

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Redefining the histopathologic profile of acute aortic syndromes: Clinical and prognostic implications

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Redefining the histopathologic profile of acute aortic syndromes: Clinical and prognostic implications / Leone, O.;Pacini, D.;Foà, A.;Corsini, A.;Agostini, V.;Corti, B.;Di Marco, L.;Leone, A.;Lorenzini, M.;Reggiani, L.B.;Di Bartolomeo, R.;Rapezzi, C.. - In: THE JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY. -ISSN 1097-685X. - STAMPA. - 156:5(2018), pp. 1776-1785. [10.1016/j.jtcvs.2018.04.086]

Availability:

This version is available at: https://hdl.handle.net/11585/645408 since: 2020-12-04

Published:

DOI: http://doi.org/10.1016/j.jtcvs.2018.04.086

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the accepted manuscript of:

Leone O, Pacini D, Foà A, Corsini A, Agostini V, Corti B, Di Marco L, Leone A, Lorenzini M, Reggiani LB, Di Bartolomeo R, Rapezzi C, Redefining the histopathologic profile of acute aortic syndromes: clinical and prognostic implications, The Journal of Thoracic and Cardiovascular Surgery (2018).

Final version is available at: https://doi.org/10.1016/j.jtcvs.2018.04.086

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

	ACCEPTED MANUSCRIPT
1	Redefining the histopathologic profile of acute aortic syndromes: clinical and prognostic
2	implications.
3	
4	Authors: Ornella Leone (1) MD, Davide Pacini (2) MD, PhD, Alberto Foà (3) MD, Anna Corsini
5	(3) MD, Valentina Agostini (1) MD, Barbara Corti (1) MD, Luca Di Marco (2) MD, Alessandro
6	Leone (2) MD, Massimiliano Lorenzini (3,4) MD, Letizia Bacchi Reggiani (3) MStat, Roberto Di
7	Bartolomeo (2) MD, Claudio Rapezzi (3) MD.
8	Institution: Cardiology, Department of Experimental Diagnostic and Specialty Medicine, Alma
9	Mater Studiorum-University of Bologna, Bologna, Italy.
10	Authors' affiliations:
11	(1) Department of Pathology, Sant'Orsola-Malpighi university Hospital, Bologna, Italy;
12	(2) Cardiac Surgery, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater
13	Studiorum-University of Bologna, Bologna, Italy;
14	(3) Cardiology, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater
15	Studiorum-University of Bologna, Bologna, Italy.
16	(4) University College London Institute for Cardiovascular Science and Barts Heart Centre, St.
17	Bartholomew's Hospital, London, United Kingdom.
18	Corresponding author:
19	Prof. Claudio Rapezzi
20	Cardiology, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater

- 21 Studiorum-University of Bologna
- 22 Via G. Massarenti 9,
- 23 40138 Bologna, Italy
- 24 Tel: +39 051 349858; Fax: +39 051 344859
- 25 Email: claudio.rapezzi@unibo.it
- 26

- 27 **Conflicts of interest:** we declare no conflicts of interest.
- 28 Funding sources: "Fondazione Luisa Fanti Melloni", University of Bologna, Italy.
- 29

30 **Glossary of abbreviations:**

- 31 AAS: acute aortic syndrome
- 32 ACS: acute coronary syndrome
- 33 AECVP: Association for European Cardiovascular Pathology
- 34 AHA: American Heart Association
- 35 BAV: bicuspid aortic valve
- 36 CAD: coronary artery disease
- 37 CI: confidence interval
- 38 CV: cardiovascular
- 39 EFFL: elastic fibre fragmentation/loss
- 40 EFT: elastic fibre thinning out
- 41 GFR: glomerular filtration rate
- 42 HR: hazard ratio
- 43 ICI: intralamellar collagen increase
- 44 I-MEMA: intralamellar mucoid extracellular matrix accumulation
- 45 IRAD: International Registry of Acute Aortic Dissection
- 46 LMC: laminar medial collapse
- 47 MD: medial degeneration
- 48 MDRD: modification of diet in renal disease
- 49 MFS: Marfan syndrome
- 50 SCVP: Society for Cardiovascular Pathology
- 51 SD: standard deviation
- 52 SHR: sub-hazard ratio

53	TCI: translamellar collagen increase
54	T-MEMA: translamellar mucoid extracellular matrix accumulation
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	

79 ABSTRACT

80 **Objectives:** To describe the aortic histopathologic substrates in patients with type A surgically 81 treated acute aortic syndromes, to provide clinico-pathological correlations, and to identify the 82 possible prognostic role of histology.

Methods: We assessed the aortic wall degenerative and/or inflammatory alterations of 158 patients according to the histopathologic consensus documents. Moreover, we correlated these histologic patterns with the patients' clinical data as well as long-term follow-up for mortality, major aortarelated events, and non-aorta-related events (including cardiovascular ones).

Results: We identified two histopathologic patterns: 122 (77%) patients with degenerative 87 alterations and 36 (23%) with mixed degenerative-atherosclerotic lesions. Patients with mixed 88 alterations were older (mean 69.6±8.7 vs. 62.2±12.4, p=0.001) and more hypercholesterolemic 89 (33.3% vs. 13.9%, p=0.017). The degenerative subgroup showed more Intralamellar-Mucoid 90 91 Extracellular Matrix Accumulation (86% vs. 66.7%, p=0.017), and a lower prevalence of Translamellar Collagen Increase (9.8% vs. 50%, p<0.001). Patients with mixed degenerative-92 93 atherosclerotic abnormalities more frequently had long-term non-aorta-related events compared to those with degenerative abnormalities alone (p=0.046); no differences were found between the 94 groups with respect to long term mortality, major aorta-related events and cardiovascular non-aorta-95 related events. 96

97 **Conclusion:** Although degenerative lesions of the medial layer were present in all specimens, 98 substantial atherosclerosis coexisted in nearly a quarter of cases. Patients with mixed degenerative-99 atherosclerotic abnormalities had a coherent clinical risk profile, a clinical presentation frequently 100 mimicking ACS and a higher incidence of non-aorta-related events during follow-up. So, 101 histopathologic characterization may improve the long-term prognostic stratification of patients 102 following surgical treatment.

103 **Keywords:** acute aortic syndromes, clinico-pathological correlations, long-term follow-up.

104

105 INTRODUCTION

Type A Acute Aortic Syndromes (AAS) are a life-threatening condition that require emergency surgical treatment (1). Although different inherited and acquired conditions predispose to this dramatic event, our knowledge of the histology of the diseased aortic wall is incomplete. The available clinico-pathological correlation studies are relatively old and tend to examine acute and chronic aortic diseases together (2-5).

The histopathology underlying type A AAS is generally considered due to degenerative lesions of 111 the aortic medial layer, first identified by Ehrdheim in 1930 as "aortic idiopathic (cystic) medial 112 necrosis" (6). Recently, however, the Association for European Cardiovascular Pathology (AECVP) 113 and the Society for Cardiovascular Pathology (SCVP) have proposed a revised nomenclature, 114 terminology, grading systems and diagnostic criteria for aortic diseases in two consensus statements 115 on the histopathology of inflammatory (7) and non-inflammatory degenerative (8) aortic diseases. 116 117 We applied these criteria to the analysis of the aortic specimens obtained during surgery, with the aim of providing detailed histopathologic characterization and search for clinico-pathological 118 119 correlations, including the possible role of histology in prognostic stratification.

120

121 METHODS

122

123 Clinical setting

Our Hospital is the AAS referral centre for Bologna and the surrounding metropolitan area (catchment area 1000000 inhabitants).

Our registry includes all adult (>18 years) consecutive patients with a final diagnosis of spontaneous AAS referred to our centre between January 1^{st} 2000 and December 31^{st} 2013. Patients with symptom onset >14 days or with traumatic AAS were not included. Median follow-up for alive patients was 4 years (interquartile range 2.2-6 years). The study conforms to the principles

outlined in the Declaration of Helsinki, was approved by the local ethics committee and patientsprovided written informed consent.

132

134

133 Pathology

135 type A AAS and paraffin embedded (**supplementary figure 1**). The histologic sections were 136 stained with Hematoxylin-Eosin and stainings for collagen (Azan-Mallory trichrome) and elastic 137 fibres (Weigert-Van Gieson).

An average of six samples were obtained from ascending aortic specimens of patients operated for

The samples were evaluated de novo, blind to clinical data, applying the AECVP/SCVP documents
diagnostic criteria (7, 8).

