e., the linear B-spline scheme) and s(z) = rodd(z) = 1+z

2 coincides with its odd subsymbol, so that

an(z) =
(1 + z)n+2

2n+1 , n ∈ N. (2.3)

The authors of [1] called the family of Lane-Riesenfeld’s schemes L-schemes, to stress the connection of the refine
and smoothing stage definition with linear interpolation. In that paper they also generalized Lane-Riesenfeld’s idea by
using a higher-order local interpolation operator, both for the refine and the successive smoothing stages. In particular,
they studied the case where the local cubic operator that stems from Dubuc-Deslauriers interpolating 4-point scheme
[11] is used, and called the new family of schemes C-schemes. The n-th member of this family has symbol

an(z) =
(1 + z)n+4

2n+3

(
− z2

8
+

5
4

z − 1
8

)n (
− z2

2
+ 2z − 1

2

)
, n ∈ N (2.4)

being

r(z) = − 1
16

z6 +
9
16

z4 + z3 +
9
16

z2 − 1
16
=

(1 + z)4

23

(
− z2

2
+ 2z − 1

2

)
the symbol of the Dubuc-Deslauriers interpolating 4-point scheme and

s(z) = rodd(z) = − 1
16

z3 +
9
16

z2 +
9

16
z − 1

16
=

1 + z
2

(
− z2

8
+

5
4

z − 1
8

)
the odd subsymbol of r(z).

Remark 2. When n = 1 the symbols of L-schemes and C-schemes can be written as a1(z) = rodd(z) r(z), with r(z) the
symbol of a primal (interpolatory) scheme and rodd(z) the symbol associated to its odd rule. Applying the results in [9]
there follows that the subdivision scheme having symbol a1(z) is nothing but the de Rham transform of the subdivision
scheme with symbol r(z), and thus it turns out to be a dual approximating scheme.

In the next section we investigate another variant of Lane-Riesenfeld algorithm that, compared with the one proposed
in [1], modifies only the refine stage. In fact, we consider the family of RS algorithms where, like in the well-known
Lane-Riesenfeld algorithm, the smoothing stage S consists in performing averages of adjacent vertices, but, differently
from the Lane-Riesenfeld algorithm, we apply a refine stage R based on a perturbation of Chaikin’s corner cutting
algorithm [3]. This modification produces a new family of alternating primal/dual univariate subdivision algorithms
and their bivariate analogs for quadrilateral meshes of arbitrary topology, both characterized by the presence of a
tension parameter w that allows for considerable variations of shape.
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3. A new family of RS curve subdivision schemes with tension parameter

We denote by Pk−1,0 = {pk−1,0
i }i∈Z the control points obtained from the (k − 1)-th subdivision step and, using the

well-known formulas

p̃k−1,1
2i = 1

4 pk−1,0
i−1 +

3
4 pk−1,0

i ,

p̃k−1,1
2i+1 = 3

4 pk−1,0
i + 1

4 pk−1,0
i+1 ,

(3.1)

we compute the Chaikin’s points p̃k−1,1
2i and p̃k−1,1

2i+1 defined around the vertex pk−1,0
i . Then, we define the positions of

the even and odd vertices of Pk−1,1 (the polygon resulting from the application of the refine operator R to the data
P(k−1) ≡ Pk−1,0) by

pk−1,1
2i = pk−1,0

i + 2w dk−1,1
2i ,

pk−1,1
2i+1 = pk−1,0

i + 2w dk−1,1
2i+1 ,

with w ∈ R, (3.2)

i.e., we correct the position of the vertex pk−1,0
i by the vectors 2w dk−1,1

2i and 2w dk−1,1
2i+1 , respectively (see Figure 1),

where

dk−1,1
2i = 2(n + 3)ṽk−1,1

2i + (n − 1)ek−1,0
i−1,i , dk−1,1

2i+1 = 2(n + 3)ṽk−1,1
2i+1 + (n − 1)ek−1,0

i,i+1 , with n ∈ N, (3.3)

and
ṽk−1,1

2i = p̃k−1,1
2i − p̃k−1,1

2i +p̃k−1,1
2i+1

2 , ek−1,0
i−1,i = pk−1,0

i − pk−1,0
i−1 +pk−1,0

i
2 ,

ṽk−1,1
2i+1 = p̃k−1,1

2i+1 −
p̃k−1,1

2i +p̃k−1,1
2i+1

2 , ek−1,0
i,i+1 = pk−1,0

i − pk−1,0
i +pk−1,0

i+1
2 .

(3.4)

p
k−1,0
i−1

p
k−1,0
i

p
k−1,0
i+1

p̃
k−1,1
2i

p̃
k−1,1
2i+1

e
k−1,0
i−1,i

e
k−1,0
i,i+1

v
k−1,1
2i

v
k−1,1
2i+1

d
k−1,1
2i

d
k−1,1
2i+1

Figure 1: Geometric interpretation of the refine stage Rn,w in (3.2) in the case n = 2 and w = 1
18 . The red bullets denote the vertices pk−1,1

2i and
pk−1,1

2i+1 . For the sake of clarity the scaled vectors vk−1,1
2i+ j = 2(n + 3)ṽk−1,1

2i+ j , j = 0, 1 are displayed in the picture. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Combining all above formulas (3.1)-(3.4), the vertices pk−1,1
2i and pk−1,1

2i+1 are practically computed by affine combina-
tions of the vertices pk−1,0

i−1 , pk−1,0
i , pk−1,0

i+1 of the form

pk−1,1
2i = w

2 (5 − n) pk−1,0
i−1 +

(
1 + w(n − 1)

)
pk−1,0

i − w
2 (n + 3) pk−1,0

i+1 ,

pk−1,1
2i+1 = −w

2 (n + 3) pk−1,0
i−1 +

(
1 + w(n − 1)

)
pk−1,0

i + w
2 (5 − n) pk−1,0

i+1 .
(3.5)

There follows that the refine stage mapping the polygon Pk−1,0 into Pk−1,1 is indeed dependent on the free parameter
w ∈ R as well as on the number n of smoothing stages S that will be successively performed, as described in Algorithm
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1, in order to obtain the k-level points P(k). Thus, from now on we will denote it by Rn,w.
Figure 2 aims at showing that, independently of the choice of n, the parameter w acts as a tension parameter since the
smaller is the value of w, the closer the points pk−1,1

2i ,pk−1,1
2i+1 will stay to pk−1,0

i , as described by equation (3.2).

(a) (b) (c)

Figure 2: The role played by the parameters w and n in the refine stage Rn,w when applied to the polygon Pk−1,0 (blue polyline): (a) n = 1; (b)
n = 2; (c) n = 3. Red crosses represent the Chaikin’s points p̃k−1,1

2i , p̃k−1,1
2i+1 . Magenta, red and green bullets show the pair of points pk−1,1

2i ,pk−1,1
2i+1 in

the case w = 1
32 , w = 1

16 and w = 3
32 , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Differently, the dependence of the refine operator on the number n of smoothing stages is introduced in order to modify
the directions dk−1,1

2i , dk−1,1
2i+1 along which the vertices pk−1,1

2i , pk−1,1
2i+1 will be respectively inserted. To understand the role

played by the parameter n in the refine stage, let us observe that, in view of (3.4) and (3.1), we can write

ṽk−1,1
2i =

1
2

(
p̃k−1,1

2i − p̃k−1,1
2i+1

)
=

1
8

(
pk−1,0

i−1 − pk−1,0
i+1

)
,

and then vk−1,1
2i = 2(n + 3)ṽk−1,1

2i is parallel to pk−1,0
i−1 − pk−1,0

i+1 . Thus, the height hn of the parallelogram formed by vk−1,1
2i

and (n − 1)ek−1,0
i−1,i (see Figure 3) can be computed as

hn = (n − 1)∥ek−1,0
i−1,i ∥2 sin θ

with ∥ek−1,0
i−1,i ∥2 =

1
2 ∥p

k−1,0
i −pk−1,0

i−1 ∥2 and θ = ∠(pk−1,0
i , pk−1,0

i−1 , pk−1,0
i+1 ). There follows that the greater the value of n ∈ N,

the longer the segment hn. This means that the greater the value of n, the more distant the point pk−1,1
2i will be placed

from the line passing through pk−1,0
i that is parallel to pk−1,0

i−1 − pk−1,0
i+1 (see Figures 2 and 3). Since the same reasoning

applies also to the parallelogram formed by vk−1,1
2i+1 and (n − 1)ek−1,0

i,i+1 , the point pk−1,1
2i+1 will have analogous behaviour.

Remark 3. Note that, when n = 1, h1 = 0 and hence the points pk−1,1
2i and pk−1,1

2i+1 are placed exactly on the line passing
through pk−1,0

i that is parallel to pk−1,0
i−1 − pk−1,0

i+1 (see Figure 2).

Exploiting the formalism of Laurent polynomials as discussed in Section 2.2, we have that, as a straightforward
consequence of (3.5), the symbol associated to the refine stage Rn,w reads as

rn,w(z) =
1 + z

2

(
− w(n + 3)z4 + 8wz3 + 2(w(n − 5) + 1)z2 + 8wz − w(n + 3)

)
.

