
08 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Ozalp Babaoglu,  Alina Sirbu (2018). Cognified distributed computing. Institute of Electrical and
Electronics Engineers Inc. [10.1109/ICDCS.2018.00118].

Published Version:

Cognified distributed computing

Published:
DOI: http://doi.org/10.1109/ICDCS.2018.00118

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/645502 since: 2018-10-05

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICDCS.2018.00118
https://hdl.handle.net/11585/645502


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

O. Babaoglu and A. Sîrbu, "Cognified Distributed Computing," 2018 IEEE 38th 
International Conference on Distributed Computing Systems (ICDCS), 2018, pp. 
1180-1191. 

The final published version is available online at: 
http://dx.doi.org/10.1109/ICDCS.2018.00118 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FICDCS.2018.00118


Cognified Distributed Computing
Ozalp Babaoglu

Department of Computer Science and Engineering
University of Bologna

Italy
Email: ozalp.babaoglu@unibo.it

Alina Sı̂rbu
Department of Computer Science

University of Pisa
Italy

Email: alina.sirbu@unipi.it

Abstract—Cognification — the act of transforming ordinary
objects or processes into their intelligent counterparts through
Data Science and Artificial Intelligence — is a disruptive tech-
nology that has been revolutionizing disparate fields ranging
from corporate law to medical diagnosis. Easy access to massive
data sets, data analytics tools and High-Performance Computing
(HPC) have been fueling this revolution. In many ways, cognifi-
cation is similar to the electrification revolution that took place
more than a century ago when electricity became a ubiquitous
commodity that could be accessed with ease from anywhere in
order to transform mechanical processes into their electrical
counterparts. In this paper, we consider two particular forms
of distributed computing — Data Centers and HPC systems —
and argue that they are ripe for cognification of their entire
ecosystem, ranging from top-level applications down to low-level
resource and power management services. We present our vision
for what Cognified Distributed Computing might look like and
outline some of the challenges that need to be addresses and
new technologies that need to be developed in order to make
it happen. In particular, we examine the role cognification can
play in tackling power consumption, resiliency and management
problems in large Data Centers and HPC systems. We describe
intelligent software-based solutions to these problems powered
by on-line predictive models built from streamed real-time data.
While we cast the problem and our solutions in the context of
large Data Centers and HPC systems, we believe our approach
to be applicable to Distributed Computing in general. We believe
that the traditional distributed systems research agenda has
much to gain by crossing discipline boundaries to include ideas
and techniques from Data Science, Machine Learning and other
Artificial Intelligence technologies.

Index Terms—High-Performance Computing, Data Centers,
energy efficiency, resilience, Data Science, Machine Learning,
Artificial Intelligence.

I. INTRODUCTION

Motivation: Data Centers and High-Performance Comput-
ing (HPC) systems have become indispensable for economic
growth and scientific progress in our modern society. Data
centers are the engines of the Internet that run e-commerce
sites, cloud-based services and social networks utilized by
billions of users each day. HPC systems, on the other hand,
have become fundamental “instruments” for driving scientific
discovery and industrial competitiveness — much like the
microscopes, telescopes and steam engines of the previous
century. Continued desire to achieve higher-fidelity simula-
tions, build better models and analyze greater quantities of data
put increasing demands for higher performance from these
systems. As the performance of HPC systems increases, the

value of the results they produce increases, enabling improved
techniques, policy decisions and manufacturing processes in
areas such as agriculture, engineering, transportation, materi-
als, energy, health care, security and the environment. Today,
HPC systems are also essential for achieving groundbreaking
results in basic sciences ranging from particle physics to
cosmology while touching genomics, pharmacology, neuro-
science, geology, material science, meteorology and climate
change in between [1]. Scaling current systems to meet these
challenges is being hindered by limits imposed by power
consumption, heat dissipation, resiliency and management.
Brute-force scaling of current technologies to the required
performance levels would result in systems that consume as
much power as a small-size city, that fail every several minutes
and that are unmanageable.

Contributions: We believe that the traditional distributed
systems research agenda can benefit greatly by crossing dis-
cipline boundaries to include ideas and techniques from Data
Science, Machine Learning and Artificial Intelligence (AI). In
this paper, we argue that Data Centers and High-Performance
Computing systems, which we collectively refer to as High-
Performance Distributed Computing (HPDC) systems, have
much to gain by incorporating data-driven, predictive and
proactive software technologies into various phases of their
operation. In support of our claim, we outline how these
technologies can be exploited to dramatically reduce power
consumption and significantly improve resiliency of future
HPDC systems. We show how the data-driven predictive
models built for energy efficiency and resiliency can also
be the building blocks of an innovative system management
platform built from open-source software packages.

Organization: The rest of the paper is organized as fol-
lows. In the next Section, we identify power consumption,
resiliency and manageability as the main obstacles for achiev-
ing ever-increasing performance in HPDC systems through
ever-increasing parallelism. In Section III we recall how the
availability of massive data sets has led to significant advances
in AI by abandoning traditional rule-based techniques in favor
of data-driven techniques. In the same Section, we introduce
cognification as the transformation of ordinary services into
intelligent ones by accessing the required data analytics and
intelligence functions as commodities [2]. In Sections III-A
and III-B we review some of the more important data-driven
predictive AI technologies, such as Machine Learning, and



show how they can be used to build powerful predictive
models for power consumption and failures. In Section IV we
present our vision for a future HPDC that has been cognified
through data-driven dispatcher (Section IV-A) for increased
energy efficiency, just-in-time check-pointing mechanism for
increased resiliency (Section IV-B) and predictive software
tools for improved system management (Section IV-C). Sec-
tion V discusses the remaining problems that need to be solved
in order to make our vision a reality. Section VI concludes the
paper.

II. CHALLENGES OF HIGH-PERFORMANCE DISTRIBUTED
COMPUTING

Future HPDC systems will achieve higher performance
through a combination of faster processors and massive paral-
lelism. With Moore’s Law having essentially reached its limit,
it is expected that continued die shrinking will deliver only
a small additional increase in performance. The rest of the
increase has to come from abandoning increased transistor
density and switching to increased core count, which implies
a substantial increase in the sockets count [3].

We argue that future HPDC systems have to be sustainable
so that they are able to provide high-performance computing
on a continual basis without interruptions. Achieving high per-
formance by increasing the number of cores (and consequently,
the number of sockets) presents two primary obstacles for
sustainability: power consumption and resiliency. Consider-
ations for the cost of power generation, power delivery and
chiller/cooler infrastructures put 30MW as an upper limit for
the power consumption of future HPDC systems [4]. In other
words, energy efficiency of current systems has to increase by
more than one order of magnitude to stay within this limit
when they are scaled to extreme performance levels [5].