Degenerative aortic medial damage was assessed as overall medial degeneration (MD) resulting from the sum of 6 individual abnormalities: mucoid extracellular matrix accumulation (MEMA), both intralamellar (I-MEMA) and translamellar (T-MEMA); elastic fibre fragmentation/loss (EFFL); elastic fibre thinning out (EFT); laminar medial collapse (LMC); intralamellar collagen increase (ICI) and translamellar collagen increase (TCI).

Overall MD was graded as mild, moderate or severe, considering both severity and distribution of
 single abnormalities.

Atherosclerotic plaques were described according to the American Heart Association (AHA) scheme (9, 10). Atherosclerosis was then graded as not significant, mild, moderate or severe. Only moderate to severe lesions were considered causative of significant medial damage.

150

151 Clinical definitions

152 Major aorta-related events were defined as re-hospitalizations for the following aortic complications

153 in some cases requiring re-intervention: organ malperfusion, increasing aortic diameter, progressive

154 false lumen dilation, aortic rupture, re-dissection, moderate/severe aortic regurgitation.

155	Non-aorta-related events were defined as re-hospitalizations for other CV causes (including acute
156	coronary syndrome (ACS), congestive heart failure, arrhythmia, cerebrovascular accident, bleeding,
157	and other CV causes) and re-hospitalization for non-CV causes, mainly neoplasms and infections.
158	Sudden death was considered aorta-related in cases of aortic rupture documented on post-mortem or
159	when preceded by signs or symptoms suggestive of cardiac tamponade or aneurysm rupture.
160	Sudden death was considered cardiac, but not aorta-related in the remaining cases.
161	High CV risk included patients with history of coronary artery disease and/or stroke and/or aged
162	>40 with at least one CV risk factor (hypertension, hypercholesterolemia, diabetes, current smoking
163	habit).
164	ACS-like ECG abnormalities were defined as previously described (11-12).
165	Glomerular Filtration Rate (GFR) was estimated using the modified MDRD equation (13).
166	Cardiac Troponin was measured with a standard assay up to 2010, and with a high-sensitivity assay

167 thereafter.

168

169 Statistical analysis

Categorical variables are expressed as number and percentage; continuous variables as mean \pm 170 standard deviation (SD) or median and interquartile range (IQR). Categorical variables were 171 compared with Chi-square test or Fisher exact test in cases of small number of events. Shapiro-Wilk 172 W test was performed to assess normality distribution of continuous variables; then comparisons 173 were performed with Student's t-test or Mann-Whitney test accordingly. The Kaplan Meier method 174 was used to analyse the occurrence of death (Log-rank test for curves comparison); Cox regression 175 176 analysis was performed to identify predictors of mortality. Major aorta-related events, CV and other non-aorta-related events were evaluated with cumulative incidence function with death as 177 competing risk (Pepe and Mori test for curves comparison), and competing risk regressions were 178 used to identify long-term predictors. Regarding Cox regression model, proportional-hazards 179 assumption was evaluated on the basis of Schoenfeld residuals. For other events (aorta-related, non-180

aorta-related, CV non-aorta-related) the proportional-subhazards assumption in competing risk regression was tested ensuring that coefficients were time invariant. All variables tested at the univariable analysis were included in the initial multivariable model, one-by-one tested and eventually excluded according to p and chi squared values of the subsequent models. All statistical analyses were performed using Stata/SE 14.2 (StataCorp LP, College Station, Texas, USA). A p value <0.05 was considered significant.

187

188 **RESULTS**

189 Study population and histopathologic findings

257 patients with type A AAS were considered; 218 (85%) underwent surgical treatment during the 190 index hospitalization. Surgical specimens for histology were available for 158 patients who 191 constituted our study population (supplementary figure 2). Baseline histopathologic characteristics 192 193 are reported in Table 1. Patients with unavailable aortic specimens (60) had similar baseline characteristics to those included in the study (supplementary table 1). All surgical specimens 194 195 showed MD and this was severe in 38 patients (24%). The most frequent degenerative abnormalities were EFFL (153 patients, 98.7%) and EFT (145 patients, 92.8%), and I-MEMA (129 196 patients, 81.6%), (figure 1). Coexisting atherosclerosis (any grade) was documented in 88 patients 197 (55.7%), and was moderate or severe in 36 (22.8%). Patients with coexisting moderate-severe 198 atherosclerosis constituted the mixed degenerative-atherosclerotic group, renamed "mixed" for 199 simplicity. The study population was therefore divided accordingly into two groups: 122 patients 200(77.2%) with exclusively degenerative abnormalities and 36 patients (22.8%) with mixed 201 degenerative-atherosclerotic findings (figure 2). 202

203 Comparing the two groups, MEMA - especially intralamellar - was the single abnormality 204 that most characterized the degenerative group; the most frequent alteration in the mixed group was 205 TCI. LMC was found in 61 patients (50%) in the degenerative group and in 14 (38.9%) in the 206 mixed group. Among the mixed group, this abnormality was mainly (13/14) present as a dense band

of elastic fibre compaction bordering the lower margin of atherosclerotic plaque. In degenerative patients on the other hand, LMC was usually found in the central areas of the medial layer above or on the same level as the dissection (**supplementary figure 3**).

210 Clinical findings

Baseline clinical characteristics of the study population are reported in **table 2**. 147 patients (93%) were diagnosed with acute aortic dissection, and the remaining 11 patients (7%) with intramural haematoma. Mean age was 63.9 and 68% were males. Amongst CV risk factors, hypertension was the most prevalent (114 patients, 72.2%), history of coronary artery disease (CAD) and stroke were present in 11 (7%) and in 5 patients (3.2%) respectively. Marfan syndrome (MFS) and bicuspid aortic valve coexisted in 2 (1.3%) and in 6 patients (3.8%) respectively.

217

218 Clinico-pathological correlations

Mixed group patients were older (69.6 ± 8.7 vs. 62.2 ± 12.4 , p=0.001) and had a higher prevalence of hypercholesterolemia compared to those in the degenerative group (33.3% vs. 13.9%, p=0.017). Additionally, clinical presentation of patients in the mixed group was more often characterised by chest pain and ACS-like ECG abnormalities (38.9% vs. 19.7%, p=0.032) (**table 2**).

The comparison between patients with dissection (147) vs intramural haematoma (IMH, 10) did not show differences in the histopathologic diagnostic category. However, patients with dissection presented a higher percentage of T-MEMA (70.7% vs 36,4%, p=0.001) while IMH was strongly associated with atherosclerotic lesions (90.9% vs 53.1%, p=0.023) (**supplementary table 2**).

Both patients with a diagnosis of MFS were included in the degenerative group with severe MD in one case and moderate MD in the other. No atherosclerosis was found in these patients.

Of the 6 patients with bicuspid aortic valve, 5 had purely degenerative abnormalities - moderate in three cases, while it was graded mild and severe in the other two patients - while mixed abnormalities (with moderate MD) were found in the last patient.

Patients with ascending aorta diameter \geq 55 mm at presentation had a more severe overall MD compared to patients with diameter <55 mm [51.7% (15/29) vs. 12.3% (7/57), p<0.001], showing mostly moderate/severe I-MEMA, T-MEMA and EFT (**supplementary table 3**).

Patients over the age of 50 were more frequently found to have atherosclerotic abnormalities [59.8% (82/137) vs. 28.6% (6/21), p=0.014], I-MEMA [83,2% (114/137) vs. 71.4% (15/21), p=0.006], and moderate/severe EFFL [81.7% (112/137) vs. 23.8% (5/21), p<0.001] (supplementary table 4).

Figure 3 shows the prevalence of atherosclerosis according to age, gender, ascending aorta diameter and AAS subtype according to the DeBakey classification.

241

242 Outcome and prognostic stratification

In-hospital mortality reached 19% (30 patients) in our population. 45 patients died during followup, with an all-cause mortality at 1, 3 and 6-years of 23%, 26% and 33% respectively. The cause of death was aorta-related in 22 patients (post-operative complications in 21 cases, one patient died after reintervention for severe aortic regurgitation during follow-up), CV non-aorta-related in 8 patients (1 for ischemic strokes, 3 for haemorrhagic strokes, 2 for endocarditis on prosthetic valve, 1 for sudden cardiac death and 1 for cardiogenic shock secondary to ischemic dilated cardiopathy), and non-CV-related in 15 patients (cancer in 4, sepsis in 8, and other causes in 3).

