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Abstract. Flood loss models are one important source of un-

certainty in flood risk assessments. Many countries experi-

ence sparseness or absence of comprehensive high-quality

flood loss data, which is often rooted in a lack of protocols

and reference procedures for compiling loss datasets after

flood events. Such data are an important reference for de-

veloping and validating flood loss models. We consider the

Secchia River flood event of January 2014, when a sudden

levee breach caused the inundation of nearly 52 km2 in north-

ern Italy. After this event local authorities collected a com-

prehensive flood loss dataset of affected private households

including building footprints and structures and damages to

buildings and contents. The dataset was enriched with fur-

ther information compiled by us, including economic build-

ing values, maximum water depths, velocities and flood du-

rations for each building. By analyzing this dataset we tackle

the problem of flood damage estimation in Emilia-Romagna

(Italy) by identifying empirical uni- and multivariable loss

models for residential buildings and contents. The accuracy

of the proposed models is compared with that of several flood

damage models reported in the literature, providing addi-

tional insights into the transferability of the models among

different contexts. Our results show that (1) even simple uni-

variable damage models based on local data are significantly

more accurate than literature models derived for different

contexts; (2) multivariable models that consider several ex-

planatory variables outperform univariable models, which

use only water depth. However, multivariable models can

only be effectively developed and applied if sufficient and

detailed information is available.

1 Introduction

According to analyses of the Centre for Research on the Epi-

demiology of Disasters (CRED), hydrological disasters (i.e.,

natural disasters caused by river and coastal floods, flash

floods, rainstorms) are the most frequently recorded natural

calamities occurring worldwide in the last 2 decades (see,

e.g., Guha-Sapir and CRED, 2015). Also, the number of dis-

asters caused by hydrological events in 2016 exceeded by

far that of any other type of natural hazards (Guha-Sapir and

CRED, 2016).

Flooding was the third major cause of economic loss

worldwide among all natural disasters between 2006

and 2015 (the firsts were earthquakes and storms), resulting

in total damages larger then USD 300 billion. In Europe, the

proportion of flood impacts was even larger during the same

decade, with inundations ranked first in terms of total damage

(i.e., USD ∼ 51 billion; CRED). The CRED findings about

the increasing amount of economic loss starting from the sec-

ond half of 20th century agree with the analyses carried out

by the Intergovernmental Panel on Climate Change (IPCC),

which highlighted that flood damages in the past 10 years

were 10 times higher than in the period 1960–1970 (IPCC,

2001, 2014).

Future scenarios provided by IPCC (2014) and Jongman

et al. (2012) suggest that extreme flood events at a global

scale are expected to increase in terms of frequency and mag-

nitude. Barredo (2009) drew a hypothetical scenario with-

out any change in the meteorological forcing and found that

loss would increase anyway in the future due to exposure and

socioeconomic changes (e.g., higher demographic pressure,

improved per capita wealth and living standards).
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The implementation of the European Union Floods Direc-

tive (2007/60/EC) led flood risk assessment and management

to gain even greater interest (de Moel et al., 2015; Dottori

et al., 2016b, and references therein), forcing member states

and authorities to dedicate additional resources and efforts

to the assessment, mitigation and management of flood risk

in the broader contexts of possible climate change, popula-

tion growth and economic changes (Meyer et al., 2013; Merz

et al., 2010, 2014). However, despite these efforts, there are

still several open problems and limits that need to be dis-

cussed and addressed in order to better assess flood risk and

its evolution in time and space.

Among the three components that define flood risk (haz-

ard, exposure and susceptibility), this paper focuses in par-

ticular on the last two, namely the qualification and quantifi-

cation of the exposed elements and the attribution of a loss

value to them, as a function of one or more flood intensity

parameters and resistance characteristics (damage models).

The scientific literature of the last decade shows a large num-

ber of innovative damage models that are capable of estimat-

ing flood loss starting from one or more predictive variables.

Nevertheless, several authors indicate that damage models

still provide an important source of uncertainty in flood dam-

age estimates, leading to uncertainties which are comparable

to or larger than those associated with any other component

(Jongman et al., 2012; de Moel et al., 2012, 2014; Gerl et al.,

2016; Merz et al., 2004, 2007; Apel et al., 2009).