With everything else being equal, the failure rate of a
system is directly proportional to the number of sockets
used in its construction [6]. But everything is not equal:
future HPDC systems not only will have many more sockets,
they will also use advanced low-voltage technologies that are
much more prone to aging effects [7] together with system-
level performance and power modulation techniques, such as
Dynamic Voltage Frequency Scaling (DVFS), all of which
tend to increase failure rates [8]. Economic forces that push
for building systems out of commodity components aimed at
mass markets only add to the likelihood of more frequent
unmasked hardware failures. Finally, complex system soft-
ware, often built using open-source components to deal with
more complex and heterogeneous hardware, failure masking
and energy management, coupled with legacy applications will
significantly increase the potential for software errors [9].

It is estimated that complex applications may fail as fre-
quently as once every 30 minutes on future HPDC plat-
forms [10]. At these rates, failures will prevent applications
from making progress. Consequently, high performance, even
when achieved nominally, cannot be sustained for the duration
of most applications that are long running. Future HPDC
systems must include a combination of hardware and software

technologies that are capable of handling failures at accel-
erated rates from a broad set of sources [8]. Whether their
origin is software, hardware or environmental, we limit our
attention to those failures that result in computations simply
stopping. In other words, we assume that failures resulting in
silent data corruptions or computations that continue running
but perform incorrect actions or produce incorrect results are
extremely rare and can be ignored.

HPDC systems (especially Data Centers) evoke images of
warehouse-size structures filled with racks housing tens of
thousands of multi-core servers and storage devices, intercon-
nected through a variety of networking technologies [11]. In
HPDC systems, computing and networking are actually only
a small part of their infrastructure that also has to guarantee
electrical power, either from an external grid, from an on-site
generation plant, or both. Furthermore, the infrastructure has
to include subsystems for conditioning, storing and switching
power as well as complex thermal cooling/chiller systems to
dissipate the vast amount of heat that is produced. If in addition
to this hardware infrastructure, we also consider the intricate
tangles of advanced software that run their services and include
external factors such as human operators, we end up with
systems where interdependencies and interactions among a
very large number of components result in nonlinear behaviors
that are highly unpredictable and where small changes in one
part often have large and unintended consequences in other
distant parts. In short, attempts to manage HPDC systems
through traditional human operator-based mechanisms become
error prone at best, and impractical at worst. What is needed
is an intelligent management system that eliminates reliance
on human operators as much as possible for both routine
maintenance and problem avoidance/resolution.

Amidst the wealth of challenges that future HPDC systems
present, we limit our attention in this paper to the following
three that are central to sustainability:

• Energy efficiency: Improve the energy efficiency of
future HPDC systems so as to stay within the 30MW
limit for power consumption when they are scaled up for
high performance.

• Resiliency: Improve the resiliency of future HPDC sys-
tems by reducing the perceived failure rates to at most
once-per-week levels when they are scaled up for high
performance.

• Manageability: Improve management of future HPDC
systems by limiting reliance on human operators and
facilitating semi-autonomic control.

HPDC systems, in addition to being effective instruments
for cognifying other fields, are ripe for benefiting from cog-
nification themselves to solve many of their own challenges.
In a way, this is akin to “turning the microscope onto itself to
study the microscope”. Cognification of HPDC systems can
occur at any level of their programming workflow, all the way
from top-level applications down to low-level system software.
In this paper, we examine how the system software of HPDC
systems can be cognified so as to render them sustainable. We

2



sketch solutions to the above challenges based on intelligent
and proactive software technologies for vastly reducing power
consumption and dramatically improving resiliency. Manage-
ability, on the other hand, requires developing intelligent
and proactive mechanisms for monitoring, controlling and
debugging systems and applications by both administrators and
users.

A. Energy Efficiency

In HPDC systems, energy efficiency can be approached at
many levels ranging from electronic circuits and packaging
innovations all the way up to scheduling, allocation and
compiling strategies. Energy efficiency at the system software
level has been typically delegated to the dispatcher component
that is concerned with which jobs to run next (scheduling) and
where to run them (allocation). An energy-aware dispatcher
can resolve decisions based on numerous techniques, including
consolidation, energy-aware scheduling, power capping and
DVFS, either separately or in combinations. The basic idea
behind consolidation is to gather many active jobs/threads on
a few physical nodes/cores so that idle nodes/cores can be
switched to low-power mode or powered off completely [12],
[13]. In making consolidation decisions, the dispatcher can
take into consideration not only the computational demands
of jobs but also their communication needs [14]. Furthermore,
power consumed by HPDC applications is often multidi-
mensional, nonlinear and has large dynamic range [12]. In
other words, power-aware allocation schemes have to consider
multiple measures for workloads (e.g., memory size in addition
to CPU utilization) and take into account the effects of
co-locating jobs on the same node. In large Data Centers,
consolidation has been facilitated to a large extent by the avail-
ability of virtualization [15] and container technologies such as
Docker [16] and Kubernetes [17]. The fact that container tech-
nologies are not as widespread in current HPC systems makes
consolidation less common as an energy efficiency mechanism
for them. Power capping is a technique where an energy-
aware scheduler selects the set of jobs to run such that their
cumulative power needs do not exceed a certain threshold [18].
It can be implemented using a variety of techniques such as
DVFS [14], [19], Machine Learning or hybrid optimization
techniques including Constraint Programming [20].

B. Resiliency

Like energy efficiency, resiliency in HPDC systems can be
confronted at many levels ranging from error correcting codes
at the electronics level up to fault-tolerant algorithms at the
application level. Process-level or hardware-level replication
is an often-employed technique to increase resilience in Data
Centers. It is less common in HPC systems for several rea-
sons. First, failure independence, which is the foundation for
replication is difficult to satisfy in HPC systems which tend
to be more tightly coupled. Second, replication often incurs
high overhead in order to guarantee replica equivalence de-
spite non-determinism in applications. Finally, hardware-level
replication contributes to increasing socket counts and power

consumption, which are already at elevated levels in HPC
systems. Among the many software-based resiliency mech-
anism that exist, check-point/restart is by far the most widely
available (being included in popular systems like Charm++ and
AMPI) and widely used in current HPC systems [6]. Check-
pointing consists of taking a snapshot of the application in
execution and saving it on nonvolatile media (usually a parallel
file system). When a failure occurs, the application is restarted
from the last check-point found on nonvolatile media (after
moving it to main memory) and the application continues until
the next check-point.