Cumulative incidence of major aorta-related events at 1, 3 and 6-years follow-up was 9%, 16% and 25% respectively, that of non aorta-related events was 31%, 44% and 64% respectively, and that of 252 CV non-aorta-related events was 10%, 17% and 23% respectively.

Figure 4 and **figure 5** show the 6-year clinical outcome according to histopathologic characteristics. Patients with mixed degenerative-atherosclerotic abnormalities more frequently had non-aorta-related events during follow-up compared to those with degenerative abnormalities alone (Pepe and Mori test, p=0.046, **figure 5**). No differences were found between these two subgroups with respect to mortality (34 deaths among degenerative patients and 11 among mixed patients at

the end of follow-up, log-rank test, p=0.574), major aorta-related events (19 events among degenerative patients and 10 events among mixed patients at the end of follow-up, Pepe and Mori test, p=0.407), and CV non-aorta-related events (19 events among degenerative patients and 10 events among mixed patients at the end of follow-up, Pepe and Mori test, p=0.202).

Table 3A and table 3B report the major clinical and histologic incremental risk factors for 262 6-year-mortality and for 6-year-non-aorta-related events. Age [HR 1.03 for each 1-year increase: 263 95% CI 0.99-1.06; P=0.069, borderline significance] and GFR $< 60 \text{ ml/min}/1.73\text{m}^2$ at presentation 264 [HR 2.33; 95% CI 1.24-4.4; P=0.009] were independent predictors of mortality (table 3A). Non-265 aorta-related events were analysed in detail, and no differences were found according to the 266 patients' CV risk profile (supplementary figure 4). Hypertension [SHR 1.79; 95% CI 1.01-3.21; 267 P=0.0471 and the coexistence of atherosclerotic lesions together with degenerative abnormalities 268[SHR 1.65; 95% CI 0.96-2.84; P=0.068, borderline significance] were found to be independent risk 269 270 predictors for non-aorta-related events (table 3B).

271

272 **DISCUSSION**

This is the first study that provides a detailed description of the histopathologic findings of 273 aortic specimens - as well as their clinico-pathological correlation - from a large unselected cohort 274 of patients with type A AAS, applying the classification and diagnostic criteria from the recent 275 AECVP/SCVP consensus statements (7, 8). The main findings of the study are: 1. Although 276 degenerative lesions of the medial layer were present in all specimens, substantial atherosclerosis 277 coexisted in nearly a quarter; 2. Patients with mixed degenerative-atherosclerotic abnormalities had 278 a coherent clinical risk profile, with a more frequent presentation mimicking ACS and a long-term 279 follow-up characterized by non-aorta-related events, including coronary and cerebrovascular events; 280 3. Histopathologic characterization could help the long-term prognostic stratification of patients 281 following surgical treatment. 282

The histopathologic substrate of our cohort was heterogeneous do to the variable 283 combination - quantitatively and qualitatily - of degenerative and atherosclerotic lesions. All 284 patients showed MD abnormalities: almost all cases had elastic fibre abnormalities, including both 285 thinning out and fragmentation; MEMA was present as I-MEMA in over 80% of patients and as T-286 MEMA (an expression of a more severe mucopolysaccharide accumulation) in 68.4%; collagen 287 increase was present with a heterogeneous distribution: intralamellar in 74% and translamellar (i.e. 288 fibrosis) in 19% of cases. It is noteworthy that more than 50% of patients had some degree of 289 atherosclerosis associated with degenerative lesions. Almost a quarter had moderate/severe 290 atherosclerosis, which the AECVP/SCVP statement (7) considers a cause of significant aortic wall 291 damage with consequent weakness. 292

The comparison between exclusively degenerative or mixed subgroups reveals differences 293 in the distribution of mucoid accumulation and of fibrosis. I-MEMA was the most typical lesion in 294 295 purely degenerative patients, while translamellar collagen was distinctly increased in the mixed group. Interestingly, 1/3 of major atherosclerotic plaques was accompanied by a thick band of 296 297 medial laminar collapse, which, together with TCI, can probably be considered a final response to the atherosclerotic plaque penetrating more deeply into the media. Elastic fibre alterations were 298 present in the purely degenerative and mixed groups in equal measure, probably due to the 299 heterogeneity of various causative conditions, including the aging process. Our only 2 patients with 300 Marfan syndrome and five out of six patients with bicuspid aortic valve had moderate/severe 301 degenerative lesions, in line with the findings of previous studies (14, 15). 302

Unlike previously published similar series (2-5), our study included exclusively patients with AAS. The first two published series evaluating clinico-pathological features of the ascending aorta described 63 (2) and 339 patients (3) who underwent surgery for aneurysm or dissection of the ascending aorta. Compared to our population, the patients in these series were younger, with a higher prevalence of connective tissue disorders and a lower prevalence of severe atherosclerosis. MD was the most common histopathologic finding, and an inverse relationship between the severity

of MD and age was found (3). A more recent study describing 513 patients (4) found that 309 connective tissue disorders were most frequently associated with MD, followed by aging and no 310 association between bicuspid aortic valve and medial degeneration was found. Severe 311 atherosclerosis was described in an exiguous number of patients. Again, it should be noted that the 312 population in this series was younger compared to ours and that both aneurysms and dissections 313 were considered. A further study on 338 surgical specimens including a few Marfan patients, found 314 that MD was a common, age-related and non-specific histological pattern in aortic aneurysms and 315 dissections (5). Atherosclerosis was present only in 10% of patients, and was more frequently 316 associated with aneurysms than dissections. 317

In our study atherosclerosis was more frequent than previously described, and this is probably due to the older age of our patients. On the other hand, clinical and epidemiological characteristics of our study population were similar to those of the largest "real world registry" IRAD (International Registry of Acute Aortic Dissection) (16). In particular, mean age (63.9 years), prevalence of male gender (about 68.4%), hypertension (72.2%) and bicuspid aortic valve (3.8%) were quite similar whereas Marfan syndrome was less frequent (1.3% vs. 4.7%) probably due to the prophylactic surgery strategy adopted in our network.

As expected, patients with atherosclerotic lesions had a higher CV risk profile: in particular, they were older, male, and hypercholesterolemic. Interestingly, atherosclerotic lesions were more frequent in patients with a diameter of the ascending aorta <55 mm, and in type I AAS compared with type II (borderline significance) (**figure 3**).

The long-term outcome of patients with associated atherosclerosis is characterized by high probability of non-aorta related events including coronary and cerebrovascular events and infectious complications even if no association with overall mortality was shown. As already demonstrated by other studies, renal function and age (borderline significance in our work) were found to be risk factors for mortality (**17**). Notably, along with hypertension, the presence of atherosclerotic abnormalities was a probable risk factor for non-aorta-related events. Therefore, the knowledge of

the histopathologic substrate underlying AAS may provide additional information to the level of
 risk derived from patients' clinical characteristics alone.

337

338 Study limitations

339 Due the monocentric nature of our work, the size of the study population and relative 340 events are not comparable with international registries. Twenty-seven percent of aortic specimens 341 among surgically treated patients did not reach the histology laboratory due to logistic reasons.

Marfan syndrome was less frequent in our study than in other series probably due to the prophylactic surgery strategy adopted in our network.

Whereas the description of the histopathologic spectrum - according to the current AECVP/SCVP classification - in patients with type A AAS provides robust and new information, the impact of clinico-pathological correlations is inevitably limited by the relatively small study population and the few events during follow-up. Lastly, due to the retrospective nature of this study and the emergency clinical setting, availability of laboratory data and imaging details - both at presentation and during follow-up - is limited.

350

351 Clinical implications

The new AECVP/SCVP classification allows a comprehensive description of aortic wall abnormalities, provides a standardised characterization of MD, and represents a useful tool for nosography, clinico-pathological correlations, and prognostic information in patients with type A AAS. Full knowledge of the histopathologic details of patients who underwent surgery for AAS can lead to better planning of long-term follow-up, especially regarding preventive strategies for nonaorta-related events.