One important source of uncertainty is the simplified rep-

resentation of complex damaging processes in terms of a

stage-damage function (Jongman et al., 2012). Since White

(1945) linked the water level to relative (i.e., the loss ratio)

or monetary damages, most of the models used today stick to

this concept, using only water depth to estimate relative loss

(see, e.g., Penning-Rowsell et al., 2005; Smith, 1994; Apel

et al., 2009; Kreibich et al., 2009; Merz et al., 2013). Other

important influencing factors, such as flood duration and flow

velocity, are often not considered (de Moel and Aerts, 2011;

Merz et al., 2013). Recently, some authors (see Merz et al.,

2013; Chinh et al., 2016; Hasanzadeh Nafari et al., 2016,

2017; Kreibich et al., 2017; Spekkers et al., 2014) devel-

oped multiparameter damage models including more than

one predictive variable, chosen among other hydraulic pa-

rameters (e.g., streamflow velocity, duration of the inunda-

tion), resistance performance, precautionary measures, and

people’s awareness of and experience with floods (Meyer

et al., 2013). These models were shown to outperform uni-

variable loss models, under the condition that sufficiently

large and detailed damage datasets are provided (Merz et al.,

2013; Schröter et al., 2016). Bubeck and Kreibich (2011),

Cammerer et al. (2013), Messner et al. (2007), and Meyer

et al. (2013), among others, indicate the need for a better un-

derstanding of the damage processes as a means to further

improve multivariable models.

A further aspect that contributes to the overall uncertainty

in flood risk assessment and modeling is the lack of suffi-

cient, comparable and reliable high-quality flood loss data

(Meyer et al., 2013; Molinari et al., 2014a; Amadio et al.,

2016; Scorzini and Frank, 2015; Green et al., 2011). In the

absence of empirical damage data, loss models are either

selected from the literature or subjectively and schemati-

cally derived by experts using a synthetic approach (see,

e.g., Penning-Rowsell et al., 2005; Merz et al., 2004, 2013;

Thieken et al., 2008; Kreibich et al., 2010; Dottori et al.,

2016a). In fact, data collected in the events’ aftermath are

crucial to construct new models and validate existing ones

(Meyer et al., 2013; Cammerer et al., 2013; Ballio et al.,

2015), to adjust them for peculiar conditions of the study

area, to improve the consistency of the models themselves

(Amadio et al., 2016; Büchele et al., 2006; Gerl et al., 2016)

and to provide information about their transferability in dif-

ferent analyses and contexts (Molinari et al., 2014a; Cam-

merer et al., 2013; Green et al., 2011). Many damage models

developed up to now are in fact internationally accepted as

standard methodologies for estimating flood damages (Merz

et al., 2007, 2010; Smith, 1994), without being either tested

or calibrated for the specific study area (Amadio et al., 2016).

Indeed, using damage models for geographical areas, socioe-

conomic conditions and flood events that differ from those

for which the models themselves have been originally de-

rived leads to the incorporation of large errors into the as-

sessment of flood risk (Merz et al., 2004; Schröter et al.,

2016; Merz et al., 2010). According to Gerl et al. (2016),

validation analyses were performed only for about 45 % of

literature models included in their review by means of com-

parisons with observed data, while for the remaining models

either the evaluation status is unknown or the validation pro-

cess is not explicitly described.

Concerning Italy, the scientific literature reports, on the

one hand, several examples in which models developed else-

where are applied without calibration or validation (see, e.g.,

Amadio et al., 2016), and on the other hand it clearly states

the limited exportability of empirical damage models (see,

e.g., Molinari et al., 2014b, on the transferability of the model

developed on the basis of specific flood event data by Luino

et al., 2006 and Freni et al., 2010). Molinari et al. (2012)

associate the generalized poor performance of loss models

with a variety of reasons, among which two are worth recall-

ing. First, the Italian peninsula is characterized by an extreme

variability in geographical and geomorphological contexts as

well as in urban textures and building typologies. Second,

Italian flood loss datasets are generally of low quality and

very often characteristic of small areas, if compared to other

European case studies (see Molinari et al., 2012).

The analysis described herein assesses the performance of

uni- and multivariate empirical models developed on the ba-

sis of a recently compiled Italian dataset. Our study high-

lights the problem of lacking consistent data and the con-

sequent difficulty in the development of robust and reliable

damage models for estimating flood loss to buildings and

contents in local applications. Furthermore, our study con-
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Figure 1. Study area, Secchia and Panaro rivers, location of the breach (yellow dot), municipalities of interest (i.e., Bastiglia, Bomporto and

Modena) and a schematic of the inundation dynamics.

tributes to the understanding of potential and limitations of

flood damage modeling in northern Italy, aiming at investi-

gating the open problem of transferability of empirical dam-

age models to different areas and socioeconomic contexts.