A number of challenges need to be resolved to make check-
point/restart a viable technique for increased resiliency in
future HPDC systems. Check-pointing and restarting can be
made automatic and transparent to applications by initiating
them pro-actively through a system software layer as in
BLCR [21]. While this removes a big burden from users,
it comes at the cost of increasing overhead since the state
that is saved and restored to/from nonvolatile memory cannot
exploit application semantics (to reduce its size) and has to
include the entire application state [9], [10]. The challenge
is to maintain the convenience of system-initiated check-
pointing at a cost comparable to user-initiated check-pointing.
Too frequent check-pointing with high overhead can slow
down applications to a crawl and can also be detrimental for
energy efficiency. “Optimal” values for check-point intervals
can be computed based on averages for inter-failure times
and check-pointing costs [22]. In future HPDC systems with
high failure rates and large check-point/restart times, there
is a real risk that the mechanism degenerate into a “pure
overhead” scheme performing only check-points/restarts and
no useful computation [23]. Under these conditions, failure
masking through replication becomes a viable option as a
resiliency mechanism. The challenge is to devise dynamic and
adaptive algorithms for adjusting the check-point interval and
for switching between check-point/restart and replication as
the appropriate resiliency mechanism.

C. Manageability

From the point of view of system administrators, current
HPDC management tools are limited essentially to resource al-
location, scheduling and monitoring tasks. Although a number
of efforts for building more-innovative monitoring and man-
agement platforms exist [24], [25], [26], they lack predictive
or social capabilities, do not provide control actions and are
based on rather simple interaction models. Thus, many of the
difficult management tasks rest on the shoulders of operators.
From an end-user’s point of view, systems such as Compute
Manager from PBS Works1 for job submission recreate the
“batch processing” experience of early computing with no
interactive control and debugging capabilities.

What is needed is a management software platform that can
facilitate semi-automatic control of HPDC systems with little
or no human intervention. The platform should make use of

1https://www.altair.com/compute-manager/

3



the proactive and predictive software technologies developed
for energy efficiency and resilience while at the same time
should be open, extensible and social so that it can be used
by both HPDC system administrators and end-users.

III. THE POWER OF DATA

In a growing number of areas where experimentation is
either impossible, dangerous or costly, computing is often the
only viable alternative towards confirming existing theories
or devising new ones. The resulting computational scientific
discovery is typically model-based: as a first step, a mathemat-
ical model of whatever it is that is being studied is built and
then the model is solved numerically or through simulations.
This approach, which remains one of the main pillars of
scientific discovery, is conditioned on our ability to construct
mathematical models relating the dependent variables (out-
puts) to the independent variables (inputs) of the process
under study. Recent years have witnessed an emerging trend
that abandons this model-based computational approach and
replaces it with a data-driven approach seeking correlations
that may exist among huge volumes of data collected from
observing actual inputs and outputs of processes [27]. The big
advantage of the data-driven approach is its ability to uncover
interesting insights and properties of processes without having
to construct cause-effect mathematical models, which typically
require a complete understanding of their inner workings.

The data-driven approach outlined above can be used to
build an intelligence component in the form of a predictive
computational model, to be integrated into the system or
service to be cognified. In addition to uncovering hidden
correlations among historical archived data and gaining knowl-
edge about the past, the predictive model allows reasoning
about future or unseen states. Moreover, building the predictive
models in an on-line manner driven by streamed data (rather
than the traditional off-line approach driven by archived data)
opens up the possibility of cognified services that can enact
control actions on the system in real-time so as to keep
their executions along desirable trajectories. In the following,
we outline some of the AI technologies that are relevant
for cognification and discuss their use in building predictive
models for power consumption and failures in HPDC systems.

A. Machine Learning, Deep Learning and Other Predictive
Technologies

AI research, which had been stagnant for several decades
has been rejuvenated recently mainly due to the shift from
a rule-based approach to a data-driven approach powered by
Machine Learning technologies [28]. Early demonstration of
the enormous gains possible with data were recommender
systems [29]. These systems, which are now pervasive on
the Internet, are based on classifier algorithms that can infer
preferences of humans directly from data without actually
modeling human behavior. Advanced classifiers, trained with
enormous amounts of data, have made enormous progress in
many other fields including image recognition [30], medical

diagnosis [31], mortgage appraisals [32], speech recogni-
tion [33], archeology [34] and machine translation [35] without
any knowledge of the inner workings of the processes being
considered.

One technology that has had an important role in these
success stories is Deep Learning (DL). DL is based on Deep
Neural Networks (DNNs) that are Artificial Neural Networks
with a large number of hidden layers and that are trained
with a Back-propagation algorithm adjusted for the large
network size. Several network types are possible, including
Convolutional, Recurrent and Autoencoder Neural Networks.
The power of DNNs rest in their ability to automatically
build features from the data by mapping the input into larger
dimensions at the various network layers. These features are
then employed to solve the classification task at hand. This
technology, although not new, has benefited enormously from
big-data tools that have made large volumes of data easily
accessible and easy to process. Another factor contributing to
the enormous success of DL is widespread access to high-
performance parallel processing in the form of multi-core
CPUs and special-purpose GPUs [36], [37].

B. Predictive Models for Power Consumption, Workloads and
Failures

A first step in the cognification process is building predictive
models at different levels of an HPDC system. Among the
possible behaviors to be modeled we consider power con-
sumption, workload and failures. Below we review some of the
recent work in building predictive models for these behaviors
based on data collected from real systems.

1) Power Consumption: Power monitoring, modeling and
optimization have areas of intense research activity in re-
cent years. Modern computing units embed advanced control
mechanisms such as Dynamic Voltage Frequency Scaling that
aim to optimize performance and can affect power levels,
making modeling problematic even for a single computational
unit [38]. Several models trying to explain the relation between
frequency, load, hardware counters and power for single units
have been introduced for multicore CPUs [39], [40] and
GPUs[41]. The success of modeling power varies widely
depending on the workload, with errors between 3.65 and
14.4% for CPUs, and between 1.7% and 27.7% for GPUs.
These errors are only expected to grow when multiple units
have to be combined, as will be the case for future HPDC
systems.

Some recent work has focused on modeling job or appli-
cation power consumption. Performance counters are used to
model application power on HPC platforms platforms by [42]
and power used by CUDA kernels in [43]. These methods
require instrumenting the applications to extract signatures and
performance counters.