358

359

360

361 **REFERENCES**

- 362 1. Erbel R (Chairperson), Aboyans V (Chairperson), Boileau C, Bossone E, Di Bartolomeo R,
- Eggebrecht H, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873-2926.
- 2. Pomerance A, Yacoub MH, Gula G. The surgical pathology of thoracic aortic aneurysms.
 Histopathology 1977;1:257-276.
- 369 3. Klima T, Spjut HJ, Coelho A, Gray AG, Wukasch DC, Reul GJ Jr, et al. The morphology of
 ascending aortic aneurysms. Hum Pathol 1983;14:810-817.
- 4. Homme JL, Aubry MC, Edwards WD, Bagniewski SM, Pankratz VS, Kral CA, et al. Surgical
- Pathology of the Ascending Aorta: A Clinicopathologic Study of 513 Cases. Am J Surg Pathol
 2006;30:1159-1168.
- 5. Nesi G, Anichini C, Tozzini S, Boddi V, Calamai G, Goria F. Pathology of the thoracic aorta: a
 morphologic review of 338 surgical specimens over a 7-year period. Cardiovascular Pathology
 2009;18:134-139.
- 6. Erdheim J. Medionecrosis aortae idiopathica cystica. Virchows Arch Path Anat 1930;276:187229.
- 379 7. Stone JR, Bruneval P, Angelini A, Bartoloni G, Basso C, Batoroeva L, et al. Consensus statement
 380 on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the
 381 Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovascular
 382 Pathology 2015;24:267-278.
- 8. Halushka MK, Angelini A, Bartoloni G, Basso C, Batoroeva L, Bruneval P, et al. Consensus
 statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the
 Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases nomenclature and diagnostic criteria. Cardiovascular Pathology 2016;25:247-257.

- 9. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, et al. A report from
 the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart
 Association. Circulation 1994;89:2462-78.
- 390 10. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of
 advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A
 392 report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart
 393 Association. Circulation 1995;92:1355-74.
- 11. Biagini E, Lofiego C, Ferlito M, Fattori R, Rocchi G, Graziosi M, et al. Frequency,
 determinants, and clinical relevance of acute coronary syndrome-like electrocardiographic findings
 in patients with acute aortic syndrome. Am J Cardiol 2007;100:1013-1019.
- Hirata K, Wake M, Kyushima M, Takahashi T, Nakazato J, Mototake H, et al.
 Electrocardiographic changes in patients with type A acute aortic dissection. Incidence, patterns and
 underlying mechanisms in 159 cases. Journal of Cardiology 2010;56:147-153.
- Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to
 estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification
 of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461-470.
- 403 14. Leone O, Biagini E, Pacini D, Zagnoni S, Ferlito M, Graziosi M, et al. The elusive link between
 404 aortic wall histology and echocardiographic anatomy in bicuspid aortic valve: implications for
 405 prophylactic surgery Eur J Cardio-Thor Surg 2012;41:322-327.
- 406 15. Eleid MF, Forde I, Edwards WD, Maleszewski JJ, Suri RM, Schaff HV, et al. Type A aortic
 407 dissection in patients with bicuspid aortic valves: clinical and pathological comparison with
 408 tricuspid aortic valves. Heart 2013;99:1668-74
- 16. Booher AM, Isselbacher EM, Nienaber CA, Trimarchi S, Evangelista A, Montgomery DG, et al.
- 410 The IRAD Classification System for Characterizing Survival after Aortic Dissection. Am J Med
- 411 2013;126:730(e19-24).

412	17. Trimarchi S, Eagle KA, Nienaber CA, Rampoldi V, Jonker FH, De Vincentiis C, et al.
413	International Registry of Acute Aortic Dissection Investigators. J Thorac Cardiovasc Surg
414	2010;140:784-9.

416 FIGURE LEGENDS

Figure 1 Microscopic images illustrating the most frequently found degenerative lesions. A-B: 417 Aortic dissection in a Marfan patient showing severe elastic fibre fragmentation/loss around the 418 false lumen (arrows) (A, Weigert Van Gieson, original magnification x25); detail of elastic fibre 419 fragmentation (arrows) (B, Weigert Van Gieson, original magnification x100). C-D: Full thickness 420 aortic specimen with an area of elastic fibre rarefaction in the outer medial layer (C, arrow: Weigert 421 Van Gieson, original magnification x25); the detail shows thinning out of elastic fibres and enlarged 422 spaces between them (D: Weigert Van Gieson, original magnification x400). E-F: Examples of 423 intralamellar-mucoid extracellular matrix accumulation: there is mild (E, x100) to moderate (B, 424 x200) enlargement of intralamellar spaces containing bluish-pink mucoid material (Haematoxylin-425 Eosin stain). 426

Figure 2 A-B: Aortic dissection samples from pure degenerative patients. A: 45 year-old male with mild medial degeneration (Haematoxylin-Eosin, original magnification x25); B: 25 year-old male with bicuspid aortic valve and severe medial degeneration (B, Weigert Van Gieson stain, original magnification x25). C-D: Aortic specimens from the mixed group. The dissection is above the atherosclerotic lesions and the underlying media shows multifocal elastic fibre fragmentation (C arrows) and translamellar (D, arrow) collagen increase (Azan Mallory trichrome, original magnification x25).

Figure 3 Prevalence of atherosclerotic lesions according to age, ascending aorta diameter, gender,
and De Bakey subtype.

Figure 4 Mortality (left) and major aorta-related events (right) of type A AAS patients with degenerative (122 patients, green line) versus mixed (36 patients, blue line) histological abnormalities.

Figure 5 Non-aorta-related events (left) and cardiovascular non-aorta-related events (right) of type
A AAS patients with degenerative (122 patients, green line) versus mixed (36 patients, blue line)
histological abnormalities.

442 **TABLES**

- 443 **Table 1** Histopathologic findings in the overall population and in the subgroups defined by
- 444 histology.

VARIABLE	OVERALL	DEGENERATIVE	MIXED	P value
	(n=158)	(n=122, 77.2%)	(n=36, 22.8%)	
Atherosclerosis	88 (55.7%)	52 (42.6%)	36 (100%)	NA
Severe	8 (5.1%)	0 (0%)	8 (22.2%)	NA
Moderate	28 (17.7%)	0 (0%)	28 (77.8%)	NA
Mild	52 (32.9%)	52 (42.6%)	0 (0%)	NA
Not significant	70 (44.3%)	70 (57.4%)	0 (0%)	NA
Degenerative lesions	158 (100%)	122 (100%)	36 (100%)	1
I-MEMA	129 (81.6%)	105 (86%)	24 (66.7%)	0.017
Moderate/severe I-MEMA	93 (58.9%)	80 (65.6%)	13 (36.1%)	0.002
T-MEMA	108 (68.4%)	88 (72.1%)	20 (55.6%)	0.094
Moderate/severe T-MEMA	108 (68.4%)	88 (72.1%)	20 (55.6%)	0.094
Laminar medial collapse	75 (47.5%)	61 (50%)	14 (38.9%)	0.325
Dense laminar medial collapse	59 (37.3%)	46 (37.7%)	13 (36.1%)	0.982
Elastic fibre thinning out	145 (92.8%)	115 (94.3%)	30 (83.3%)	0.08
Moderate/severe elastic fibre thinning out	108 (68.4%)	87 (71.3%)	21 (58.3%)	0.205
Elastic fibre fragmentation	153 (98.7%)	117 (95.9%)	36 (100%)	0.489
Moderate/severe elastic fibre fragmentation	117 (74%)	91 (74.6%)	26 (72.2%)	0.945
Intralamellar collagen increase	117 (74%)	93 (76.2%)	24 (66.7%)	0.35
Moderate/severe intralamellar	23 (14.6%)	17 (13.9%)	6 (16.7%)	0.788

	A	CCEPTED MA	NUSCRIPT		
	collagen increase				
	Translamellar collagen increase	30 (19%)	12 (9.8%)	18 (50%)	< 0.001
	Moderate/severe translamellar collagen increase	18 (11.4%)	5 (4%)	13 (36.1%)	< 0.001
	Overall severe degenerative	38 (24%)	32 (26.2%)	6 (16.7%)	0.274
445	AAS: Acute Aortic Syndrome; I-ME	EMA: Intralamel	lar-Mucoid Extrace	llular Matrix Accumu	lation;
446	NA: Not Applicable; T-MEMA: Tra	nslamellar- Muc	oid Extracellular M	latrix Accumulation.	
447					
448					
449					
450					
451					
452					
453					
454					
455					
456					
457					
458					
459					
460					
461					
462					
463					
464					
465					

Table 2 Clinical findings in the overall population and in the subgroups according to histology.