We consider one of the most comprehensive Italian flood

damage datasets, which consists of 1330 post-event data on

flooded private properties in the province of Modena (north-

ern Italy), collected in the aftermath of the Secchia River in-

undation (January 2014). The database contains information

about the affected properties, such as their location and struc-

tural characteristics and the amount of loss suffered, concern-

ing both structural and nonstructural parts and installations

(termed “buildings” from here on) and furniture and house-

hold appliances (“contents”) of each building (see Sect. 3.1

and 3.2). The raw data collected by local authorities have

been homogenized, geocoded and integrated with other use-

ful information including the outcomes of a detailed hydro-

dynamic numerical simulation of the inundation event (see

Sect. 3.3).

Our study is structured into three main components.

– First, concerning direct tangible economic damages to

buildings, we use the above dataset to derive uni- and

multivariable damage models for the study area and

compare the accuracy in estimating damages with a se-

lection of established literature models.

– Second, we calibrate empirical uni- and multivariable

models to subsections of the study area and validate

them using the data observed in different subsections

(split-sample validation).

– Third, we investigate the relationship between damages

to buildings and damages to contents, also developing

an empirical damage model for the latter.

2 Study area and inundation event

Our study focuses on a real inundation event that occurred

in Italy in 2014 and was caused by a breach in the right em-

bankment of the Secchia River during an intense, yet not ex-

treme, flood event. The collapse of the right levee occurred

on 19 January near the town of San Matteo, in the northern

part of the Modena municipality (see yellow dot in Fig. 1)

and caused the inundation of the neighboring municipalities

of Bastiglia, Bomporto and Modena (violet, orange and green

polygons in Fig. 1, respectively) in less than 30 h. The over-

flowing volume was estimated at between 36.3 × 106 and

38.7 × 106 m3, flooding an area of about 52 km2 (see, e.g.,

Orlandini et al., 2015). Towns and the surrounding country-

side remained flooded for more than 48 h, until a water vol-

ume in excess of 20 × 106 m3 was finally pumped out of the

inundated area. According to Orlandini et al. (2015), the to-

tal estimated flood loss was about EUR 500 million (about

EUR 16 million considering only residential properties).

The study area includes the municipalities of Bomporto

and Bastiglia and the northern part of the municipality of

Modena. It is located on the Secchia downriver on the right

side and it extends for approximately 112 km2. The area is

mainly flat and the main relieves consist of roads or railway

embankments and minor river levees. The aspect of the area

is oriented in a northeastern direction, along which ground
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elevations decrease from ca. 30 m a.s.l. in the southwestern

territories to ca. 18 m a.s.l. about 20 km northeastwards.

The delineation of the study area relies on different topo-

graphic boundaries. The western boundary in Fig. 1 is the

right levee of the Secchia River, while the eastern boundary

consists of the left levee of the Panaro River, which also flows

towards the northeast, almost parallel to the Secchia River.

Roads, embankments and drainage channels which form the

southern and northern boundaries are an important control

for flooding dynamics (Carisi et al., 2017) and, in the north-

ern part, they prevented urban areas from being flooded.

The breach was first detected at 06:30 LT. Most likely it

was triggered either by direct river inflow into the riverside

entrance of an animal burrow system or by the collapse of

an existing animal burrow, which was separated by a 1 m

earthen wall from the levee riverside and saturated during the

flood event (Orlandini et al., 2015). A trapezoidal part of the

embankment, with a base width of about 10 m, was removed

and the embankment’s top elevation became immediately

1 m lower than the river water surface. The breach reached

a maximum bottom width of about 80 m and the embank-

ment’s top elevation became equal to the ground level within

9 h (15:00 LT of 19 January 2014). Given the advanced state

of the development of the breach when it was first discov-

ered, no repair of the breached levee was even attempted as

an immediate measure.

Thanks to several eyewitness accounts, video footage

and studies conducted by an ad hoc scientific committee

(D’Alpaos et al., 2014; DICAM-PCREM, 2015), it was pos-

sible to identify the flood event propagation dynamics, shown

by the blue arrows in Fig. 1. These data were used, together

with local accounts, pictures and videos of the flooded mu-

nicipalities, to reconstruct the event by means of a fully 2-D

hydrodynamic model (see Sect. 3.3).