Assuming that the smoothing stage S simply performs averages of adjacent vertices as in the Lane-Riesenfeld algo-
rithm, i.e. has symbol s(z) = 1+z

2 , then the new family of RS subdivision schemes, hereinafter denoted by {San,w }n∈N,
can be conveniently described by the two-parameter symbol

an,w(z) =
(
s(z)

)n
rn,w(z) =

(
1 + z

2

)n+1 (
− w(n + 3)z4 + 8wz3 + 2(w(n − 5) + 1)z2 + 8wz − w(n + 3)

)
. (3.6)
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Figure 3: Geometric interpretation of the role played by the parameter n in the refine stage Rn,w when applied to the polygon Pk−1,0.

Here, n ∈ N is the parameter that accounts for smoothness by means of the number of applied smoothing stages, and
is thus used to identify the family member, whereas w ∈ R is the tension parameter that can be used to modify the
shape of the limit curves generated by each family member.

Remark 4. When w = 0 the symbol an,w(z) in (3.6) reduces to the Laurent polynomial of a degree-n B-spline.

Moreover, it is worthwhile to notice that the first two members of the new family in (3.6) are two well-known subdi-
vision schemes with tension parameter, proposed in the literature via isolated constructions. More precisely:

• when n = 1, (3.6) yields the symbol of the interpolatory 4-point scheme with tension parameter proposed in
[14], having mask a1,w =

( − w, 0,w + 1
2 , 1,w +

1
2 , 0,−w

)
;

• when n = 2, (3.6) yields the symbol of the dual approximating 4-point scheme with tension parameter proposed
in [16], whose mask is a2,w =

1
8
( − 5w,−7w, 3w + 2, 9w + 6, 9w + 6, 3w + 2,−7w,−5w

)
.

3.1. Properties of the new family of RS curve subdivision schemes with tension parameter
We start by studying the smoothness properties of the family of subdivision schemes {San,w }n∈N. The next proposition
follows the reasoning in [1, Section 3.3] to derive a lower bound on the Hölder regularity. Its proof is thus omitted
since it trivially consists in the application of a known general result to the symbol we deal with.

Proposition 3.1. The subdivision scheme San,w having symbol an,w(z) =
(

1+z
2

)n+1
bn,w(z) with bn,w(z) = −w(n + 3)z4 +

8wz3 + 2
(
(n − 5)w + 1

)
z2 + 8wz − w(n + 3), generates limit curves with Hölder regularity

H ≥ n + 1 −
log2(∥bℓn,w∥∞)

ℓ
, for any ℓ ≥ 1 (3.7)

where bℓn,w denotes the mask associated to the symbol bℓn,w(z) = bn,w(z) bn,w(z2) ... bn,w(z2ℓ−1
), ℓ ≥ 1.

As a consequence of Proposition 3.1 we have that, for a fixed value of n ∈ N, if w is chosen such that ∥bℓn,w∥∞ < 2ℓ

then log2(∥bℓn,w∥∞) < ℓ andH ≥ n+1− log2(∥bℓn,w∥∞)
ℓ

> n, that is San,w generates Cn limit curves. Note also that, choosing
w such that ∥bℓn,w∥∞ < 2ℓ is equivalent to check the contractivity of the symbol 1

2 bn,w(z), as required by the sufficient
condition for Cn smoothness given in [15, Corollary 4.14]. This reasoning provides the following result.
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Proposition 3.2. If we choose

• 0 < w < 1
2

(√
n+4

(n+3)2 − 1
n+3

)
when 1 ≤ n ≤ 2;

• 1
32

(
n−5
n−1 −

√
−39+54n+n2

(n−1)2

)
< w < n−13

16(n−1) when 6 ≤ n ≤ 13;

• 1
32

(
n−5
n−1 −

√
−39+54n+n2

(n−1)2

)
< w < 0 when n ≥ 14;

then the subdivision scheme San,w is Cn.

Proof: The claim follows by checking for which values of w ∈ R the condition ∥b2
n,w∥∞ < 4 is satisfied.

Remark 5. As it is well-known, increasing the value of ℓ in (3.7) we can enlarge the range of w that yields Cn

continuity of San,w . Additionally, we can also identify the parameter ranges for the subdivision schemes San,w with
n = 3, 4, 5, which do not appear in Proposition 3.2 since for them the condition ∥b2

n,w∥∞ < 4 is never satisfied.

In the following proposition we show how, using the so-called Rioul’s exact method presented in [17], for all n ∈ N
and w in a certain range, we can compute the exact Hölder regularity of the scheme San,w .

Proposition 3.3. If w ∈
(
− n+3

2(n+1)2 ,
1
16

)
, then for all n ∈ N the Hölder regularity of the scheme San,w is

H = n − log2(ρ) with ρ =
1
2

(
1 + w(n − 1) +

√
(n2 − 34n + 33)w2 + 2(n − 9)w + 1

)
.

Proof: We rewrite the symbol an,w(z) in (3.6) in the form

an,w(z) =
(1 + z)n+1

2n mn,w(z) with mn,w(z) =
4∑

j=0

mn,w
j z j = −w

2
(n+3)z4+4wz3+

(
(n−5)w+1

)
z2+4wz−w

2
(n+3). (3.8)

In view of the symbol factorization in (3.8), it follows that the Fourier transform of mn,w = (mn,w
0 , mn,w

1 , mn,w
2 , mn,w

3 , mn,w
4 )

given by

Mn,w(ζ) = mn,w(e−iζ) =
∑

j

mn,w
j e−i jζ = 1 + 2w(n − 1) + 8w cos(ζ) − 2w(n + 3) cos2(ζ), ζ ∈ R

is both periodic with period 2π and real. Since when w ∈
(
− n+3

2(n+1)2 ,
1
16

)
we have Mn,w(ζ) > 0 for all ζ ∈ [−π, π], then

in view of [17, Theorem 2] the lower bound on the Hölder regularity is optimal. This means that for such values of w
the Hölder regularity of the scheme San,w is exactlyH = n − log2(ρ) with ρ denoting the spectral radius of the matrix

M =
(
1 + w(n − 5) −w(n + 3)

4w 4w

)
.

Being the eigenvalues ofM given by 1
2

(
1 + w(n − 1) ±

√
(n2 − 34n + 33)w2 + 2(n − 9)w + 1

)
, it easily follows that for

all n ∈ N and w ∈
(
− n+3

2(n+1)2 ,
1
16

)
the spectral radius ofM is ρ = 1

2

(
1 + w(n − 1) +

√
(n2 − 34n + 33)w2 + 2(n − 9)w + 1

)
.

This concludes the proof.

Corollary 3.4. Collecting the results in Proposition 3.2 and Proposition 3.3 we obtain that, if the free parameter
w ∈ R is chosen in the following way

• 0 < w < 1
2

(√
n+4

(n+3)2 − 1
n+3

)
when n = 1, 2;
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• − n+3
2(n+1)2 < w < n−5

8(n−1) ∪ 0 < w < 1
16 when 3 ≤ n ≤ 5;

• 1
32

(
n−5
n−1 −

√
−39+54n+n2

(n−1)2

)
< w < 0 ∪ n−5

8(n−1) < w < 1
16 when 6 ≤ n ≤ 9;

• 1
32

(
n−5
n−1 −

√
−39+54n+n2

(n−1)2

)
< w < 0 when n ≥ 10;

then the subdivision scheme San,w is Cn.

Proof: We start by observing that the following conditions on w

• 0 < w < 1
16 when n = 1, 2;

• − n+3
2(n+1)2 < w < n−5

8(n−1) ∪ 0 < w < 1
16 when 3 ≤ n ≤ 5;

• − n+3
2(n+1)2 < w < 0 ∪ n−5

8(n−1) < w < 1
16 when 6 ≤ n ≤ 9;

• − n+3
2(n+1)2 < w < 0 when n ≥ 10;

satisfy at the same time the two inequalities − n+3
2(n+1)2 < w < 1

16 and ρ < 1, i.e. log2(ρ) < 0, so that, in view of
Proposition 3.3, the Hölder regularity of the scheme San,w is H = n − log2(ρ) > n. Thus the claim is obtained
considering the union of the ranges provided above and in Proposition 3.2.

Remark 6. When w = 1
16 the symbol of the family of schemes {San,w }n∈N in (3.6) becomes

an, 1
16

(z) =
(1 + z)n+3

2n+2

(
−n + 3

8
z2 +

n + 7
4

z − n + 3
8

)
, n ∈ N (3.9)

which means that our family contains the Hormann-Sabin’s family in [18] as a special subfamily. In view of the results
in [18], the Hölder regularity of the subfamily {San, 1

16
}n∈N is given by

H = n + 3 − log2

(
n + 7

2

)
. (3.10)

Without surprise we can observe that the first two family members of the subfamily {San, 1
16
}n∈N coincide with the

Dubuc-Deslauriers interpolatory 4-point scheme in [11] having symbol a1, 1
16

(z) =
(

1+z
2

)4 (
− 1

2 z2 + 2z − 1
2

)
, and the

approximating dual 4-point scheme in [16] whose symbol is a2, 1
16

(z) = 2
(

1+z
2

)5 (
− 5

8 z2 + 9
4 z − 5

8

)
.