VARIABLE	OVERALL	DEGENERATIVE	MIXED	P value
	(n=158)	(n=122, 77.2%)	(n=36, 22.8%)	
Aortic dissection	147 (93%)	115 (94.3%)	32 (88.9%)	0.459
Intramural haematoma	11 (7%)	7 (5.7%)	4 (11.1%)	0.273
Plaque rupture-ulceration	0 (0%)	0 (0%)	0 (0%)	1
De Bakey type I	111 (70.3%)	89 (73%)	22 (61.1%)	0.247
Patients' characteristics				
Age (years), mean ± SD	63.9 ± 12	62.2 ± 12.4	69.6 ± 8.7	0.001
Male gender	108 (68.4%)	80 (65.6%)	28 (77.8%)	0.238
Hypertension (history)	114 (72.2%)	84 (68.9%)	30 (83.3%)	0.136
Hypercholesterolemia	29 (18.4%)	17 (13.9%)	12 (33.3%)	0.017
Diabetes	6 (3.8%)	6 (4.9%)	0 (0%)	0.337
Current smoke	31 (19.6%)	23 (18.9%)	8 (22.2%)	0.639
Marfan syndrome	2 (1.3%)	2 (1.6%)	0 (0%)	1
Bicuspid aortic valve	6 (3.8%)	5 (4.1%)	1 (2.8%)	1
Aortic coarctation	0 (0%)	0 (0%)	0 (0%)	1
Known thoracic-abdominal aortic aneurysm (surgically treated or not)	13 (8.2%)	8 (6.6%)	5 (13.9%)	0.174
Previous AAS	2 (1.3%)	1 (0.8%)	1 (2.8%)	0.404
Previous stroke	5 (3.2%)	4 (3.3%)	1 (2.8%)	1
Coronary artery disease (history)	11 (7%)	6 (4.9%)	5 (13.9%)	0.127
Clinical features at presentation				
Systolic blood pressure (mmHg), mean ± SD	134.5 ± 37.3	132.6 ± 37.3	141.1 ± 37.1	0.231

l	ACCEPTED MA	ANUSCRIPT		
Back pain	56 (35.4%)	42 (34.4%)	14 (38.9%)	0.769
Chest pain	117 (74.1%)	88 (72.1%)	29 (80.6%)	0.426
Migratory pain	16 (10.1%)	10 (8.2%)	6 (16.7%)	0.203
Abdominal pain	35 (22.2%)	27 (22.1%)	8 (22.2%)	1
CVA at presentation	5 (3.2%)	5 (4.1%)	0 (0%)	0.589
Peripheral pulse deficit	36 (22.3%)	25 (20.5%)	11 (30.6%)	0.257
Shock within 12h of admission	28 (14.3%)	24 (19.7%)	4 (11.1%)	0.322
ACS-like ECG+chest pain	38 (24.1%)	24 (19.7%)	14 (38.9%)	0.032
ACS-like ECG	48 (30.4%)	32 (26.2%)	16 (44.4%)	0.06
Aortic diameters (mm) on imagin	ng at presentatio	n		
	44 (40-48)	45 (40-47)	43 (40-48)	
Valsalva sinuses, median (IQR)	(47/158)	(31/122)	(16/36)	0.955
	51 (46-56)	50 (45-56)	52 (47-56)	
Ascending aorta, median (IQR)	(86/158)	(62/122)	(24/36)	0.794
	32 (31-39)	33 (30-34)	31 (31-41)	0.661
Aortic arch, median (IQR)	(27/158)	(18/122)	(9/36)	0.661
	32 (27-38)	33 (27-38)	31 (28-39)	0.0(1
Descending aorta, median (IQR)	(29/158)	(21/122)	(8/36)	0.961
Laboratory findings				
GFR (ml/min/1.73m ²), median	67(53-82)	67 (54-85)	60 (51-77)	
(IQR)	(141/158)	(108/122)	(33/36)	0.371
— • • • •	33.3%	38.8%	16%	
Troponin positivity	(35/105)	(31/80)	(4/25)	0.05
Disease complications				
Pleural effusion	25 (15.8%)	20 (16.4%)	5 (13.9%)	0.801

		ACCEPTED M	ANUSCRIPT		
Peri	cardial effusion	64 (40.5%)	49 (40.2%)	15 (41.7%)	0.975
Peri	aortic effusion	13 (8.2%)	8 (6.6%)	5 (13.9%)	0.174
	derate/severe aortic	61 (38.6%)	44 (36.1%)	17 (47.2%)	0.311
Car	diac tamponade	19 (12%)	15 (12.3%)	4 (11.1%)	1
Cor	onary ostia involvement	16 (10.1%)	12 (9.8%)	4 (11.1%)	0.761
467 AA	S: Acute Aortic Syndrome;	ACS: Acute Core	onary Syndrome; C	T: Computed Tomo	graphy;
468 CV	A: Cerebrovascular Accident	; GFR: Glomerula	r Filtration Rate; SI	D: Standard Deviation	n; IQR:
169 inte	erquartile range.				
470					
471					
472					
473					
174					
475					
476					
477					
170					
478					
478 479					
479					
479 480					
479 480 481					
479 480 481 482					
479 480 481 482 483					

Table 3A Risk factors for 6-year mortality of type A surgically treated AAS patients.

VARIABLE	UNIVARIABLE		MULTIVARIABLE			
	ANALYSIS	ANALYSIS		ANALYSIS		
	HR (95% CI)	P value	HR (95% CI)	P value		
Age (for each 1-year increase)	1.03 (1.01-1.06)	0.019	1.03 (0.99-1.06)	0.069		
Male gender	0.95 (0.51-1.78)	0.897				
Hypertension (history)	1.16 (0.59-2.31)	0.653				
Hypercholesterolemia	1.22 (0.58-2.54)	0.587				
Diabetes	2.03 (0.62-6.59)	0.237				
Current smoke	0.67 (0.28-1.58)	0.365				
Marfan-BAV	0.33 (0.04-2.46)	0.285				
De Bakey type I	1.9 (0.47-1.71)	0.75				
GFR < 60 ml/min/1.73m ² at presentation	2.66 (1.43-4.95)	0.002	2.33 (1.24-4.40)	0.009		
Degenerative-atherosclerotic lesions	1.07 (0.54-2.11)	0.839				
Atherosclerosis (for each 1-point increase according to AHA classification)	1.12 (0.98-1.29)	0.083				

Harrell's C=0.65; Goodness of fit test (score test)=0.553; AIC=382; BIC=388

489 AAS: Acute Aortic Syndrome; AHA: American Heart Association; BAV: Bicuspid Aortic Valve;

490 CI: Confidence Interval; GFR: Glomerular Filtration Rate; HR: Hazard Ratio.

495	Table 3B Risk factors for 6-year non	-aorta-related events of type	A surgically treated AAS patient	s.
-----	--------------------------------------	-------------------------------	----------------------------------	----

VARIABLE	UNIVARIABLE ANALYSIS		MULTIVARIA	BLE
			ANALYSIS	
	SHR (95% CI)	P value	SHR (95% CI)	P value
Age (for each 1-year increase)	1.01 (0.98-1.03)	0.426		
Male gender	0.87 (0.54-1.44)	0.611		
Hypertension (history)	1.94 (1.09-3.46)	0.023	1.79 (1.01-3.21)	0.047
Hypercholesterolemia	0.97 (0.49-1.94)	0.954		
Diabetes	0.32 (0.03-2.82)	0.309		
Current smoke	0.86 (0.45-1.64)	0.651		
Marfan-BAV	0.69 (0.25-1.88)	0.472		
De Bakey type I	0.84 (0.51-1.42)	0.534		
GFR < 60 ml/min/1.73m ² at presentation	0.67 (0.39-1.15)	0.151		
Degenerative-atherosclerotic lesions	1.83 (1.09-3.07)	0.022	1.65 (0.96-2.84)	0.068
Atherosclerosis (for each 1-point				
increase according to AHA	1.06 (0.95-1.18)	0.245		
classification)				

496

AIC=585.9; BIC 592.1

497 AAS: Acute Aortic Syndrome; AHA: American Heart Association; BAV: Bicuspid Aortic Valve;

498 CI: Confidence Interval; GFR: Glomerular Filtration Rate; SHR: Sub-hazard Ratio.

499

500

501

502

503

SUPPLEMENTARY FILES

504

505 Supplementary table 1 Type A AAS surgically treated patients with available versus unavailable

506 surgical specimen for histology.