3 Flood loss and hydrodynamic data

In the immediate post-event period, for the purpose of com-

pensation, authorities of the Emilia-Romagna region, Mod-

ena Province and affected municipalities started a data col-

lection campaign to obtain as much information as possible

on the damages caused by the flood event. According to re-

gional decree no. 8 of 24 January 2014, the aim of the sur-

vey was to quantify the financial needs for the restoration of

damaged public buildings, infrastructure network, hydraulic

and hydrogeological works, and private properties for resi-

dential use, household contents, private registered goods and

goods related to the productive sector. Accordingly, citizens

and property owners were asked to fill out forms about public

property damages, private properties, furniture and registered

goods damages, and damages to the economic and produc-

tive activities and agriculture and agro-industrial sectors. In

the present analysis, damage assessment focuses exclusively

on private properties.

Table 1. Number of forms filled by private owners per municipality.

Municipality Affected Affected private

private properties (available

properties address and reporting

at least damages

to buildings)

Bastiglia 1728 887

Bomporto 624 392

Modena 76 51

Total 2448 1330

Authorities collected a total of 448 forms, divided as per

the affected municipalities. In order to geocode the position

of every damaged property, the complete database was fil-

tered, considering only records for which the complete ad-

dress was provided. The database regards private proper-

ties affected by different kinds of potential damages: dam-

ages to buildings (structural and nonstructural parts and in-

stallations), content damages (furniture and household ap-

pliances), and structural damages to common parts and reg-

istered goods damages (cars, motorcycles, etc.). Our anal-

yses focus only on properties affected at least by damages

to buildings. The total number of considered forms is there-

fore 1330 (see Table 1, second column).

The 1330 records were geocoded in a GIS environment,

using the Google Maps base map, this being one of the most

complete freely available maps for the study area; geocod-

ing was followed by a careful manual control activity us-

ing publicly available internet pictures, Google Street View

and Google Earth. This step enabled the correction of several

wrong or inaccurate geocodings, mainly in the rural areas,

where distances between street numbers are higher.

The refund requests by citizens, collected from munici-

pal authorities, were divided into different asset typologies:

building damages, content damages, and structural damages

to common parts and registered goods. We neglected struc-

tural loss to common parts and registered goods in our analy-

ses because of the limited number of data collected on these

categories. Table 2 shows in detail the different assets which

could be refunded for building and content damages. Table 3

summarizes all data collected and used in our study for each

damaged property, providing information about the original

sources and grouping the data into three different categories:

observed (i.e., declared by owners in the official forms), sim-

ulated by the hydrodynamic model and retrieved from an ex-

ternal source. The rightmost column of the same table reports

the ranges of these variables within the study area. The fol-

lowing subsections detail the information collected and sum-

marized in Table 3.

Nat. Hazards Earth Syst. Sci., 18, 2057–2079, 2018 www.nat-hazards-earth-syst-sci.net/18/2057/2018/



F. Carisi et al.: Uni- and multivariable models for flood loss estimation in Emilia-Romagna, Italy 2061

Table 2. Refundable assets in accordance with ordinance no. 2 of 5 June 2014 and law no. 93 of 26 June 2014.

Typology Description

Damages to – Structural parts: roofs, foundations, supporting structures, interior or exterior stairs,

buildings retaining walls for the stability of the building

– Nonstructural parts: walls or delimitation fence, interior flooring, plastering, interior

and exterior painting, interior and exterior fixtures

– Installations: electrical, heating, water, TV antenna, lifts, stair lifts for disabled

or elderly people

Damages to – Furniture and household appliances: refrigerator, dishwasher, oven, sink, stove, washer,

contents dryer, TV and personal computers.

Table 3. Considered variables and their sources and ranges, for building and content damage analysis.

Variable Observed Simulated External Range

sources

Maximum water depth (m)
√

0.12–2.10 m

Maximum water velocity (m s−1)
√

0–1.95 m s−1

Flood duration (h)
√

2 – more than 30 h

Building area (m2)
√

12–1100 m2

Building value (EUR m−2)
√

902–1183 EUR m−2

Structural typology (–)
√

masonry;

reinforced concrete;

combination of the two

Monetary damages to buildings (EUR)
√

EUR 40–160 000

Relative damages to buildings (–)
√

0.05–0.97

Monetary damages to contents (EUR)
√

EUR 0–100 000

3.1 Damages to buildings

As mentioned before, all 1330 considered records report at

least damages to buildings (structural and nonstructural parts

and installations). Authorities defined the final compensa-

tion granted to owners in accordance to ordinance no. 2 of

5 June 2014 and law no. 93 of 26 June 2014, which specifies

refund criteria. For instance, considering the total amount of

money that authorities had available for the restoration of all

kinds of properties, the maximum coverage for each prop-

erty was set to EUR 85 000 for damages to buildings and

EUR 15 000 for damages to contents, setting a fixed amount

of money for each room. In addition, owners declarations

about the amount of the restoration work of the damaged

parts, if higher than EUR 15 000, were verified by authorities

by means of expert technical reports. These controls proba-

bly reduced the amount of damage claimed by owners, who

commonly tend to overestimate their loss and have less com-

petency for estimating damages than professionals have.