We continue by studying the properties of polynomial generation and polynomial reproduction satisfied by the new
family of subdivision schemes {San,w }n∈N, whose n-th member is described by the symbol in (3.6). After introducing
the notation Ωn = {w ∈ R | San,w is convergent} and observing that, in view of Remark 6, w = 1

16 ∈ Ωn for all n ∈ N,
we can formulate the following propositions.

Proposition 3.5. The subdivision scheme San,w generates Π1
n for all n ∈ N and w ∈ Ωn. Moreover, if w = 1

16 , San,w

generates Π1
n+2 for all n ∈ N.

Proof: Since conditions

an,w(1) = 2, an,w(−1) = 0, D(ℓ)an,w(−1) = 0, ℓ = 1, ..., n (3.11)

are verified by an,w(z) independently of the value of w, then, in view of Proposition 2.1-case (i) generation of degree-n
polynomials is obtained for all w ∈ Ωn. Moreover, since when setting w = 1

16 two more (1 + z) terms can be factored
out from rn,w(z), it easily follows that also D(n+1)an,w(−1) = D(n+2)an,w(−1) = 0, which concludes the proof.
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Proposition 3.6. If applying the parameter shift τ = n+5
2 , the subdivision scheme San,w reproduces Π1

1 with respect to
the parametrization in (2.1), for all n ∈ N and w ∈ Ωn. Moreover, if w = 1

16 , San,w reproduces Π1
3 for all n ∈ N.

Proof: Since the condition D(1)an,w(1) = n + 5 is verified by the symbol an,w(z) independently of the value of w,
together with all conditions in (3.11), then in view of Proposition 2.1-case (ii) reproduction of linear polynomials is
obtained for all w ∈ Ωn with the parameter shift τ = n+5

2 . We conclude by observing that when w = 1
16 the following

two more conditions
D(2)an,w(z)|z=1 = 2τ(τ − 1), D(3)an,w(z)|z=1 = 2τ(τ − 1)(τ − 2)

are satisfied for all n ∈ N, and thus reproduction of Π1
3 is obtained.
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Figure 4: Comparison between the exact Hölder regularity of L-schemes in (2.3), C-schemes in (2.4) and HS-schemes in (3.9) for n = 1, ..., 10.

RS -schemes with
n ≤ 8 smoothing stages

BLF
Support Width

Integer Smoothness
(C s)

Generation
degree

Reproduction
degree

L-schemes
(deg-(n + 1) B-splines) n + 2 s = n n + 1 1

San,w n + 5 s = n n 1
San, 1

16
(HS-schemes) n + 5 s = n n + 2 3

C-schemes 3n + 6 s =


n + 1 if n ≤ 2

n if n = 3, 4, 5
< n otherwise

n + 3 3

Table 1: Comparison between properties of L-schemes, C-schemes, HS-schemes and the new family of schemes San,w with tension parameter.

It is obvious to emphasize that the Refine-and-Smooth algorithms which turn out to be more interesting in applications
are the ones obtained with a not too high number of smoothing stages since the greater is n the larger becomes the
support width of the basic limit function (BLF) and consequently the computational cost for generating curves. With
this observation in mind it is worthwhile to notice that, when n ≤ 8, by slightly increasing the support width of L-
schemes, the new family of schemes allows us to introduce a tension parameter that can be used to control the shape
of the limit curve without affecting the integer smoothness and the degree of polynomial reproduction. As we have
already seen, when the free parameter w is set to 1

16 , the resulting subfamily of schemes {San, 1
16
}n∈N (also denoted by

HS-schemes) allows us to increase the degree of polynomial reproduction of the parameter-dependent family up to 3,
without influencing the class of integer smoothness. In fact, in view of (3.10), for n ≤ 8 HS-schemes have the same
integer smoothness as L-schemes and at least the same integer smoothness as C-schemes whenever n > 2 (see Figure
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4). Moreover, if applying the same number of smoothing stages, HS-schemes allow, on the one hand, to increase the
degree of polynomial generation and reproduction of L-schemes in exchange of a slight increase of the support width
and, on the other hand, to achieve the same degree of polynomial reproduction of C-schemes by means of a basic limit
function with a remarkably smaller support width (see Table 1). Thus, in summary, we can conclude that HS-schemes
are a good compromise between L-schemes and C-schemes and may be conveniently taken as building blocks for the
derivation of bivariate subdivision schemes generating surfaces of arbitrary topology.

4. A new family of bivariate RS subdivision schemes for quadrilateral meshes

The generalization of Chaikin’s scheme to polyhedral meshes is given by the so-called Doo-Sabin’s subdivision
scheme [2]. If the face to be subdivided is quadrilateral and its vertices are labeled as pk−1,0

j , j = 0, ..., 3, then the
subdivision rules are simply given by the tensor product of Chaikin’s rules and read as

p̃k−1,1
i =

3∑
j=0

νi, j pk−1,0
j , i = 0, ..., 3 with νi, j =


9

16 , if j = i ;
3

16 , if | j − i| = 1 ;
1

16 , otherwise

(4.1)

see Figure 5(b). More generally, if the face is delimited by N vertices pk−1,0
j , j = 0, ...,N − 1, then the subdivision

rules are a natural extension of the ones in (4.1), given by the following affine combination

p̃k−1,1
i =

N−1∑
j=0

νi, j pk−1,0
j , i = 0, ...,N − 1 with νi, j =

 N+5
4N , if j = i ;

3+2 cos(2π(i− j)/N)
4N , otherwise

(4.2)

(see Figure 5 (a)-(c) for different values of N).

p̃
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2p̃

k−1,1
0

p
k−1,0
2p

k−1,0
0

p̃
k−1,1
1

p
k−1,0
1

(a) N = 3

p
k−1,0
0 p

k−1,0
3

p̃
k−1,1
0

p̃
k−1,1
1

p
k−1,0
2p

k−1,0
1

p̃
k−1,1
2

p̃
k−1,1
3

(b) N = 4

p
k−1,0
0 p

k−1,0
4

p̃
k−1,1
4

p̃
k−1,1
0

p
k−1,0
3

p̃
k−1,1
1

p
k−1,0
1

p̃
k−1,1
2

p̃
k−1,1
3

p
k−1,0
2

(c) N = 5

Figure 5: One step of Doo-Sabin’s subdivision scheme for arbitrary faces with N vertices.

We continue by observing that, in the univariate case, we can conveniently combine the even and odd rules (3.2)
describing the refine stage Rn,w : Pk−1,0 7→ Pk−1,1, in the following single equation

pk−1,1
ℓ
= pk−1,0

∗ + 2w dk−1,1
ℓ

ℓ = 1, 2 (4.3)

with
dk−1,1
ℓ
= 2(n + 3) ṽk−1,1

ℓ
+ (n − 1) ek−1,0

ℓ,∗ (4.4)

and
ṽk−1,1
ℓ
= p̃k−1,1

ℓ
− Gk−1,1

∗ , ek−1,0
ℓ,∗ = pk−1,0

∗ − G̃k−1,0
ℓ
, (4.5)

where p̃k−1,1
ℓ

, ℓ = 1, 2 denote the Chaikin’s points in the neighborhood of pk−1,0
∗ , Gk−1,1

∗ =
p̃k−1,1

1 +p̃k−1,1
2

2 denotes their

midpoint and G̃k−1,0
ℓ

=
pk−1,0
ℓ
+pk−1,0
∗

2 the midpoint of the (k − 1)-level points defining p̃k−1,1
ℓ

, as illustrated in Figure 6
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e
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Figure 6: Geometric interpretation of the refine stage Rn,w in the case n = 2: univariate case (left); bivariate case (right). The red crosses denote the
Chaikin’s/Doo-Sabin’s points p̃k−1,1

ℓ
whereas the red bullets the new vertices pk−1,1

ℓ
. For the sake of clarity the scaled vectors vk−1,1

ℓ
= 2(n+3)ṽk−1,1

ℓ
are displayed in the picture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

(left). This reformulation provides a straightforward extension of the refine stage to the bivariate case. In fact, in the
case of quadrilateral meshes, if we consider a vertex pk−1,0

∗ of arbitrary valence N ≥ 3, the refine stage consists in
deriving the new vertices p̃k−1,1

ℓ
, ℓ = 1, ...,N that the Doo-Sabin’s scheme defines around it via the rules in (4.1), and

in using them to compute the new points pk−1,1
ℓ

, ℓ = 1, ...,N via the following formula

pk−1,1
ℓ
= pk−1,0

∗ + 2w dk−1,1
ℓ

ℓ = 1, ...,N (4.6)

with dk−1,1
ℓ

and ṽk−1,1
ℓ

, ek−1,0
ℓ,∗ as in equations (4.4) and (4.5), respectively. In this case Gk−1,1

∗ =
∑N
ℓ=1 p̃k−1,1

ℓ

N denotes the

centroid of the Doo-Sabin’s points in the neighborhood of pk−1,0
∗ , whereas G̃k−1,0

ℓ
=

pk−1,0
ℓ,1 +pk−1,0

ℓ,2 +pk−1,0
ℓ,3 +pk−1,0

∗
4 the centroid

of the (k − 1)-level points defining p̃k−1,1
ℓ

, as illustrated in Figure 6 (right).
The described computations provide an explicit definition of the vertex pk−1,1