The models cited above are able to compute power con-
sumption by reading various performance counters during
an execution, however they are not able to predict power
consumption prior to an execution. For the purposes of
cognification, advance prediction is essential. This can be

4



Eurora database

Computing units 
power 

measurements

System power 
measurements

Workload 
measurements Predicted 

job power

Idle power

Predicted 
computing 

power Predicted 
system 
power

SVR 
models

linear 
model

+

Ev
alu

at
e

Ev
alu

at
eheuristic 

Predicted 
job length

Fig. 1. Modeling system level power by integrating three different models,
represented as stars in the figure: prediction of job power consumption using
SVR models, prediction of job length through a data-driven heuristic and a
linear model mapping computing unit power to system level power [48].

achieved by using only workload measures to predict power,
as is done in [44], [45], [46]. Recently, we introduced a
model [47] to predict job power consumption for a hybrid
HPC system, Eurora [5]. This HPC system employs CPUs,
GPUs and MIC technology to achieve low power consumption.
Such heterogeneity in resources is a typical feature of modern
HPDC systems, and makes power modeling more challenging.
The predictive model we presented is fully data driven —
no assumptions about the model structure nor additional
instrumentation of application code are required. The only
application-aware feature is the job name, making our method
easily applicable to any system even when application code
is not available. The power of our prediction derives from
user history rather than from application counters, and our
results show that when enough data is available, excellent
predictive behavior can be achieved. We employ a multiple-
Support Vector Regression (SVR) model to estimate job power
as a function of time — we predict power profiles rather than
an averages for the power consumed per job. When comparing
the multiple-SVR approach to an Enhanced Average Model
(EAM) where power depends only on the number of compo-
nents used, SVR outperforms EAM for most users, obtaining
good prediction (error under 20% or R2 ≤ 0.5) for 80% of
the users analyzed. For the rest of the users, indications are
that modeling power is affected by noise. An important aspect
of our model is the fact that we take into account the effect
of colocating jobs on the same node. This means that we can
predict how different resource allocation schemes affect job
power, in order to optimize allocation.

Our approach to predicting job power is intended to be
used in real-time, where predictions are made as new jobs
arrive at the scheduler. On-line application consists of training
the model for each user, then applying it to real-time data.
Periodically, the model is updated by incorporating recent data
into the training dataset. We expect monthly model updates to
be sufficient in order to capture changes in job structure.

While individual job power consumption is important,
power consumption at the system level is also of interest.

Recent work at Google [49] describes the use of Artificial
Neural Networks to model Power Usage Effectiveness using a
mixture of workload and cooling features. We have recently
introduced a model of total system power for the Eurora
HPC system [48]. Our predictive model consists of three
components, displayed as stars in Figure 1. First, power
consumption of jobs is predicted from workload data using
the aforementioned SVR approach. Second, we introduce a
simple heuristic that enables data-driven prediction of job
duration (see section III-B2), which allows us to estimate
which jobs will run in the system at a future time. The two
predictions are then combined to estimate the power used
by computing units. Third, we develop a relation between
power used by computing units and the total system power,
including networking, IO system and other elements, using a
linear model. The 3-component model takes as input workload
parameters, namely job names and resources allocated to each
job. The approach achieves very good results in predicting
system level power with errors under 5%. Figure 2 shows the
predicted and real power consumption of the system during a
one-week period. The methodology can be easily applied to
other systems since the data types used (workload measures
only) are generally available in most HPDC systems.

2) Workloads: Workload prediction is another important
concern for cognification of HPDC systems. One aspect of
workloads that can be predicted and that can have an impact
on management of HPC systems is job duration. This can
be achieved by monitoring jobs once they start, recording
performance counters and estimating remaining duration based
on them [50], [51]. A different approach is to build a predictive
algorithm based on past job history only. We recently devel-
oped such a data-driven heuristic to predict job length [52] that
uses only general job information that is available just before a
job is started, hence it is much more flexible. We predict job
durations in Eurora, the same HPDC system as above. The
heuristic exploits time locality of job durations for individual
users that was observed in the Eurora workload. Specifically,
it has been observed that consecutive jobs by the same user
tend to have similar durations, especially when they have the
same profile (job name, resources requested, queue, etc). From
time to time, a switch to a different duration is observed,

Fig. 2. Power predictions obtained by the model described in Figure 1.
The model was applied to log data from Eurora, a hybrid HPC system. The
plot includes measured and predicted power consumption during a one-week
period [48]. Prediction power is very good, with mean error under 5%.

5



which could happen, for example, when the user changes input
datasets or the algorithm itself. Using this observation, we
devised a set of rules to apply in order to predict job durations.
We record job profiles for users, and their last durations. When
a new job arrives in the system, we look for a job with the
same or similar profile, and consider its duration to be also the
duration of the new job. If no past profile is similar enough,
the predicted duration is the wall-time of the job. In case a
match is found, the wall-time is used as an upper bound for
the predicted duration. This heuristic was shown to give very
good results, with an average prediction error of 40 minutes
over all jobs in the system.

3) Failures: Failure prediction is fundamental for system
management and resiliency in HPDC systems [53]. It has been
an active research area [54] and numerous failure prediction
methods for single machines, clusters, application servers, file
systems, hard drives, email servers and clients, etc. have been
developed over the years. More recent studies concentrate on
larger-scale distributed systems such as HPC and Data Centers
for cloud computing.

Of particular interest for cognification are job failure pre-
dictions that can lead to economizing resources, as well as
prediction of component failures (such as computing nodes).
Job failures in a cloud setting have been studied by various
authors [55], [56], using techniques such as the naive Bayes
Classifier and Principal Component Analysis. The methods
achieve good results on jobs from different application set-
tings, with true positive rates above 80% and false positive
rates under 30%. For node failures, a recent study of the
Blue Waters HPC installation at Argonne National Laboratory
achieved predictions with 60% TPR and 85% precision [57].

Recently we have presented a study of node failures for
Data Centers based on log data from a Google cluster [58].
The dataset contains workload and scheduler events emitted
by the Borg cluster management system [25] in a cluster of
over 12,000 nodes during a one-month period [59], [60]. We
employed BigQuery [61], a big data tool from the Google
Cloud Platform that allows SQL-like queries to be run on
massive data, to perform an exploratory feature analysis. This
step generated a large number of features at various levels of
aggregation suitable for use in a Machine Learning classifier.
The use of BigQuery has allowed us to complete the analysis
for large amounts of data(table sizes up to 12TB containing
over 100 billion rows) in reasonable amounts of time.

The failure prediction problem was formulated as a classifi-
cation task: decide whether a machine in the cluster will fail or
not in the next 24 hours. We employed an ensemble of Random
Forest (RF) classifiers to solve the problem. RF were employed
due to their proven suitability in situations were the number
of features is large [62] and the classes are “unbalanced” [63]
such that one of the classes consists mainly of “rare events”
that occur with very low frequency. Although individual RF
were better than other classifiers that were considered in our
initial tests, they still exhibited limited predictive power, which
prompted us to pursue an ensemble approach. While individual
trees in RF are based on subsets of features, we used a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0 AUROC
AUPR

Fig. 3. Predictive power for classification of node failures in a Google
cluster trace [58]. The log data released by Google was divided into 15
benchmarks (ten days of training data, one day of test data), and the plot
shows Area-Under-the-ROC (AUROC) and Area-Under-the-Precision-Recall
(AUPR) curves for each benchmark. Predictive power varies for different
benchmarks, however AUROC values always stay above 0.76 and AUPR stay
above 0.38.

combination of bagging and data subsampling to build the RF
ensemble and tailor the methodology to this particular dataset.