VARIABLE	OVERALL	SPECIMEN	SPECIMEN	P value
	(n=218)	AVAILABLE	UNAVAILABLE	
		(n=158, 72.5%)	(n=60, 27.5%)	
Aortic dissection	198 (90.8%)	147 (93%)	51 (85%)	0.116
Intramural haematoma	18 (8.3%)	11 (7%)	7 (11.7%)	0.276
Plaque rupture-ulceration	2 (0.9%)	0 (0%)	2 (3.3%)	0.074
De Bakey type I	147 (67.4%)	111 (70.3%)	36 (60%)	0.2
Patients' characteristics				
Age (years), mean ± SD	64.4 ± 12.1	63.9 ± 12	65.5 ± 12.4	0.385
Men	148 (67.9%)	108 (68.4%)	40 (66.7%)	0.939
Hypertension (history)	157 (72%)	114 (72.2%)	43 (71.7%)	0.922
Hypercholesterolemia	43 (19.7%)	29 (18.4%)	14 (23.3%)	0.526
Diabetes	9 (4.1%)	6 (3.8%)	3 (5%)	0.709
Current smoke	37 (17%)	31 (19.6%)	6 (10%)	0.107
Marfan syndrome	3 (1.4%)	2 (1.3%)	1 (1.7%)	1
Bicuspid aortic valve	7 (3.2%)	6 (3.8%)	1 (1.7%)	0.676
Aortic coarctation	0 (0%)	0 (0%)	0 (0%)	1
Known thoracic-abdominal aortic aneurysm (surgically treated or not)	19 (8.7%)	13 (8.2%)	6 (10%)	0.788
Previous AAS	3 (1.4%)	2 (1.3%)	1 (1.7%)	1
Previous stroke	9 (4.1%)	5 (3.2%)	4 (6.7%)	0.263

Coronary artery disease (history)	15 (6.9%)	11 (7%)	4 (6.7%)	01
	15 (0.770)	11 (770)	4 (0.770)	01
Clinical features at presentation				·
Systolic blood pressure (mmHg),				0.000
mean \pm SD	134.7 ± 38.4	134.5 ± 37.3	135.1 ± 41.9	0.932
Back pain	81 (37.2%)	56 (35.4%)	25 (41.7%)	0.489
Chest pain	161 (73.9%)	117 (74.1%)	44 (73.3%)	0.948
Migratory pain	24 (11%)	16 (10.1%)	8 (13.3%)	0.477
Abdominal pain	48 (22%)	35 (22.2%)	13 (21.7%)	0.916
CVA at presentation	9 (4.1%)	5 (3.2%)	4 (6.7%)	0.263
-		<u>`</u>	``´´	
Peripheral pulse deficit	48 (22%)	36 (22.3%)	12 (20%)	0.975
Shock within 12 of admission	39 (17.9%)	28 (14.3%)	11 (18.3%)	0.926
ACS-like ECG+chest pain	50 (22.9%)	38 (24.1%)	12 (20%)	0.649
ACS-like electrocardiogram	62 (28.4%)	48 (30.4%)	14 (23.3%)	0.389
Aortic diameters (mm) in first ima	ging examinati	on		
	42 (40-47)	44 (40-48)	40 (36-43)	
Valsalva sinuses, median (IQR)	(64/218)	(47/158)	(17/60)	0.019
	50 (46-55)	51 (46-56)	50 (46-54)	
Ascending aorta, median (IQR)				0.454
Ascending aorta, median (IQR)	50 (46-55) (123/218)	51 (46-56) (86/158)	50 (46-54) (37/60)	0.454
	(123/218)	(86/158)	(37/60)	
Ascending aorta, median (IQR) Aortic arch, median (IQR)	(123/218) 34 (31-40)	(86/158) 32 (31-39)	(37/60) 37 (34-41)	0.253
Aortic arch, median (IQR)	(123/218) 34 (31-40) (42/218)	(86/158) 32 (31-39) (27/158)	(37/60) 37 (34-41) (15/60)	0.253
Aortic arch, median (IQR) Descending aorta, median (IQR)	(123/218) 34 (31-40) (42/218) 35 (29-41)	(86/158) 32 (31-39) (27/158) 32 (27-38)	(37/60) 37 (34-41) (15/60) 40 (31-50)	0.253
	(123/218) 34 (31-40) (42/218) 35 (29-41)	(86/158) 32 (31-39) (27/158) 32 (27-38)	(37/60) 37 (34-41) (15/60) 40 (31-50)	0.454

	32%	33.3% (35/105)	26.1%	0.505
Troponin positivity	(41/128)		(6/23)	0.625
Disease complications				
Pleural effusion	37 (17%)	25 (15.8%)	12 (20%)	0.595
Pericardial effusion	89 (40.8%)	64 (40.5%)	25 (41.7%)	0.999
Periaortic effusion	26 (11.9%)	13 (8.2%)	13 (21.7%)	0.012
Moderate/severe aortic regurgitation	86 (39.4%)	61 (38.6%)	25 (41.7%)	0.797
Cardiac tamponade	28 (12.8%)	19 (12%)	9 (15%)	0.651
Coronary ostia involvement	21 (9.6%)	16 (10.1%)	5 (8.3%)	0.801

7 AAS: Acute Aortic Syndrome; ACS: Acute Coronary Syndrome; CT: Computed Tomography;

508 CVA: Cerebrovascular Accident; GFR: Glomerular Filtration Rate; SD: Standard Deviation; IQR:

- 509 interquartile range.

Supplementary table 2 Histopathologic characteristics according to type of AAS.

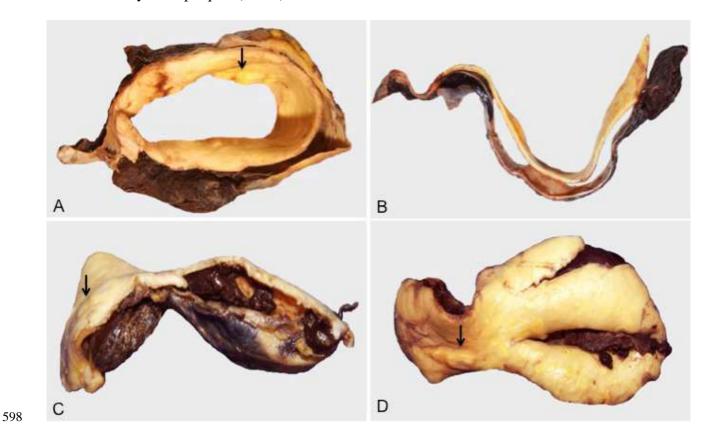
VARIABLE	OVERALL	DISSECTION	INTRAMURAL HAEMATOMA	P value
	(n=158)	93% (n=147)	7% (n=11)	
Atherosclerosis	88 (55.7%)	78 (53.1%)	10 (90.9%)	0.023
Severe	8 (5.1%)	6 (4.1%)	2 (18.2%)	0.098
Moderate	28 (17.7%)	26 (17.7%)	2 (18.2%)	1
Mild	52 (32.9%)	46 (31.3%)	6 (54.5%)	0.179
Not significant	70 (44.3%)	69 (46.9%)	1 (9.1%)	0.023
Degenerative lesions	158 (100%)	147 (100%)	11 (100%)	NA
I-MEMA	129 (81.6%)	121 (82.3%)	8 (72.7%)	0.425
Moderate/severe I-MEMA	93 (58.9%)	90 (61.2%)	3 (27.3%)	0.051
T-MEMA	108 (68.4%)	104 (70.7%)	4 (36.4%)	0.001
Moderate/severe T-MEMA	108 (68.4%)	104 (70.7%)	4 (36.4%)	0.001
Laminar collapse	75 (47.5%)	69 (46.9%)	6 (54.5%)	0.757
Dense laminar collapse	59 (37.3%)	54 (36.7%)	5 (45.4%)	0.747
Elastic fibre thinning out	145 (92.8%)	134 (91.2%)	11 (100%)	0.601
Moderate/severe elastic fibre thinning out	108 (68.4%)	102 (69.4%)	6 (54.5%)	0.326
Elastic fibre fragmentation	153 (98.7%)	143 (97.3%)	10 (90.9%)	0.306
Moderate/severe elastic fibre fragmentation	117 (74%)	110 (74.8%)	7 (63.6%)	0.477
Intralamellar collagen increase	117 (74%)	107 (72.8%)	10 (90.9%)	0.291
Moderate/severe intralamellar collagen increase	23 (14.6%)	19 (12.9%)	4 (36.4%)	0.056
Translamellar collagen increase	30 (19%)	27 (18.4%)	3 (27.3%)	0.438
Moderate/severe translamellar collagen increase	18 (11.4%)	16 (10.9%)	2 (18.2%)	0.363
Degenerative group	122 (77.2%)	115 (78.2%)	7 (63.6%)	0.274
Mixed group	36 (22.8%)	32 (21.8%)	4 (36.4%)	0.274
Overall severe degenerative	38 (24%)	36 (24.5%)	2 (18.2%)	1