ℓ
via the following affine combination of

the first ring of vertices placed around the extraordinary vertex pk−1,0
∗

pk−1,1
ℓ

=
(
1 +

3
2

w(n − 1)
)

pk−1,0
∗ +

w
4N

((
(n + 11)N − 3(n + 3)

) (
pk−1,0
ℓ,1 + pk−1,0

ℓ,3
)
+

(
(5 − n)N − (n + 3)

)
pk−1,0
ℓ,2

)
− w(n + 3)

4N

N∑
j=1; j,ℓ

3
(
pk−1,0

j,1 + pk−1,0
j,3

)
+ pk−1,0

j,2 , ℓ = 1, . . . ,N. (4.7)

Like in the univariate case, in order to design a new family of tension-controlled RS subdivision algorithms for
polyhedral meshes of arbitrary topology, we need to perform one refine stage Rn,w : Pk−1,0 7→ Pk−1,1 as described
in (4.7), followed by n smoothing stages S : Pk−1,r 7→ Pk−1,r+1, r = 1, ..., n, each one consisting in computing local
averages of the vertices of Pk−1,r, as illustrated in Figure 7 for the cases r = 1 and r = 2. More precisely, Figure 7
shows that, for any given mesh of vertices Pk−1,0, we first apply the refine operator R yielding a new mesh with vertices
Pk−1,1. Then, the application of one smoothing stage S to the resulting mesh consists in connecting the centers of all
its adjacent faces, and all successive n − 1 applications of the smoothing operator proceed analogously.

It is easy to see that, like in the univariate case, the family {San,w }n∈N obtained from this construction includes an
alternation of primal and dual schemes depending on the odd/even-ness of n. In the following two sections we focus
our attention on the first two family members: Sa1,w and Sa2,w .

5. A new non-tensor product interpolatory subdivision scheme with tension parameter

Applying the Refine-and-Smooth strategy illustrated in Section 4 with one smoothing stage only, we obtain an in-
terpolatory subdivision scheme for quadrilateral meshes that, following the univariate notation, we denote by Sa1,w .
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Figure 7: Illustration of the result of one smoothing stage (left) and two smoothing stages (right) in the neighborhood of an extraordinary vertex.
Red bullets: vertices of Pk−1,1 obtained from the refine stage Rn,w; blue bullets: vertices of Pk−1,2, computed as the centroids of the marked
faces having vertices in Pk−1,1; green bullets: vertices of Pk−1,3, computed as the centroids of the marked faces having vertices in Pk−1,2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

When setting w = 1
16 , the resulting interpolatory subdivision scheme coincides with the recent proposal in [10], but

since any investigations on the distinctive features of the scheme have been conducted yet, in the remaining part of
this section we study the main properties satisfied by the bivariate interpolatory subdivision scheme Sa1,w , both in the
regular case (N = 4) and in the neighborhood of extraordinary vertices of valence N , 4.

5.1. Properties of the regular case (N = 4)

When N = 4, the bivariate subdivision scheme Sa1,w has mask

a1,w =



− w
16 −w

8 − 7w
16 − 3w

4 − 7w
16 −w

8 − w
16

−w
8 0 w

8 0 w
8 0 −w

8

− 7w
16

w
8

15w
16 +

1
4

3w
4 +

1
2

15w
16 +

1
4

w
8 − 7w

16

− 3w
4 0 3w

4 +
1
2 1 3w

4 +
1
2 0 − 3w

4

− 7w
16

w
8

15w
16 +

1
4

3w
4 +

1
2

15w
16 +

1
4

w
8 − 7w

16

−w
8 0 w

8 0 w
8 0 −w

8

− w
16 −w

8 − 7w
16 − 3w

4 − 7w
16 −w

8 − w
16


, (5.1)

and symbol

a1,w(z1, z2) = 1
16 z−3

1 z−3
2 (1 + z1)2 (1 + z2)2

(
− wz4

1z4
2 − 6wz4

1z2
2 − wz4

1 + 4wz3
1z3

2 + 8wz3
1z2

2 + 4wz3
1z2 − 6wz2

1z4
2

+ 8wz2
1z3

2 − 4(5w − 1)z2
1z2

2 + 8wz2
1z2 − 6wz2

1 + 4wz1z3
2 + 8wz1z2

2 + 4wz1z2 − wz4
2 − 6wz2

2 − w
)
.

(5.2)
Since a1,w(z1, z2) = a1,w(z2, z1), thenSa1,w is a scheme with symmetry relative to the two axes, namely it is characterized
by topologically equivalent rules for the computation of vertices corresponding to edges. However, it is a non-tensor
product scheme since a1,w(z1, z2) cannot be written as the product of a polynomial in z1 with a polynomial in z2.
Nevertheless, taking into account that a1,w(z1, 1) coincides with the interpolatory 4-point scheme in [14], the bivariate
scheme with symbol a1,w(z1, z2) can be interpreted as a non-tensor product extension of the interpolatory 4-point
scheme with tension parameter.

Remark 7. Note that a1,0(z1, z2) = 1
4 z−1

1 z−1
2 (1 + z1)2 (1 + z2)2, namely when w = 0 the interpolatory subdivision

scheme Sa1,w reduces to the tensor product of the linear B-spline scheme which is still interpolatory, but only C0 (see
Figure 8(a)).
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Figure 8: Basic limit function of Sa1,w for different values of w.

The following proposition determines the parameter set Ω1 = {w ∈ R | Sa1,w is convergent} and shows that for w in a
certain subset of Ω1, the scheme Sa1,w produces C1 limit surfaces when starting from any regular quadrilateral mesh.
As usually done in the regular case N = 4, we analyze the smoothness of the limit surface via the formalism of Laurent
polynomials. Since the symbol of the scheme Sa1,w contains the factors (1 + z1)2 and (1 + z2)2, with the aid of [15,
Theorem 4.30] the following result can be easily proved.

Proposition 5.1. If w ∈ (− 2
9 ,

2
15 ) the subdivision scheme Sa1,w converges to a continuous surface when starting from

any regular quadrilateral mesh. Moreover, if w ∈ (0, 2
15 ), the produced limit surface is C1 continuous.

Proof: Let us start by writing a1,w(z1, z2) =
(

1+z1
2

)2 (
1+z2

2

)2
b1,w(z1, z2) with

b1,w(z1, z2) = −wz4
1z4

2 − 6wz4
1z2

2 − wz4
1 + 4wz3

1z3
2 + 8wz3

1z2
2 + 4wz3

1z2 − 6wz2
1z4

2 + 8wz2
1z3

2

− 4(5w − 1)z2
1z2

2 + 8wz2
1z2 − 6wz2

1 + 4wz1z3
2 + 8wz1z2

2 + 4wz1z2 − wz4
2 − 6wz2

2 − w.

Since a1,w(z1, z2) = a1,w(z2, z1), in view of [15, Theorem 4.30] we can determine the range of the parameter w
which guarantees the convergence of the scheme Sa1,w by checking the contractivity of the scheme with symbol
1
2

(
1+z1

2

)2 (
1+z2

2

)
b1,w(z1, z2). This yields w ∈ (− 2

9 ,
2

15 ).
In the same spirit, the result on the C1 continuity follows by checking the contractivity of the schemes with symbols
1
2

(
1+z1

2

)2
b1,w(z1, z2) and 1

2

(
1+z1

2

) (
1+z2

2

)
b1,w(z1, z2).

In Figure 9 we illustrate the effect of the tension parameter w for values in the above determined range (0, 2
15 ): the

smaller is the value of w, the closer the limit surface stays to the initial mesh. This is clearly due to the fact that when
w→ 0 the limit surface tends to the bi-linear B-spline surface (see Remark 7 as well as Figure 8).

(a) initial mesh (b) w = 1
32 (c) w = 1

20 (d) w = 1
16

Figure 9: Surfaces obtained by applying 6 iterations of the interpolatory subdivision scheme Sa1,w to the regular mesh in (a) for different values of
w ∈ (0, 2

15 ).

As a consequence of Proposition 5.1 we have that Ω1 = {w ∈ R | Sa1,w is convergent} =
(
− 2

9 ,
2
15

)
. In the following two

propositions we investigate the capability of the subdivision scheme Sa1,w , with w ∈ Ω1, of generating and reproducing
polynomials.
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Proposition 5.2. The subdivision scheme Sa1,w generates Π2
1 for all w ∈ Ω1 and generates Π2

3 for w = 1
16 .

The detailed proof of Proposition 5.2 is given in Appendix A.

Remark 8. It is interesting to observe that, since the subdivision scheme Sa1, 1
16

generates Π2
3, then, in view of the

results in [5], the symbol z3
1z3

2 a1, 1
16

(z1, z2) can be decomposed as

z3
1z3

2 a1, 1
16

(z1, z2) = 4
∑

Bi, j,k∈I4

Li, j,k σi, j,k(z1, z2) Bi, j,k(z1, z2),

where

• Bi, j,k(z1, z2) =
(

1+z1
2

)i (
1+z2

2

) j (
1+z1z2

2

)k
, i, j, k ∈ N0 are normalized mask symbols of three-directional box-splines;

• I4 = {B4,4,0, B4,0,4, B0,4,4, B3,3,1, B3,1,3, B1,3,3, B2,2,2} is the set of generators of I4 = {p ∈ Π2 : (D( j1, j2) p)(u) =
0 for u ∈ {(1,−1), (−1, 1), (−1,−1)}, j1 + j2 < 4};

• σi, j,k(z1, z2) are Laurent polynomials normalized by σi, j,k(1, 1) = 1;

• Li, j,k are real coefficients that fulfill the condition
∑

Li, j,k = 1.