To test our classifier in different settings, we split the
available data into 15 benchmarks, each benchmark including
10 day of training data and one day of test data (with one
day in between, so that train and test data do not overlap at
all, given that we are predicting failures in windows of 24
hours). Figure 3 summarizes the results obtained, evaluating
the model on each benchmark in terms of Area-Under-the-
ROC (AUROC) curve and Area-Under-the-Precision-Recall
(AUPR) curve. These show that we had very good predictive
power on some days, and moderate on others, with AUROC
values varying between 0.76 and 0.97 and AUPR values
between 0.38 and 0.87. This corresponded to true positive rates
in the range 27%-88% and precision values between 50% and
72% at a false positive rate of 5%. In other words, this means
that in the worst case, we were able to identify 27% of failures,
while if a data point was classified as a failure, we could have
50% confidence that we were looking at a real failure. For the
best case, we were able to identify almost 90% of failures and
72% of instances classified as failures corresponded to real
failures. All this, at the cost of having a 5% false alarm rate.

Again, the method we presented is very suitable for on-line
use. A new model can be trained every day using the last
12 days of logs. This is the scenario we simulated when we
created the 15 test benchmarks. The model would be trained
with 10 days of data and tested on the next non-overlapping
day, exactly like in the benchmarks. Then, it would be applied
for one day to predict future failures. The next day a new
model would be obtained from new data. Each time, only the
last 12 days of data would be used rather than increasing the
amount of training data. This would account for the fact that
the system itself and the workload can change over time, so
old data may not be representative of current system behavior.
This would ensure that the model is up-to-date with the current
system state. Testing on one non-overlapping day is required

6



for live use for two reasons. First, part of the test data is used
to build the ensemble (prediction-weighted voting). Secondly,
the true positive rates and precision values on test data can
help system administrators make decisions on the criticality
of the predicted failure when the model is applied.

Predicting failures in advance can help reduce resource
wastage by modifying the resource allocation decisions dy-
namically. This is in itself an extensive research area, but
a simple technique could be to quarantine nodes that are
predicted to fail by not submitting any new jobs to them for
some period of time. If consecutive failure alarms continue
to appear, the quarantine period is extended until either the
alarms stop or the node fails. We simulated such an approach.
For better precision, we quarantine a node only if at two
consecutive time points the node is predicted to fail. While a
node is in quarantine, all tasks that would have otherwise run
on that node need to be redirected. Among redirected tasks,
some would have finished before the node failure, others would
have been interrupted. We call the latter recovered tasks,
since their interruption was avoided by proactively redirecting
them. The aim of our proactive approach is to maximize the
number of recovered tasks (the gain) while minimizing the
number of redirected tasks (the cost). The two objectives are
contradictory: the number of recovered tasks grows as the
number of redirected tasks increases, so there is a tradeoff
between the cost and the gain. With the predictions obtained
by our RF approach, we showed that we can recover close
to 1000 tasks using 800 CPU hours during the 15 days of
prediction, which is about 50% of the resources that would be
saved with a perfect prediction.

IV. COGNIFIED HIGH-PERFORMANCE DISTRIBUTED
COMPUTING

In this Section we sketch the architecture of a HPDC system
that has been cognified to include the data-driven predictive
software technologies described above in its dispatcher, check-
point/restart and management functions. In what follows, we
briefly discuss each one of these functions in light of the
advantages offered by prediction.

A. Data-Driven Dispatching

Energy efficiency at the system software level in HPDC
systems is typically delegated to the dispatcher component
that is concerned with which jobs to run next (scheduling) and
where to run them (allocation). Predictive models discussed
earlier can be included in the dispatcher to achieve power
and failure awareness as well as optimizing overall system
performance. Specifically, the scheduler component can ensure
power awareness through power capping and power reduction.
Power capping can be achieved by including a constraint
within the CP model specifying the threshold for total system
power that cannot be exceeded. Being able to predict future
system power accurately, the power capping constraint can
precisely model the total system power. Power reduction, on
the other hand, can be achieved by including total system
power as part of the objective function, which then has to

be minimized. The same job can consume different amounts
of power depending on when it starts, what resources it uses
and what resources it shares with other jobs, which will all
be taken into account by both the scheduler and the allocator
components of the dispatcher. To allow this, it is important
that the predictive models for power include features related
to shared resources.

Workload predictions, in particular job durations, are impor-
tant for allocation since they provide a way to estimate which
jobs will be in the system in the near future. Job duration
predictions are useful also when trying to estimate future
power consumption by summing the power consumption of
all running jobs. CPU and memory size predictions can be
used to optimize resource usage and minimize power by
selecting jobs with vastly different profiles for co-location. For
example, we can expect lower power consumption and better
throughput when memory-intensive jobs are co-located with
CPU-intensive jobs.

Failure awareness of the dispatcher can be achieved through
several allocation decisions. First, resources can be ranked
based on their predicted failure probability so that the next
allocated resource is always the one that is considered least
likely to fail. In this way, the allocator can avoid assigning new
jobs to nodes that are likely to fail in the near future. Second,
when replication is in use for resiliency, the dispatcher can try
to locate replicas of a job on nodes that exhibit the greatest
failure independence with the original node, as measured by
predicted failure correlations between them.

B. Just-in-Time Check-Pointing

Check-pointing algorithms periodically save the state of a
job to non volatile memory so that the job can be restarted
from the last valid state in case of a failure. Prediction
of failures can be integrated into this strategy by adjusting
the time intervals between successive check-points. Cognified
HPDC systems can make use of failure predictors that provide
a probability of failure within a future time window, rather
than a simple yes/no answer. The failure probability can
be estimated using Bayesian classifiers, or artificial neural
networks with a Softmax activation function at the output
layer, or by transforming the yes/no classification problem
into a regression problem. In the just-in-time check pointing
scheme we propose, the failure probability is used as a weight
in calculating the next time-to-check-point for the job. If the
failure prediction accuracy is sufficiently high and if we can
obtain good estimates for the time required to complete a
check-point, we can time proactive check-points to complete
shortly before failures occur, justifying the name just-in-time.
To guard against underestimating failure probabilities, inter-
check-point times can be bounded by forcing check-points at
a fixed (low) rate even when very low failure probabilities are
predicted.