525	AAS: Acute Aortic Syndrome; NA: Not Applicable; I-MEMA: Intralamellar-Mucoid Extracellular
526	Matrix Accumulation; T-MEMA: Translamellar- Mucoid Extracellular Matrix Accumulation.
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546 547	
548	
548 549	
550	

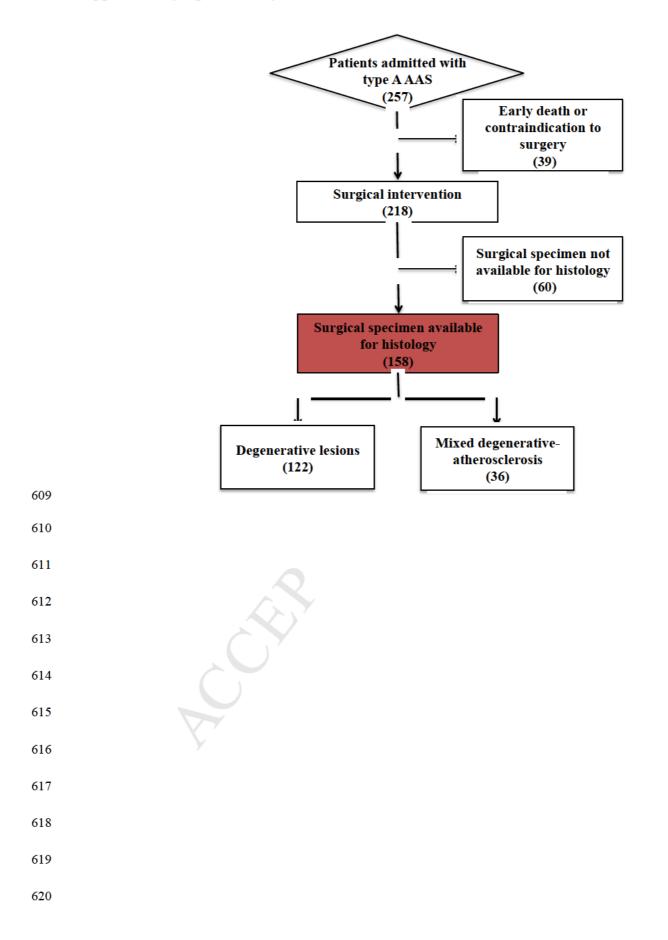
Supplementary table 3 Histopathologic findings according to aortic diameter at presentation.

	OVERALL	ASCENDING	ASCENDING	P value
VARIABLE	(n=86)	AORTA ≥ 55 mm	AORTA < 55 mm	
		(n=29, 33.7%)	(n=57, 66,3%)	
Atherosclerosis	45 (52.3%)	15 (51.7%)	30 (52.5%)	0.882
Severe	6 (7%)	2 (6.9%)	4 (7%)	1
Moderate	18 (20.9%)	5 (17.2%)	13 (22.8%)	0.779
Mild	21 (24.4%)	8 (27.6%)	13 (22.8%)	0.791
Not significant	41 (47.7%)	14 (48.3%)	27 (47.4%)	0.882
Degenerative lesions	86 (100%)	29 (100%)	57 (100%)	1
I-MEMA	62 (72.1%)	24 (82.8%)	38 (66.7%)	0.187
Moderate/severe I-MEMA	40 (46.5%)	19 (65.5%)	21 (36.8%)	0.022
T-MEMA	51 (59.3%)	23 (79.3%)	28 (49.1%)	0.014
Moderate/severe T-MEMA	51 (59.3%)	23 (79.3%)	28 (49.1%)	0.014
Laminar medial collapse	29 (33.7%)	12 (41.4%)	17 (29.8%)	0.406
Dense laminar medial collapse	25 (29.1%)	11 (37.9%)	14 (24.6%)	0.298
Elastic fibre thinning out	77 (89.5%)	26 (89.7%)	51 (89.5%)	0.729
Moderate/severe elastic fibre thinning out	26 (30.2%)	22 (75.9%)	4 (7%)	<0.001
Elastic fibre fragmentation	82 (95.3%)	29 (100%)	53 (93%)	0.358
Moderate/severe elastic fibre fragmentation	57 (66.3%)	23 (79.3%)	34 (59.6%)	0.114
Intralamellar collagen increase	62 (72.1%)	23 (79.3%)	39 (68.4%)	0.418
Moderate-severe intralamellar	13 (15.1%)	5 (17.2%)	8 (14%)	0.754

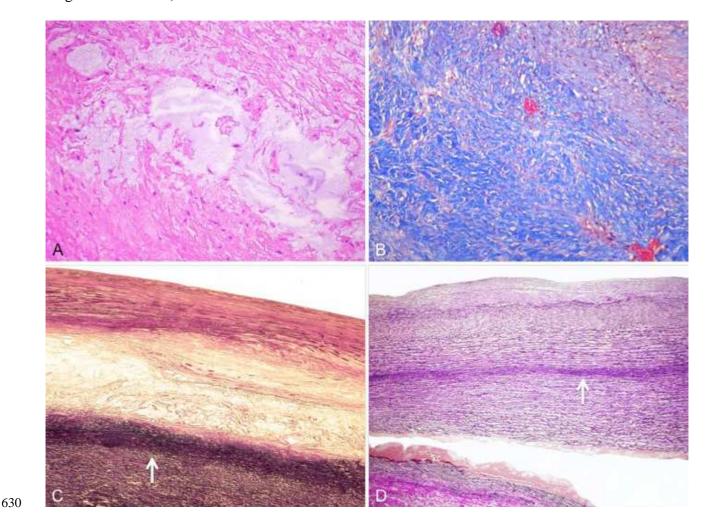
	A	CCEPTED M	ANUSCRIPT		
	collagen increase				
	Translamellar collagen increase	16 (18.6%)	5 (17.2%)	11 (19.3%)	1
	Moderate-severe translamellar collagen increase	10 (11.6%)	3 (10.3%)	7 (12.3%)	1
	Degenerative group	62 (72.1%)	22 (75.9%)	40 (70.2%)	0.763
	Mixed group	24 (27.9%)	7 (24.1%)	17 (29.8%)	0.622
	Overall severe degenerative	21 (24.4%)	15 (51.7%)	7 (12.3%)	< 0.001
553	AAS: Acute Aortic Syndrome; I-MH	EMA: Intralam	ellar-Mucoid Extracel	lular Matrix Accumula	ation;
554	NA: Not Applicable; T-MEMA: Tra	unslamellar- Mu	ucoid Extracellular Ma	atrix Accumulation.	
555					
556					
557					
558					
559					
560					
561					
562					
563					
564					
565					
566					
567					
568					
569					
570					


571 **Supplementary table 4** Histopathologic findings in patients aged > 50 years versus patients aged \leq