More precisely, a representation of the symbol z3
1z3

2 a1, 1
16

(z1, z2) in terms of three-directional box-splines from the list
I4 is given by

z3
1z3

2 a1, 1
16

(z1, z2) = 4
(
L4,4,0 σ4,4,0(z1, z2) B4,4,0(z1, z2) + L3,3,1 σ3,3,1(z1, z2) B3,3,1(z1, z2) + L2,2,2 σ2,2,2(z1, z2) B2,2,2(z1, z2)

)
,

with
L4,4,0 =

θ1(θ2 + 16)
(θ1 + θ2)(θ2 − 8)

, L3,3,1 =
θ2(θ2 + 16)

(θ1 + θ2)(θ2 − 8)
, L2,2,2 = −

24
θ2 − 8

,

and the normalized symbols

σ4,4,0(z1, z2) = 1
4θ1(θ2+16)

(
(θ1 + θ2)

(
θ3 − 6(θ2 − 16)

)
z2

1z2
2 − (θ1 + θ2)(θ2 − 8)(z2

1 + z2
2)

+ 2(6θ1θ2 − 24θ1 − 40θ2 + 5θ22)z1z2 − 32θ2 − 2θ22 − θ1θ3 − θ2θ3
)
,

σ3,3,1(z1, z2) = 1
4θ2(θ2+16)

(
− (θ1 + θ2)

(
θ3 − 6(θ2 − 16)

)
z2

1z2
2

+ (θ1 + θ2)(θ2 − 8)(z2
1 + z2

2) + (16θ1 + 32θ2 − 5θ1θ2 − θ1θ3 − θ2θ3 − 4θ22)z1z2

+ (48θ1 + 64θ2 − 3θ1θ2 + θ1θ3 + θ2θ3 − 2θ22)(z1 + z2) + θ2(3θ1 + 4θ2 + 16)
)
,

σ2,2,2(z1, z2) = 1
384

(
(7θ2 − θ3 − 104)z2

1z2
2 + (θ2 + θ3 + 40)(z2

1 + z2
2) − 16(θ2 − 14)z1z2 + 96(z1 + z2) + (7θ2 − θ3 − 8)

)
,

expressed in terms of the arbitrary coefficients θ1, θ2, θ3 ∈ R. Since the generators B4,4,0(z1, z2), B3,3,1(z1, z2) and
B2,2,2(z1, z2) are all multiples of B2,2,0(z1, z2), there follows that the symbol z3

1z3
2 a1, 1

16
(z1, z2) contains the factor (1 +

z1)2(1 + z2)2, as can be noticed from equation (5.2).

Proposition 5.3. If applying the parameter shift (τ1, τ2) = (0, 0), the subdivision scheme Sa1,w reproduces Π2
1 for all

w ∈ Ω1 and reproduces Π2
3 for w = 1

16 , with respect to the primal parametrization in (2.1).

The reader may find the full proof of Proposition 5.3 in Appendix A.

5.2. Properties of the irregular case

In case the initial mesh contains some extraordinary vertices (i.e., vertices of valence N , 4), after a sufficiently high
number of subdivision steps they become isolated in an otherwise regular tiling of the surface. Therefore, following the
approach in [22], convergence and smoothness of the subdivision scheme can be obtained by analyzing the properties
of the local subdivision matrix A defined in the neighborhood of the extraordinary vertex. Since in the regular case
the parameter setting w = 1

16 provides the scheme with the best behaviour, we conclude by analyzing the smoothness
properties of the subdivision scheme Sa1, 1

16
when applied to an arbitrary quadrilateral mesh with extraordinary vertices

of valence N < 10, as this is the case that actually occurs in most of the applications.
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Proposition 5.4. The subdivision scheme Sa1, 1
16

produces C1 limit surfaces when applied to arbitrary quadrilateral
meshes with extraordinary vertices of valence N < 10.

Proof: Recalling the result in Proposition 5.1, we already know that the subdivision scheme Sa1, 1
16

produces C1 limit
surfaces in regular regions. Then, in order to study the behaviour of the scheme in the neighborhood of extraordinary
vertices of valence 3 ≤ N ≤ 9, we use the approach described in [22] which consists in analyzing the eigenstructure
of the local subdivision matrix A defined in the neighborhood of the extraordinary vertex. As it is well-known, the
local subdivision matrix A is a block circulant matrix of the form A = circ(A(N)

0 , A
(N)
1 , ..., A

(N)
N−2, A

(N)
N−1), and its

eigenvalues coincide with the eigenvalues of the N Fourier blocks Â(N)
ℓ

:=
∑N−1

j=0

(
e

2πi
N

) jℓ A(N)
j , ℓ = 0, ...,N − 1. For

the subdivision scheme Sa1, 1
16

the first leading eigenvalues ofA satisfy 1 = λ0 > λ1 = λ2 with λ0 being the dominant

eigenvalue of Â(N)
0 , λ1 the dominant eigenvalue of Â(N)

1 and λ2 that of Â(N)
N−1, and all remaining eigenvalues of A are

strictly smaller than λ2 in modulus (see Table 2). To conclude the proof we consider the limit surfaces generated by
the so-called characteristic meshes (i.e., the control meshes provided by the two eigenvectors corresponding to the
subdominant eigenvalues λ1, λ2), also known as the characteristic maps of the subdivision scheme. Since it has been
numerically verified for all valencies N < 10 that such characteristic maps are all regular, i.e. have non-zero Jacobian
determinant everywhere, and locally injective in the neighborhood of the extraordinary point (as also confirmed by
Figure 10), there follows that C1 regularity is ensured in the neighborhood of extraordinary vertices too.

N λ0 λ1 λ2 maxi≥3 |λi|
3 1.0000 0.4152 0.4152 0.2500
4 1.0000 0.5000 0.5000 0.2500
5 1.0000 0.5464 0.5464 0.3476
6 1.0000 0.5742 0.5742 0.4150
7 1.0000 0.5918 0.5918 0.4641
8 1.0000 0.6037 0.6037 0.5000
9 1.0000 0.6121 0.6121 0.5267

Table 2: The first 4 leading eigenvalues of the local subdivision matrixA of the subdivision scheme Sa
1, 1

16
.

N = 3 N = 5 N = 6 N = 7 N = 8 N = 9

Figure 10: Visualization of characteristic meshes of the subdivision scheme Sa
1, 1

16
for valences N = 3, 5, 6, 7, 8, 9 (first row) and corresponding

characteristic maps in the neighborhood of the extraordinary vertex (second row) obtained from the above control nets after 4 rounds of subdivision.

Some examples of application of the subdivision scheme Sa1, 1
16

in case of quadrilateral meshes of arbitrary topology
can be seen in Figure 11.
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initial mesh step 1 step 2 step 5

initial mesh step 1 step 2 step 5

Figure 11: Surfaces obtained by applying 5 iterations of the interpolatory subdivision scheme Sa
1, 1

16
to quadrilateral meshes of arbitrary topology.

5.2.1. Further inspections at extraordinary vertices: eigenanalysis depending on w and N
Since the smoothness analysis at extraordinary vertices was only established for w = 1

16 , we here investigate the
behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa1,w in dependence of
the free parameter w, in order to identify a certain range of values for which the subdivision scheme is potentially C1

continuous when applied to arbitrary meshes with extraordinary vertices.
Denoting by λi, i = 0, 1, ... the eigenvalues of the local subdivision matrix A ordered by modulus, we recall that for
symmetric subdivision schemes 1 = λ0 > λ1 = λ2 > |λ3| is a necessary condition for C1 continuity at extraordinary
vertices. Therefore, aim of this subsection is to show that for w chosen in a certain range, the first 4 leading eigenvalues
λi, i = 0, ..., 3 indeed respect the condition above. To this end we selected w ∈ (0, 1

16 ] (the case w = 0 is not considered
because the scheme Sa1,0 is already only C0 in the regular case) and we plotted the curves describing the behaviour
of these 4 eigenvalues. As we can see from Figure 12, it is always verified that 1 = λ0, λ1 = λ2 is a double real
eigenvalue smaller than 1, and λ3 is a real eigenvalue smaller than λ1 = λ2. In particular, although for values of w
approaching to 0 the double eigenvalue λ1 becomes closer and closer to the eigenvalue λ3, for all tested valences N
it always remains greater. Additionally, for increasing values of N ≥ 4 we can observe that the distance between
the subdominant double eigenvalue λ1 and the sub-subdominant eigenvalue λ3 becomes smaller and smaller at any
fixed value of w. Anyway, for N < 10 it never vanishes. This trend is even better illustrated in Figure 13 where for
some specific values of w ∈ (0, 1

16 ] we point out the behaviour of the first 4 leading eigenvalues in dependence of the
valence N. As easily expected, the greater is the valence, the smaller is the distance between the subdominant and the
sub-subdominant eigenvalue (see also Figure 14 where valences up to N = 30 have been considered).
From our analysis we can thus conclude that, for the interpolatory scheme Sa1,w with w ∈ (0, 1

16 ], the eigenvalues
distribution is further and further away from the desired configuration and becomes potentially critical when the
valence of the extraordinary vertex increases and the value of the parameter w approaches to 0.