As the mean inter-failure time approaches the time re-
quired for check-point/restarts, the system begins to spend
most of its time check-pointing and restarting instead of
performing useful computation. Under these conditions, we

7



Fig. 4. Streamed data monitoring framework based on open-source software
packages including Apache Spark for cluster computing, Apache Cassandra
for database storage, Apache MLib for machine learning libraries, Grafana
for data analytics and visualization, Apache Streaming and Message Queuing
Telemetry Transport for Publish/Subscribe service.

must abandon check-point/restart and switch to failure mask-
ing through replication as the resiliency mechanism. Current
HPDC systems are rich in inherent hardware redundancy in
the form of multiple cores, CPUs, MICs and GPUs that can
be exploited to achieve replication of jobs without increasing
socket counts or costs. The challenge is guaranteeing failure
independence among the replicas through intelligent allocation
decisions. What are needed are adaptive, hybrid mechanisms
that select automatically between just-in-time check-pointing
and replication while dynamically adjusting the check-point
interval and the number of activated replicas.

Yet another important piece of information that can increase
system resiliency is the predicted job duration. For jobs that
started recently and that are expected to take a long time to
complete, a failure prediction even with modest probability
may provoke a migration decision immediately to a safer node.
Conversely, for a job that is expected to finish soon, the system
may decide to continue its execution on the current node
(without any action) even if a significant failure probability
is predicted for the node.

C. Predictive System Management

Cognification of HPDC system software is not only essential
for sustainability, it is also enables a radically new form of
HPDC management. We envision a management platform that
is open and extensible with modern social features, driven by
predictive models built from streamed data. In the following,
we briefly outline our vision for the architecture of such a
management platform and describe some interesting usage
scenarios.

The platform can be built on top of a streamed data
monitoring framework, such as the one described in [24].
The framework, illustrated in Figure 4, is based on Apache
Spark cluster computing and Apache Cassandra database
open-source software platforms and streams data derived from
a collection of sensors at various system levels using Apache

Spark Streaming. Using the framework involves instrumenting
the monitored system with sensors and installing the client
layer of the Message Queuing Telemetry Transport (MQTT)
Publish/Subscribe protocol, while on a service node installing
the MQTT broker and Apache Spark software packages. The
monitoring framework advertises to the world a Publish ser-
vice to which clients can Subscribe to receive data pertaining
to the sensors they are interested in.

The architecture of the management software platform we
envision is illustrated in Figure 5. At the lowest layer it
includes a Publish/Subscribe interface to be implemented
using Apache Kafka for communicating with the monitoring
framework. The lowest layer also includes a Streamed Data
Filtering module that implements Sensor Fusion functions
on data being received from the monitoring framework. The
platform uses predictions to project the system into the
future and will devise preventive actions based on control
mechanisms in case of possible future anomalies. Detecting
anomalous behavior is viewed as a big data classification
problem and is tackled using DL techniques for recognizing
outliers among cluster patterns arising in streamed data from
a multitude of origins. Responding to anomalies is also driven
by DL technologies inspired by move generators in two-person
games. A fundamental piece of the architecture is a graphical
user interface to implement a route planner metaphor not
unlike Google Maps or its crowd-sourced counterpart, Waze.

We envision two different usage scenarios for this platform.
In the first case, a system administrator is presented a global
view of the system indicating the actual loads at various system
resources (analogs of vehicle traffic) along with other measures
such as power consumption, temperatures, queue lengths and
job delays. The platform also signals possible anomalous

Fig. 5. Predictive system management platform. At the heart of the platform
are predictive models for workload, power and failures that are built and
trained using on-line streamed data. The Anomaly Detector component that
sits on top of the predictive models is built using Databricks Deep Learning
Pipelines, which is an implementation of Google TensorFlow technology on
Apache Spark ML Pipelines. The Action Generator component, which is also
driven by DL technology interfaces with the cognified dispatcher and check-
pointing systems.

8



situations in the current system state and suggests preventive
actions that can be initiated by the administrator (e.g., check-
pointing, replication, migration, consolidation). An innovative
aspect of the system is the ability for the administrator to
switch to a “crystal ball” view where the system metrics no
longer correspond to “now” but reflect some time in the future.
In presenting this view, the platform invokes its predictive
capabilities for anticipating not only future workloads but
also possible failures, along with their likelihood quantified as
probabilities. In the second usage scenario, the management
service is invoked by an end-user (with appropriate privileges)
to guide the execution of her jobs. In this case, the service
displays different options for executing a job that she is
submitting (analogs of alternate routes for traveling from point
A to point B on a map). The options are computed based on
predictions of the job’s demands along with predictions for
future system states (including failures). For each option, she is
given estimates for various metrics such as time-to-completion,
cost and energy consumed. The time-to-completion estimate
takes into consideration probability of failures during the
job execution and anticipated system actions such as check-
point/restart. Depending on her privileges, the user may be
given the option to select an alternative execution path for
her job or alternative system responses to potential anomalies,
sorted by their “popularity”. A recommendation engine pow-
ered by DL technology will incorporate innovative “social”
features and learn from the choices made by other users so as
to empower wisdom-of-the-crowd.

V. REMAINING CHALLENGES

To realize the vision presented in this paper, further progress
in a number of technical areas is necessary. We discuss some
of them briefly in what follows.

Prediction: The trend in prediction is towards on-line tech-
niques based on streamed data since they allow not only
generating predictions, but more importantly, allow acting
on them in real-time [64]. Being able to generate accurate
predictions in real-time based on high-volume and high-
velocity data that is being streamed is challenging. It requires
developing novel methods for on-line training and advanced
data management techniques for minimizing the delay when
making real-time predictions in live systems. It also requires
devising adaptive mechanisms for throttling the volume and
velocity of streamed data utilizing feedback from Machine
Learning algorithms to limit storage needs. Developing an
on-line prediction framework and using it to build predictive
models with recall over 80% and precision over 90% for
classification tasks and error under 5% for regression tasks
in HPDC systems remains an ambitious objective.

Resiliency, energy efficiency: Existing software-based tech-
niques for resiliency and energy efficiency in HPDC systems
act in isolation as if the two properties are independent, when
in fact they are often intertwined [65]. What is lacking is
a holistic approach to these problems through a cognified
dispatcher that can make intelligent and proactive decisions
driven by a suite of predictive models. Only in this manner

can we hope to navigate the complex trade-off space between
resiliency and energy efficiency. For example, powering nodes
on-and-off frequently to save energy can be detrimental for re-
siliency, while frequent check-pointing for increased resiliency
can be detrimental for energy efficiency. How to effectively
utilize information provided by different predictive models in
making dispatching decisions with multi-dimensional objec-
tive functions remains a challenge.