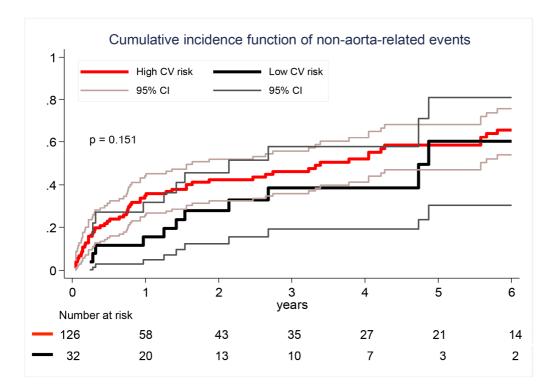
- 572 50 years.
- 573

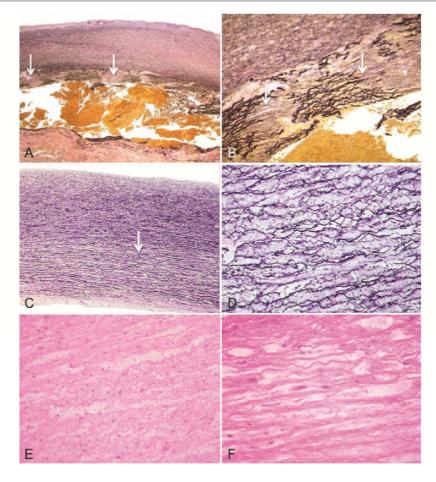

VARIABLE	OVERALL	AGE > 50 YEARS	$AGE \le 50 \text{ YEARS}$	P value
	(n=158)	(n=137, 86.7%)	(n=21, 13.3%)	
Atherosclerosis				
Severe	8 (5.1%)	8 (5.8%)	0 (0%)	0.598
Moderate	28 (17.7%)	27 (19.7%)	1 (4.8%)	0.127
Mild	52 (32.9%)	47 (34.3%)	5 (23.8%)	0.457
Not significant	70 (44.3%)	55 (40.1%)	15 (71.4%)	0.014
- Degenerative lesions				
I-MEMA	129 (81.6%)	114 (83.2%)	15 (71.4%)	0.006
Moderate/severe I-MEMA	93 (58.9%)	81 (59.1%)	12 (57.1%)	1
T-MEMA	108 (68.4%)	91 (66.4%)	17 (80.9%)	0.184
Moderate/severe T-MEMA	108 (68.4%)	91 (66.4%)	17 (80.9%)	0.216
Laminar medial collapse	75 (47.5%)	68 (49.6%)	7 (33.3%)	0.240
Dense laminar medial collapse	59 (37.3%)	53 (38.7%)	6 (28.6%)	0.471
Elastic fibre thinning out	145 (92.8%)	129 (94.2%)	16 (76.2%)	0.787
Moderate/severe elastic fibre thinning out	108 (68.4%)	96 (70.1%)	12 (57.1%)	0.313
Elastic fibre fragmentation	153 (98.7%)	132 (96.3%)	21 (100%)	0.374
Moderate/severe elastic fibre fragmentation	117 (74%)	112 (81.7%)	5 (23.8%)	< 0.001
Intralamellar collagen increase	117 (74%)	104 (75.9%)	13 (61.9%)	0.187
Moderate-severe intralamellar	23 (14.6%)	19 (13.9%)	4 (19%)	0.513

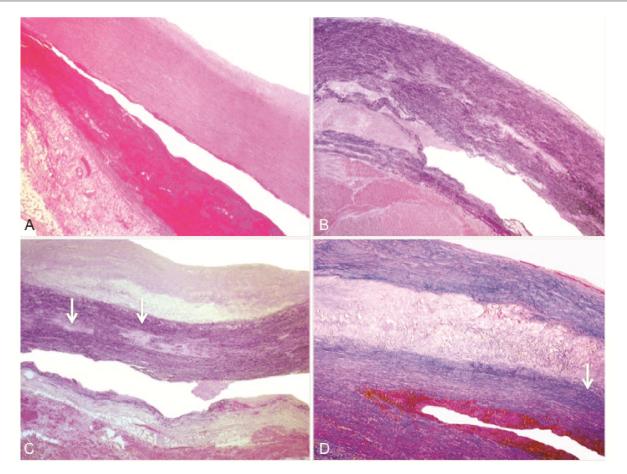
	А	CCEPTED M	ANUSCRIPT		
	collagen increase				
	Translamellar collagen increase	30 (19%)	28 (20.4%)	2 (9.5%)	0.371
	Moderate-severe translamellar collagen increase	18 (11.4%)	17 (12.4%)	1 (4.8%)	0.471
	Degenerative group	122 (77.2%)	102 (74.5%)	20 (95.2%)	0.047
	Mixed group	36 (22.8%)	35 (25.5%)	1 (4.8%)	0.047
	Overall severe degenerative	38 (24%)	31 (22.6%)	7 (33.3%)	0.284
574	AAS: Acute Aortic Syndrome; I-M	EMA: Intralam	ellar-Mucoid Extra	cellular Matrix Accur	nulation;
575	NA: Not Applicable; T-MEMA: Tr	anslamellar- Mı	acoid Extracellular	Matrix Accumulation	l .
576					
577					
578					
579					
580					
581					
582					
583					
584					
585					
586					
587					
588					
589					
590					
591					
592					

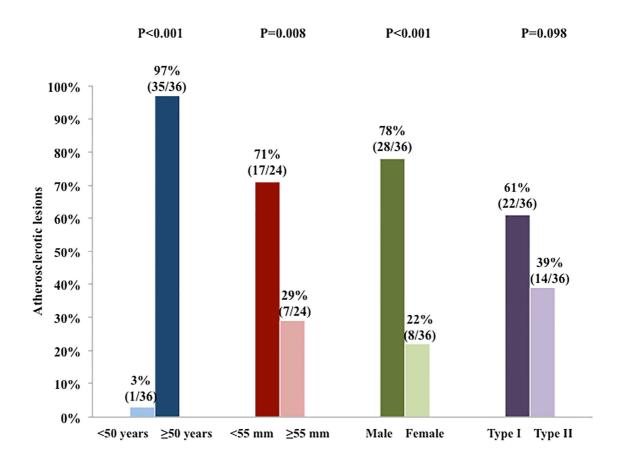

Supplementary figure 1 Specimens of type A aortic dissection. A: Dissection involves some 75% of circumference and the false lumen contains thrombosis; atherosclerotic plaques are visible in the intima (arrow). B: Aortic sample where dissection is more extensive (90% of circumference) and the aortic wall is extremely thinned. C-D: Extensive dissection and irregular intimal surface due to some whitish-yellow plaques (arrow).

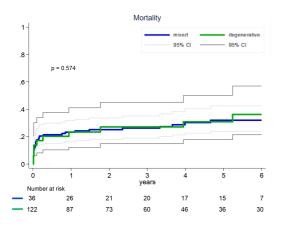
608 Supplementary figure 2 Study flowchart.

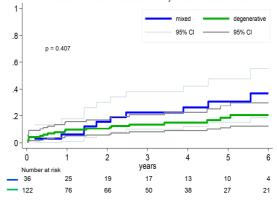


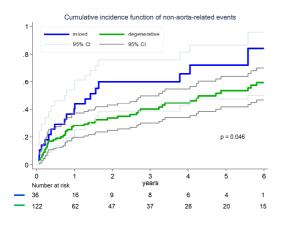

Supplementary figure 3 A: a severe focus of translamellar mucoid extracellular matrix 621 accumulation in a degenerative group patient (Haematoxylin-Eosin stain, original magnification 622 x200); B: medial fibrosis (i.e. translamellar collagen increase), a distinctive lesion of the mixed 623 group (Azan Mallory tricrhome, original magnification x200). C-D: Laminar medial collapse. In 624 mixed group this lesion was frequently found as a dense band of elastic fibre compaction bordering 625 the lower margin of atherosclerotic plaques (C: arrow; Weigert Van Gieson, original magnification 626 x100); in degenerative patients the lesion was frequently seen in the central areas of the medial 627 layer above or on the same plane of the dissection (arrow) (Weigert Van Gieson, original 628 magnification x100). 629

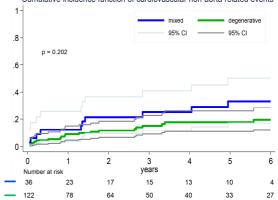


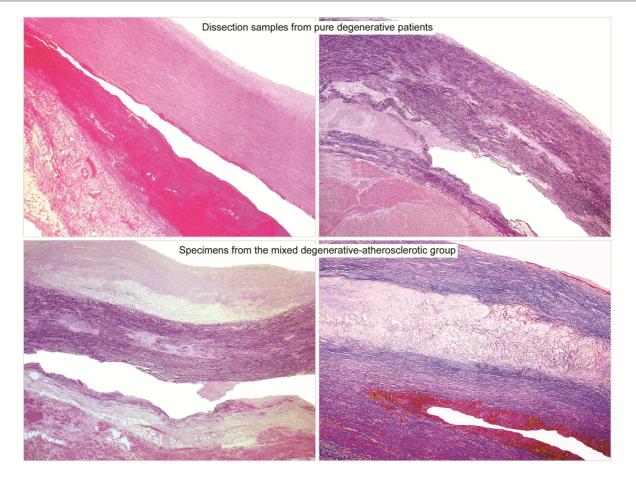

- 631
- 632
- 633


Supplementary figure 4 6-year non-aorta-related events of type A AAS according to patients' CV
risk profile. High CV risk means patients with history of coronary artery disease and/or history of
stroke and/or aged 40 or older with at least one CV risk factor (hypertension, hypercholesterolemia,
diabetes, current smoke).









Cumulative incidence function of cardiovascular non-aorta related events