6. A new non-tensor product dual approximating subdivision scheme with tension parameter

Applying the Refine-and-Smooth strategy illustrated in Section 4 with two smoothing stages, we obtain a dual ap-
proximating subdivision scheme for quadrilateral meshes. In the following we analyze the properties of such scheme
both in the regular case (N = 4) and in correspondence of extraordinary faces of valence N , 4.
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Figure 12: Behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa1,w for different values of the parameter
w ∈ (0, 1

16 ] and valences N < 10. Note that the selected range of values for w is contained in (0, 2
15 ) and thus, in the regular case N = 4, C1

continuity is guaranteed in view of Proposition 5.1.
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Figure 13: Behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa1,w for some specific values of the
parameter w ∈ (0, 1

16 ] and for valences N ≤ 9.
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Figure 14: Behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa1,w for some specific values of the
parameter w ∈ (0, 1

16 ] and for valences N ≤ 30.
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6.1. Properties of the regular case (N = 4)

When N = 4, the bivariate subdivision scheme Sa2,w has mask

a2,w =



− 5w
256 − 15w

256 − 45w
256 − 95w

256 − 95w
256 − 45w

256 − 15w
256 − 5w

256

− 15w
256 − 33w

256 − 59w
256 − 117w

256 − 117w
256 − 59w

256 − 33w
256 − 15w

256

− 45w
256 − 59w

256
55w
256 +

1
16

145w
256 +

3
16

145w
256 +

3
16

55w
256 +

1
16 − 59w

256 − 45w
256

− 95w
256 − 117w

256
145w
256 +

3
16

355w
256 +

9
16

355w
256 +

9
16

145w
256 +

3
16 − 117w

256 − 95w
256

− 95w
256 − 117w

256
145w
256 +

3
16

355w
256 +

9
16

355w
256 +

9
16

145w
256 +

3
16 − 117w

256 − 95w
256

− 45w
256 − 59w

256
55w
256 +

1
16

145w
256 +

3
16

145w
256 +

3
16

55w
256 +

1
16 − 59w

256 − 45w
256

− 15w
256 − 33w

256 − 59w
256 − 117w

256 − 117w
256 − 59w

256 − 33w
256 − 15w

256

− 5w
256 − 15w

256 − 45w
256 − 95w

256 − 95w
256 − 45w

256 − 15w
256 − 5w

256


, (6.1)

and symbol

a2,w(z1, z2) = 1
256 z−3

1 z−3
2 (1 + z1)3(1 + z2)3

(
− 5wz4

1z4
2 − 30wz4

1z2
2 − 5wz4

1

+ 12wz3
1z3

2 + 40wz3
1z2

2 + 12wz3
1z2 − 30wz2

1z4
2 + 40wz2

1z3
2 + 4(4 − 17w)z2

1z2
2

+ 40wz2
1z2 − 30wz2

1 + 12wz1z3
2 + 40wz1z2

2 + 12wz1z2 − 5wz4
2 − 30wz2

2 − 5w
)
.

(6.2)

Since a2,w(z1, z2) = a2,w(z2, z1), then Sa2,w is a scheme with symmetry relative to the two axes, but again it is a non-
tensor product scheme. In fact a2,w(z1, z2) cannot be written as the product of a polynomial in z1 with a polynomial
in z2. However, a2,w(z1, 1) coincides with the dual approximating 4-point scheme in [16], hence the bivariate scheme
with symbol a2,w(z1, z2) can be interpreted as a non-tensor product extension of the dual approximating 4-point scheme
with tension parameter (see Figure 15 for the plot of the corresponding basic limit function).
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Figure 15: Basic limit function of Sa2,w for different values of w.

In the remaining part of this section we analyze the main properties fulfilled by this new dual approximating bivariate
subdivision scheme when applied to a regular initial mesh.
In the following proposition we start by determining the parameter set Ω2 for which the scheme Sa2,w turns out to be
convergent, and we derive the subset of parameters corresponding to the generation of smooth limit surfaces. As done
in the previous section, for this purpose we exploit the formalism of Laurent polynomials.

Proposition 6.1. If w ∈ (− 24
59 ,

8
59 ) the subdivision scheme Sa2,w converges to a continuous surface when starting from

any regular quadrilateral mesh. Moreover, if w ∈ (− 4
13 ,

8
75 ), then the obtained limit surface is C1.

Proof: Let us start by writing a2,w(z1, z2) =
(

1+z1
2

)3 (
1+z2

2

)3
b2,w(z1, z2) with

b2,w(z1, z2) = 1
4

(
− 5wz4

1z4
2 − 30wz4

1z2
2 − 5wz4

1 + 12wz3
1z3

2 + 40wz3
1z2

2 + 12wz3
1z2 − 30wz2

1z4
2 + 40wz2

1z3
2

+ 4(4 − 17w)z2
1z2

2 + 40wz2
1z2 − 30wz2

1 + 12wz1z3
2 + 40wz1z2

2 + 12wz1z2 − 5wz4
2 − 30wz2

2 − 5w
)
.
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Since a2,w(z1, z2) = a2,w(z2, z1), in view of [15, Theorem 4.30] we can determine the range of the parameter w
which guarantees the convergence of the scheme Sa2,w by checking the contractivity of the scheme with symbol
1
2

(
1+z1

2

)3 (
1+z2

2

)2
b2,w(z1, z2). This yields w ∈ (− 24

59 ,
8
59 ).

In the same spirit, the result on the C1 continuity follows by checking the contractivity of the schemes with symbols
1
2

(
1+z1

2

)3 (
1+z2

2

)
b2,w(z1, z2) and 1

2

(
1+z1

2

)2 (
1+z2

2

)2
b2,w(z1, z2).

Indeed, when setting w = 1
16 , the limit surfaces produced by the subdivision scheme Sa2,w are even smoother, as shown

in the following proposition.

Proposition 6.2. The subdivision scheme Sa2, 1
16

produces C2 limit surfaces when starting from any regular quadrilat-
eral mesh.

Proof: From the result in Proposition 6.1 we already know that the smoothness of the limit functions produced by the
scheme is C1. In order to show that when w = 1

16 it is indeed C2, exploiting the result in [15, Theorem 4.30], the proof

consists in showing the contractivity of the symbols 1
2

(
1+z1

2

)3
b2,w(z1, z2) and 1

2

(
1+z1

2

)2 (
1+z2

2

)
b2,w(z1, z2).

(a) initial mesh (b) w = 1
10 (c) w = 1

16

(d) w = 0 (e) w = − 1
10 (f) w = − 1

5

Figure 16: Surfaces obtained by applying 6 iterations of the dual approximating subdivision scheme Sa2,w to the regular mesh in (a) for different
choices of the tension parameter.

In Figure 16 we illustrate the effect of the tension parameter w for values in the above determined range (− 4
13 ,

8
75 ).

In the following two propositions we investigate the capability of the subdivision scheme Sa2,w , with w ∈ Ω2 =

(− 24
59 ,

8
59 ), of generating and reproducing polynomials.

Proposition 6.3. The subdivision scheme Sa2,w generates Π2
2 for all w ∈ Ω2 and generates Π2

4 for w = 1
16 .

The detailed proof of Proposition 6.3 is given in Appendix A.

Remark 9. It is interesting to observe that, since the subdivision scheme Sa2, 1
16

generates Π2
4, then in view of the

results in [5], the symbol z3
1z3

2 a2, 1
16

(z1, z2) can be decomposed as

z3
1z3

2 a2, 1
16

(z1, z2) = 4
∑

Bi, j,k∈I5

Li, j,k σi, j,k(z1, z2) Bi, j,k(z1, z2),

where
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• Bi, j,k(z1, z2) =
(

1+z1
2

)i (
1+z2

2

) j (
1+z1z2

2

)k
, i, j, k ∈ N0 are normalized mask symbols of three-directional box-splines;

• I5 = {B5,5,0, B5,0,5, B0,5,5, B4,4,1, B4,1,4, B1,4,4, B3,3,2, B3,2,3, B2,3,3} is the set of generators of I5 = {p ∈ Π2 :
(D( j1, j2) p)(u) = 0 for u ∈ {(1,−1), (−1, 1), (−1,−1)}, j1 + j2 < 5};

• σi, j,k(z1, z2) are Laurent polynomials normalized by σi, j,k(1, 1) = 1;

• Li, j,k are real coefficients that fulfill the condition
∑

Li, j,k = 1.