Deep Learning: The vision presented in this paper uses
DL technologies for predicting HPDC system behavior, for
detecting anomalies in HPDC operations and for formulating
corrective actions as part of a management platform. Unlike
typical DL applications such as image recognition or machine
translation that can rely on huge corpuses of data for training,
anomaly detection in HPDC systems typically has to contend
with smaller training sets since anomalies in HPDC systems,
by definition, are rare and generate strong class imbalance
problems. An additional issue is the structure of the feature
space for sensor data, where many features can have zero
values (e.g., resource usage for hybrid HPDC systems). While
use of DL for detecting anomalies is relatively straightforward
since it can be cast as a classification problem, use of DL
for building predictive models requires solving regression
problems. Thus, we need to progress beyond the state-of-the-
art in DL technologies to develop new techniques by designing
training algorithms that do not require huge data sets and
that are suitable for applying DL to regression problems.
One possibility is to seamlessly apply traditional regression
methods on features extracted by under-complete stacked de-
noising auto encoders or convolutional deep networks from
time series data. Deep networks provide a concise description
of the time series, but still enable regression methods to work
on more informative, non-linear correlations extracted from
raw data.

System management: Current system management tools
are limited essentially to resource allocation, scheduling and
monitoring. They lack predictive or social capabilities, do
not provide control actions and are based on rather simple
interaction models. The vision we presented in this paper goes
well beyond the state-of-the-art and takes HPDC management
systems to a whole new level by incorporating advanced
predictive powers, social features empowering wisdom-of-
the-crowd and unprecedented control, all delivered within a
software tool featuring a modern user interface and advanced
graphical capabilities.

VI. CONCLUSIONS

In this paper we have presented our vision for cognifying
distributed systems in order to render their future develop-
ment in terms of scale and computing power sustainable.
Achieving this vision requires embracing new fields such
as data science, machine learning and artificial intelligence.
Specifically, data-driven predictive models of system behavior
need to be developed for building intelligent systems to operate
and maintain future distributed systems. We identified three
different areas in which cognification can have an impact:

9



energy efficiency, resiliency and manageability. For each area,
we identified predictive models that can be built and integrated
at various levels of the distributed system. These include
power, workload and failure predictions that can help cognify
job dispatching, fault tolerance mechanisms such as check-
pointing, and management tools in general. In the case of
management, we sketched the architecture of an intelligent
platform that integrates all these components.

Throughout the paper, we underlined research directions,
along with the corresponding challenges, that need to be
pursued to make our vision a reality. For on-line construc-
tion of data-driven predictive models, the challenges are in
processing huge amounts of data at high resolution, with-
out imposing significant overhead on the monitored system.
Current machine learning methods need to be optimized for
on-line use and the power of novel techniques such as Deep
Learning need to be extended to this application domain. As
for building intelligent software for management of distributed
systems, what is missing is the integration step where various
components need to act in unison based on models built from
data originating at different sources. Proactive management
is currently very limited and this integration is necessary to
achieve performance levels necessary for wide-scale adoption
of such tools.

We believe that solutions to other well-known problems
in distributed computing, such as coordination, consensus
and replicated data management, can also benefit from being
cognified. Consistent replication of data spanning multiple data
centers is a common technique for satisfying the extreme scale
and reliability requirements of data managed by the likes of
Google [66] and Amazon [67]. Consensus is an important
abstraction for guaranteeing replica consistency [68]. It is well
known that consensus cannot be solved in asynchronous dis-
tributed systems without a form of failure detector [69]. Fail-
ure detection is also critical for determining the performance
of the resulting solutions for consensus [70]. An interesting
open question is the relation between our predictive models
for failures and failure detectors that have been proposed
in the context of consensus. We believe that being able to
anticipate failures in advance, and not just detect them when
they occur, can prove to be very useful in devising better
consensus protocols.

REFERENCES

[1] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “The opportunities and
challenges of exascale computing,” Summary Report of the Advanced
Scientific Computing Advisory Committee (ASCAC) Subcommittee, pp.
1–77, 2010.

[2] K. Kelly, The inevitable: understanding the 12 technological forces that
will shape our future. Penguin, 2017.

[3] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. Springer, 2010, pp. 1–25.

[4] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero et al., “Scaling
the power wall: a path to exascale,” in High Performance Computing,
Networking, Storage and Analysis, SC14: International Conference for.
IEEE, 2014, pp. 830–841.

[5] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and L. Benini,
“Unveiling eurora—thermal and power characterization of the most
energy-efficient supercomputer in the world,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 2014,
pp. 1–6.

[6] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5–28, 2014.

[7] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale
computing study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[8] S. Hukerikar and C. Engelmann, “Resilience design patterns: A
structured approach to resilience at extreme scale,” arXiv preprint
arXiv:1708.07422, 2017.

[9] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application monitoring
and checkpointing in hpc: looking towards exascale systems,” in Pro-
ceedings of the 50th Annual Southeast Regional Conference. ACM,
2012, pp. 262–267.

[10] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[11] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[12] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement
of hpc applications,” in Proceedings of the 22nd annual international
conference on Supercomputing. ACM, 2008, pp. 175–184.

[13] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and
J. Torres, “Towards energy-aware scheduling in data centers using
machine learning,” in Proceedings of the 1st International Conference
on energy-Efficient Computing and Networking. ACM, 2010, pp. 215–
224.

[14] M. Shojafar, C. Canali, R. Lancellotti, and S. Abolfazli, “An energy-
aware scheduling algorithm in dvfs-enabled networked data centers.” in
CLOSER (2), 2016, pp. 387–397.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 164–177.

[16] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[17] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[18] A. Borghesi, F. Collina, M. Lombardi, M. Milano, and L. Benini, “Power
capping in high performance computing systems,” in International
Conference on Principles and Practice of Constraint Programming.
Springer, 2015, pp. 524–540.

[19] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive dvfs and thread packing under power caps,” in Proceedings of
the 44th annual IEEE/ACM international symposium on microarchitec-
ture. ACM, 2011, pp. 175–185.

[20] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems. Springer
Science & Business Media, 2012, vol. 39.

[21] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr)
for linux clusters,” in Journal of Physics: Conference Series, vol. 46,
no. 1. IOP Publishing, 2006, p. 494.

[22] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guer-
mouche, T. Herault, Y. Robert, F. Vivien, and D. Zaidouni, “Unified
model for assessing checkpointing protocols at extreme-scale,” Concur-
rency and Computation: Practice and Experience, vol. 26, no. 17, pp.
2772–2791, 2014.

[23] F. Cappello, H. Casanova, and Y. Robert, “Checkpointing vs. migration
for post-petascale supercomputers,” in Parallel Processing (ICPP), 2010
39th International Conference on. IEEE, 2010, pp. 168–177.

[24] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous
learning of hpc infrastructure models using big data analytics and in-
memory processing tools,” in 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017, pp. 1038–1043.

10



[25] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[26] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon,
J. P. White, N. Simakov, A. K. Patra, J. Sperhac, T. Yearke et al., “Open
xdmod: A tool for the comprehensive management of high-performance
computing resources,” Computing in Science & Engineering, vol. 17,
no. 4, pp. 52–62, 2015.