More precisely, a representation of the symbol z3
1z3

2 a2, 1
16

(z1, z2) in terms of three-directional box-splines from the list
I5 is given by

z3
1z3

2 a2, 1
16

(z1, z2) = 4
(
L5,5,0 σ5,5,0(z1, z2) B5,5,0(z1, z2) + L4,4,1 σ4,4,1(z1, z2) B4,4,1(z1, z2) + L3,3,2 σ3,3,2(z1, z2) B3,3,2(z1, z2)

)
,

with
L5,5,0 =

θ1(θ2 + 72)
(θ1 + θ2)(θ2 − 36)

, L4,4,1 =
θ2(θ2 + 72)

(θ1 + θ2)(θ2 − 36)
, L3,3,2 = −

108
θ2 − 36

,

and the normalized symbols

σ5,5,0(z1, z2) = 1
16θ1(θ2+72)

(
(θ1 + θ2)

(
θ3 − 4(7θ2 − 468)

)
z2

1z2
2 − 5(θ1 + θ2)(θ2 − 36)(z2

1 + z2
2)

− 2(540θ1 + 828θ2 − 27θ1θ2 − 23θ22)z1z2 − (576θ2 + θ1θ3 + θ2θ3 + 8θ22)
)
,

σ4,4,1(z1, z2) = 1
16θ2(θ2+72)

(
(θ1 + θ2)

(
4(7θ2 − 468) − θ3

)
z2

1z2
2 + 5(θ1 + θ2)(θ2 − 36)(z2

1 + z2
2)

+ (360θ1 + 648θ2 − 22θ1θ2 − θ1θ3 − θ2θ3 − 18θ22)z1z2

+ (936θ1 + 1224θ2 − 14θ1θ2 + θ1θ3 + θ2θ3 − 10θ22)(z1 + z2) + 4θ2(3θ1 + 4θ2 + 72)
)
,

σ3,3,2(z1, z2) = 1
6912

(
(33θ2 − θ3 − 2052)z2

1z2
2 + (7θ2 + θ3 + 612)(z2

1 + z2
2) − 4(17θ2 − 1044)z1z2

− 4(θ2 − 468)(z1 + z2) + (29θ2 − θ3 − 180)
)
,

expressed in terms of the arbitrary coefficients θ1, θ2, θ3 ∈ R. Since the generators B5,5,0(z1, z2), B4,4,1(z1, z2) and
B3,3,2(z1, z2) are all multiples of B3,3,0(z1, z2), there follows that the symbol z3

1z3
2 a2, 1

16
(z1, z2) contains the factor (1 +

z1)3(1 + z2)3, as can be noticed from equation (6.2).

Proposition 6.4. If applying the parameter shift (τ1, τ2) =
(

1
2 ,

1
2

)
, the subdivision scheme Sa2,w reproduces Π2

1 for all
w ∈ Ω2 and reproduces Π2

3 for w = 1
16 , with respect to the dual parametrization in (2.1).

The reader may find the full proof of Proposition 6.4 in Appendix A.

We conclude by observing that, in view of Proposition 6.2, the subdivision scheme Sa2, 1
16

has the same smoothness
properties of the bi-cubic B-spline surface, but, instead of being a tensor product primal scheme, it is a non-tensor
product dual scheme. Moreover, in view of Proposition 6.4 it is featured by the capability of reproducing Π2

3, instead
of simply having linear precision, and thus the approximation order of the new scheme is higher than the one of the bi-
cubic B-spline surface. Although the approximation order derived from the reproduction degree is usually not optimal
since, after suitably preprocessing the initial data, an approximation order of one larger than the generation degree can
be achieved [20], considering that the new scheme is able to generate Π2

4 whereas the bi-cubic B-spline scheme only
Π2

3, even when applying the preprocessing, the approximation order of the new scheme turns out to be higher. This
means that the limit surface of the new scheme approximates the initial data better than the bi-cubic B-spline scheme
(see, e.g, Figure 17).

6.2. Properties of the irregular case

We start by highlighting a property of the subdivision scheme Sa2,w when w = 0. In the regular regions, since
a2,0(z1, z2) = 1

16 z−1
1 z−1

2 (1+ z1)3(1+ z2)3, it is clear that the dual approximating subdivision scheme Sa2,0 reduces to the
tensor product of the quadratic B-spline scheme, i.e., to the regular case of Doo-Sabin’s scheme (see Figure 15(b)).

23



Figure 17: Comparison between a bi-cubic B-spline surface (left) and the limit surface obtained by the new approximating scheme Sa
2, 1

16
(right)

when applied to the same regular mesh.

Analogously, in correspondence to extraordinary faces with N edges, the scheme reduces to the Catmull-Clark variant
of Doo-Sabin’s algorithm (see [2]), which consists in using the weights

νi, j =


1
2 +

1
4N , if j = i;

1
8 +

1
4N , if | j − i| = 1;

1
4N , otherwise

in equation (4.2) to compute the new vertices inside the extraordinary face. Such scheme is known to produce C1

limit surfaces for any arbitrary initial mesh [12], and the 4 leading eigenvalues of its local subdivision matrix A for
valences N ≤ 9 are the ones in Table 3 (see also [12, Table 3]).

N λ0 λ1 λ2 maxi≥3 |λi|
3 1.0000 0.3750 0.3750 0.2500
4 1.0000 0.5000 0.5000 0.2500
5 1.0000 0.5773 0.5773 0.2977
6 1.0000 0.6250 0.6250 0.3750
7 1.0000 0.6559 0.6559 0.4444
8 1.0000 0.6768 0.6768 0.5000
9 1.0000 0.6915 0.6915 0.5434

Table 3: The first 4 leading eigenvalues of the local subdivision matrixA of the subdivision scheme Sa2,0 .

In the following we continue by analyzing the smoothness properties of the subdivision scheme Sa2, 1
16

when applied

to arbitrary meshes, since again the parameter value w = 1
16 is the one that provides the smoothest surfaces in the

regular regions.

Proposition 6.5. The subdivision scheme Sa2, 1
16

produces limit surfaces that are C2-continuous everywhere except in

the neighborhood of extraordinary vertices of valence N < 10 where they are only C1.

Proof: We start by observing that, in case the initial mesh contains some extraordinary vertices, then after the first
subdivision step an extraordinary face with N edges is created in correspondence to an extraordinary vertex of valence
N. The number of extraordinary faces generated by the scheme after the first iteration remains the same during all the
subdivision process and each extraordinary face becomes isolated in an otherwise regular tiling of the surface. Thus,
we can analyze the smoothness properties of the scheme Sa2, 1

16
following the same reasoning in the proof of Propo-

sition 5.4. More precisely, after recalling that C2 smoothness of the limit surface in regular regions has been already
established in Proposition 6.2, we proceed by computing the eigenvalues of the local subdivision matrixA defined in
the neighborhood of an extraordinary face of valence 3 ≤ N ≤ 9. As shown in Table 4, the leading eigenvalue of A
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(corresponding to the dominant eigenvalue of the Fourier block Â(N)
0 ) is λ0 = 1, whereas the subdominant eigenvalue

ofA is given by λ1 = λ2 < 1, where λ1 is the dominant eigenvalue of Â(N)
1 and λ2 that of Â(N)

N−1. Since the moduli of all
remaining eigenvalues ofA are strictly smaller than λ2, and the characteristic maps defined in the neighborhood of the
centroids of the extraordinary faces turn out to be both regular (i.e. have non-zero Jacobian determinant everywhere)
and injective (as illustrated by the pictures of Figure 18), C1-continuity at irregular regions is proved for all N < 10.

N λ0 λ1 λ2 maxi≥3 |λi|
3 1.0000 0.4077 0.4077 0.2500
4 1.0000 0.5000 0.5000 0.2500
5 1.0000 0.5480 0.5480 0.3317
6 1.0000 0.5744 0.5744 0.3958
7 1.0000 0.5901 0.5901 0.4417
8 1.0000 0.6001 0.6001 0.4735
9 1.0000 0.6069 0.6069 0.4956

Table 4: The first 4 leading eigenvalues of the local subdivision matrixA of the subdivision scheme Sa
2, 1

16
.

N = 3 N = 5 N = 6 N = 7 N = 8 N = 9

Figure 18: Visualization of characteristic meshes of the subdivision scheme Sa
2, 1

16
for valences N = 3, 5, 6, 7, 8, 9 (first row) and corresponding

characteristic maps in the neighborhood of the centroid of the extraordinary face (second row) obtained after 4 rounds of subdivision.

In Figure 19 we show the limit surfaces obtained by applying the subdivision scheme Sa2, 1
16

to quadrilateral meshes
of arbitrary topology.

6.2.1. Further inspections at extraordinary vertices: eigenanalysis depending on w and N
Following the reasoning in Subsection 5.2.1, we again intend to investigate the fulfillment of the necessary con-

ditions for C1 continuity regarding the first 4 leading eigenvalues λi, i = 0, ..., 3 of the local subdivision matrix A
(ordered by modulus), when the free parameter w is chosen in the neighborhood of 1

16 . In other words, aim of this
subsection is to show that for w ∈ (0, 1

10 ] (the case w = 0 is not considered here since already investigated in [12]), the
first 4 leading eigenvalues λi, i = 0, ..., 3 are real eigenvalues that indeed respect the condition 1 = λ0 > λ1 = λ2 > λ3.
As we can see from Figure 20, the cases N = 3 and N > 4 behave in opposite ways. In fact, in the first case, for
increasing values of w the double real eigenvalue λ1 stays farther and farther from the real eigenvalue λ3; in contrast,
in the second case, the greater the value of w, the closer are the values of λ1 and λ3. Additionally, as also previously
observed for the interpolatory subdivision scheme Sa1,w , for increasing values of N > 4 the distance between the
subdominant double eigenvalue λ1 and the sub-subdominant eigenvalue λ3 progressively reduces. This trend is again
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initial mesh step 1 step 2 step 5

initial mesh step 1 step 2 step 5

Figure 19: Surfaces obtained by applying 5 iterations of the dual approximating subdivision scheme Sa
2, 1

16
to quadrilateral meshes of arbitrary

topology.

more evident if, for a fixed value of w, we plot the behaviour of the first 4 leading eigenvalues in dependence of the
valence N (see Figure 21). Although for valencies N ≤ 9 the two curves are always well separated, increasing the
value of N they become closer and closer, so confirming the fact that high valencies are the most critical to smoothness
analysis. But, differently from the interpolatory scheme Sa1,w , here the largest values of w are the ones that yield less
separated eigenvalues in case of high valencies.

7. Conclusions

In this paper we presented a new constructive approach to design tension-controlled univariate and bivariate fam-
ilies of alternating primal/dual subdivision schemes in a unified framework. The approach is based on a Refine-and-
Smooth subdivision algorithm that originates from a parameter-dependent variant of the Lane-Riesenfeld algorithm.
The first two family members obtained in the univariate case are two well-known schemes with tension parameter,
proposed in the literature via isolated constructions. Differently, the first two family members obtained in the bivariate
case are an interpolatory and a dual approximating scheme for quadrilateral meshes with arbitrary topology never
investigated before. In particular, the member corresponding to the choice n = 1 has been shown to be a non-tensor
product extension of the interpolatory 4-point scheme with tension parameter [14], whereas the one corresponding to
the choice n = 2 an analogous extension of the dual approximating 4-point scheme [16]. The tuning of the tension
parameter to maximize the degree of polynomial reproduction, provided in the univariate case a revisitation of the
family of Hormann-Sabin’s schemes with cubic precision [18], whereas in the bivariate case the proposal of a novel
family of non-tensor product subdivision schemes with bivariate cubic precision.

Acknowledgements
The author would like to thank Giorgio Clauser for cooperating in producing several pictures contained in this pa-
per. Many thanks also go to the anonymous referees for their careful reading of the manuscript and for their useful
suggestions which helped to improve the presentation of the results.

26



0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=3

w

 

 

λ
0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=4

w

 

 
λ

0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=5

w

 

 
λ

0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=6

w

 

 
λ

0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=7

w

 

 
λ

0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=8

w

 

 
λ

0

λ
1
=λ

2

λ
3

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=9

w

 

 
λ

0

λ
1
=λ

2

λ
3

Figure 20: Behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa2,w for different values of the parameter
w ∈ (0, 1

10 ] and valences N < 10. Note that the selected range of values for w is contained in (− 4
13 ,

8
75 ) and thus, in the regular case N = 4, C1

continuity is guaranteed in view of Proposition 6.1.
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Figure 21: Behaviour of the first 4 leading eigenvalues of the local subdivision matrix A of the scheme Sa2,w for some specific values of the
parameter w ∈ (0, 1

10 ] and for valences N ≤ 9.

Appendix A.

Appendix A.1. Proof of Proposition 5.2

Let u1 = (1,−1), u2 = (−1, 1), u3 = (−1,−1) and let Dj, with j ∈ N2
0, denote a directional derivative. Since the

conditions
a1,w(1, 1) = 4,

a1,w(u1) = a1,w(u2) = a1,w(u3) = 0,

D(1,0)a1,w(u1) = D(1,0)a1,w(u2) = D(1,0)a1,w(u3) = 0,
D(0,1)a1,w(u1) = D(0,1)a1,w(u2) = D(0,1)a1,w(u3) = 0,

D(2,0)a1,w(u1) = D(2,0)a1,w(u3) = 0, D(2,0)a1,w(u2) = 2(16w − 1),
D(1,1)a1,w(u1) = D(1,1)a1,w(u2) = D(1,1)a1,w(u3) = 0,
D(0,2)a1,w(u1) = 2(16w − 1), D(0,2)a1,w(u2) = D(0,2)a1,w(u3) = 0,

D(3,0)a1,w(u1) = D(3,0)a1,w(u3) = 0, D(3,0)a1,w(u2) = 6(16w − 1),
D(2,1)a1,w(u1) = D(2,1)a1,w(u2) = D(2,1)a1,w(u3) = 0,
D(1,2)a1,w(u1) = D(1,2)a1,w(u2) = D(1,2)a1,w(u3) = 0,
D(0,3)a1,w(u1) = 6(16w − 1), D(0,3)a1,w(u2) = D(0,3)a1,w(u3) = 0,

(A.1)

are satisfied by the symbol a1,w(z1, z2) in (5.2), recalling the result in Proposition 2.2 - case (i) the claim is proved.
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Appendix A.2. Proof of Proposition 5.3

Let Dj, with j ∈ N2
0, denote a directional derivative. Since the symbol a1,w(z1, z2) in (5.2) satisfies the conditions

D(1,0)a1,w(1, 1) = D(0,1)a1,w(1, 1) = 0,

D(1,1)a1,w(1, 1) = 0, D(2,0)a1,w(1, 1) = D(0,2)a1,w(1, 1) = 2(1 − 16w),

D(2,1)a1,w(1, 1) = D(1,2)a1,w(1, 1) = 0, D(3,0)a1,w(1, 1) = D(0,3)a1,w(1, 1) = 6(16w − 1),

together with the ones given in (A.1), in view of Proposition 2.2 -case (ii), the claim is proved.

Appendix A.3. Proof of Proposition 6.3

Let u1 = (1,−1), u2 = (−1, 1) and u3 = (−1,−1). Since the conditions

a2,w(u1) = a2,w(u2) = a2,w(u3) = 0,

D(1,0)a2,w(u1) = D(1,0)a2,w(u2) = D(1,0)a2,w(u3) = 0,
D(0,1)a2,w(u1) = D(0,1)a2,w(u2) = D(0,1)a2,w(u3) = 0,

D(2,0)a2,w(u1) = D(2,0)a2,w(u2) = D(2,0)a2,w(u3) = 0,
D(1,1)a2,w(u1) = D(1,1)a2,w(u2) = D(1,1)a2,w(u3) = 0,
D(0,2)a2,w(u1) = D(0,2)a2,w(u2) = D(0,2)a2,w(u3) = 0,

D(3,0)a2,w(u1) = D(3,0)a2,w(u3) = 0, D(3,0)a2,w(u2) = 3(16w − 1),
D(2,1)a2,w(u1) = D(2,1)a2,w(u2) = D(2,1)a2,w(u3) = 0,
D(1,2)a2,w(u1) = D(1,2)a2,w(u2) = D(1,2)a2,w(u3) = 0,
D(0,3)a2,w(u1) = 3(16w − 1), D(0,3)a2,w(u2) = D(0,3)a2,w(u3) = 0,

D(4,0)a2,w(u1) = D(4,0)a2,w(u3) = 0, D(4,0)a2,w(u2) = 12(16w − 1),
D(3,1)a2,w(u1) = D(3,1)a2,w(u3) = 0, D(3,1)a2,w(u2) = 3

(
8w − 1

2

)
,

D(2,2)a2,w(u1) = D(2,2)a2,w(u2) = D(2,2)a2,w(u3) = 0,
D(1,3)a2,w(u1) = 3

(
8w − 1

2

)
, D(1,3)a2,w(u2) = D(1,3)a2,w(u3) = 0,

D(0,4)a2,w(u1) = 12(16w − 1), D(0,4)a2,w(u2) = D(0,4)a2,w(u3) = 0,

(A.2)

are verified by the symbol a2,w(z1, z2) in (6.2), recalling the results in Proposition 2.2 - case (i) the claim is proved.

Appendix A.4. Proof of Proposition 6.4

Since the conditions

a2,w(1, 1) = 4,

D(1,0)a2,w(1, 1) − 4τ1 = D(0,1)a2,w(1, 1) − 4τ2 = 0,

D(1,1)a2,w(1, 1) − 4τ1τ2 = 0,
D(2,0)a2,w(1, 1) − 4τ1(τ1 − 1) = D(0,2)a2,w(1, 1) − 4τ2(τ2 − 1) = 3(1 − 16w),

D(2,1)a2,w(1, 1) − 4τ1(τ1 − 1)τ2 = D(1,2)a2,w(1, 1) − 4τ1τ2(τ2 − 1) = 3
(

1
2 − 8w

)
,

D(3,0)a2,w(1, 1) − 4τ1(τ1 − 1)(τ1 − 2) = D(0,3)a2,w(1, 1) − 4τ2(τ2 − 1)(τ2 − 2) = 9
(
8w − 1

2

)
,

are satisfied by the symbol a2,w(z1, z2) in (6.2) together with the ones given in (A.2), in view of Proposition 2.2 - case
(ii) the claim is proved.
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