[27] T. Hey, S. Tansley, K. M. Tolle et al., The fourth paradigm: data-
intensive scientific discovery. Microsoft research Redmond, WA, 2009,
vol. 1.

[28] N. Cristianini, “Intelligence reinvented,” New Scientist, vol. 232, no.
3097, pp. 37–41, 2016.

[29] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE transactions on knowledge and data engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[30] S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual
object recognition: A review,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 7, pp. 1354–1369, 2014.

[31] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning
to enhance cancer diagnosis and classification,” in Proceedings of the
International Conference on Machine Learning, 2013.

[32] H. R. Varian, “Big data: New tricks for econometrics,” The Journal of
Economic Perspectives, vol. 28, no. 2, pp. 3–27, 2014.

[33] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 8599–8603.

[34] L. van der Maaten, P. Boon, G. Lange, H. Paijmans, and E. Postma,
“Computer vision and machine learning for archaeology,” Proceedings
of Computer Applications and Quantitative Methods in Archaeology, pp.
112–130, 2006.

[35] J. Hutchins, “Example-based machine translation: a review and com-
mentary,” Machine Translation, vol. 19, no. 3, pp. 197–211, 2005.

[36] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in International Conference on
Machine Learning, 2013, pp. 1337–1345.

[37] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[38] J.C. McCullough et al., “Evaluating the effectiveness of model-based
power characterization,” in USENIX ATC’11, vol. 20, 2011.

[39] W. Dargie, “A stochastic model for estimating the power consumption
of a processor,” IEEE Trans Comput., vol. 64, no. 5, pp. 1311–1322,
2015.

[40] P. Gschwandtner et al., “Modeling CPU energy consumption of HPC
applications on the IBM Power7,” in PDP’14, 2014, pp. 536–543.

[41] X. Ma et al., “Statistical power consumption analysis and modeling for
GPU-based computing,” in ACM SOSP HotPower’09, 2009.

[42] M. Witkowski et al., “Practical power consumption estimation for real
life HPC applications,” Future Gener Comput Syst., vol. 29, no. 1, pp.
208–217, 2013.

[43] H. Nagasaka et al., “Statistical power modeling of GPU kernels using
performance counters,” in IGCC’10, 2010, pp. 115–122.

[44] H. Shoukourian and T. Wilde, “Predicting the Energy and Power Con-
sumption of Strong and Weak Scaling HPC Applications,” Supercomp
Front Innov., vol. 1.2, 2014.

[45] C. Storlie, Curtis et al., “Modeling and predicting power consumption
of high performance computing jobs,” arXiv preprint arXiv: 14125247,
2014.

[46] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Predictive modeling for job power consumption in hpc systems,” in
International Conference on High Performance Computing. Springer,
2016, pp. 181–199.

[47] A. Sı̂rbu and O. Babaoglu, “Power consumption modeling and prediction
in a hybrid cpu-gpu-mic supercomputer,” in European Conference on
Parallel Processing. Springer, 2016, pp. 117–130.

[48] ——, “A data-driven approach to modeling power consumption for a
hybrid supercomputer,” Concurrency and Computation: Practice and
Experience, 2018.

[49] J. Gao and R. Jamidar, “Machine learning applications for data center
optimization,” Google White Paper, 2014.

[50] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovács, and R. M.
Badia, “Semantic resource allocation with historical data based predic-
tions,” in Cloud computing 2010. The First international conference on
cloud computing, GRIDs, and virtualization. Lisbon: IARIA, November
2010, pp. 104–109.

[51] X. Chen, C.-D. Lu, and K. Pattabiraman, “Predicting job completion
times using system logs in supercomputing clusters,” in Dependable Sys-
tems and Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP
Conference on. IEEE, 2013, pp. 1–8.

[52] C. Galleguillos, A. Sı̂rbu, Z. Kiziltan, O. Babaoglu, A. Borghesi, and
T. Bridi, “Data-driven job dispatching in hpc systems,” in International
Workshop on Machine Learning, Optimization, and Big Data. Springer,
2017, pp. 449–461.

[53] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Failure prediction
for hpc systems and applications: Current situation and open issues,”
The International Journal of High Performance Computing Applications,
vol. 27, no. 3, pp. 273–282, 2013.

[54] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Computing Surveys (CSUR), vol. 42, no. 3, pp. 1–68,
2010.

[55] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, F. Silva, and
K. Vahi, “Failure analysis of distributed scientific workflows executing
in the cloud,” in Network and service management (cnsm), 2012 8th
international conference and 2012 workshop on systems virtualiztion
management (svm). IEEE, 2012, pp. 46–54.

[56] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in 32nd IEEE Symposium
on Reliable Distributed Systems (SRDS), Braga, Portugal, Sep. 2013, pp.
205–214.

[57] A. Gainaru, M. S. Bouguerra, F. Cappello, M. Snir, and W. Kramer,
“Navigating the blue waters: Online failure prediction in the petascale
era,” Argonne National Laboratory Technical Report, ANL/MCS-P5219-
1014, 2014.

[58] A. Sı̂rbu and O. Babaoglu, “Towards operator-less data centers through
data-driven, predictive, proactive autonomics,” Cluster Computing,
vol. 19, no. 2, pp. 865–878, 2016.

[59] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, Posted at http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.

[60] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Obfuscatory obscanturism:
making workload traces of commercially-sensitive systems safe to
release,” in Network Operations and Management Symposium (NOMS),
2012 IEEE. IEEE, 2012, pp. 1279–1286.

[61] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley &
Sons, 2014.

[62] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 1–39, 2010.

[63] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical
study of learning from imbalanced data using random forest,” in Tools
with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International
Conference on, vol. 2. IEEE, 2007, pp. 310–317.

[64] P. V. Hentenryck and R. Bent, Online stochastic combinatorial optimiza-
tion. The MIT Press, 2009.

[65] O. Sarood, E. Meneses, and L. V. Kale, “A ‘cool’ way of improving
the reliability of hpc machines,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2013 International Conference
for. IEEE, 2013, pp. 1–12.

[66] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[67] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in ACM SIGOPS operating
systems review, vol. 41, no. 6. ACM, 2007, pp. 205–220.

[68] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[69] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” Journal of the ACM (JACM), vol. 43,
no. 4, pp. 685–722, 1996.

[70] N. Sergent, X. Défago, and A. Schiper, “Impact of a failure detection
mechanism on the performance of consensus,” in Dependable Comput-
ing, 2001. Proceedings. 2001 Pacific Rim International Symposium on.
IEEE, 2001, pp. 137–145.

11


	Copertina_postprint_IRIS_UNIBO
	CognifiedICDCS_2018Postprint