Nevertheless, the limited availability of money and the

need for a homogeneous criterion for all the affected prop-

erties led in many cases to a much higher reduction of the

amount of damage refundable to the owners. In fact, re-

fundable assets are only a cut percentage of assets that can

be found in a property and, in addition, experienced dam-

ages could be higher than the maximum coverage estab-

lished by authorities. The difference between overall mon-

etary refunded and claimed damages to buildings is equal

to about EUR 1.7 million (EUR 15.2 million of declared loss

vs. EUR 13.5 million of refunded loss). Given this signifi-

cant difference, in order to preserve the representativeness

and consistency in loss data, we chose to consider observed

damages in our study as claimed by citizens in the forms

they filled (estimation of the financial need for restoration,

without knowing the refund criteria). We are aware that this

choice can introduce overestimation of the damages (partic-

ularly considering damages below EUR 15 000) for the rea-

son explained before, but we considered this possible error

having less influence on loss estimation, both quantitatively

and methodologically, relative to the distortions that would

be systematically introduced by adopting the result of the

compensation phase.

Together with the amount of money requested for compen-

sation, we also extracted from the filled forms the available

information on building footprints and structural typology

(masonry, reinforced concrete, etc.) because of their poten-

tial impact on the damage process and therefore on damage

modeling (see also previous studies, e.g., Merz et al., 2013).

In order to evaluate loss in relative terms (as the percent-

age of suffered damage relative to the total value of the build-
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ing), we retrieved the economic value of each property from

the Italian Revenue Agency reports (Agenzia delle Entrate,

AE, 2018). Every 6 months the AE issues the open-market

values (EUR m−2) for different assets (e.g., civil houses, of-

fices, stores) in each Italian administrative district (spatial

scale of municipality), taking into account different classes

of residential and industrial buildings and the overall eco-

nomic well-being of the region. These values are different for

each homogeneous geographical area (OMI zone) and set a

minimum and a maximum market value per unit area. Focus-

ing on residential buildings, and in particular on their struc-

tural part without including the cost of the land, we defined

the buildings’ economic value (EUR m−2) as the average of

the values provided for each building in the same OMI zone.

Only the first floor of each building was considered since the

maximum water depth is always lower than or equal to 2.1 m

(see Table 3). It is important to notice that these economic

values do not consider a possible fall in price due to catas-

trophic events. Also, we are aware that reconstruction costs

seem to be more suitable for this kind of analyses, but they

are not freely available in Italy or homogeneous at a national

level, different from OMI values. Moreover, the use of these

economic values at an aggregation level is still informative

for future ex ante damage estimation for planning activities

and it is in line with previous loss analyses at different scales

(see, e.g., Arrighi et al., 2013; Domeneghetti et al., 2015).

3.2 Damages to contents

We also analyze the monetary loss to household un-

registered contents (e.g., furniture and household appliances:

refrigerator, dishwasher, oven, sink, stove, washer, dryer, TV

and personal computers).

Focusing on these data and looking at the refunded loss,

because of the stricter criteria for content damage compen-

sation of ordinance no. 2 of 5 June 2014 and law no. 93

of 26 June 2014, the difference between the requested and

refunded amount is even more evident. It is equal to about

EUR 5.7 million (EUR 10.4 million of overall declared loss

to contents vs. EUR 4.7 million of refunded loss) and con-

firms the choice to consider observed damages as claimed by

owners.

Concerning this dataset, it is worth noting that we do not

have any specific information for each building on the items

recorded under the generic expression “contents”. Therefore,

we cannot express these damages in terms of relative loss

over the overall movable property value. Also, the damage

models to household contents proposed by the scientific lit-

erature are fairly rare and isolated (some examples are repre-

sented by studies performed by Penning-Rowsell et al., 2010;

Thieken et al., 2008). Thus, we investigate the usefulness of

an indirect modeling approach, which is based on regressing

loss to contents against loss to buildings (see Sect. 5.3), for

this type of damage.

3.3 Hydrodynamic characterization of the inundation

event

Forms collected from authorities for the purpose of com-

pensation do not include data on hydraulic variables, such

as water depth, water velocity, etc. Since these data are

necessary for our analysis, the reconstruction of the flood

event is performed by means of TELEMAC-2D, a fully 2-

D hydrodynamic model which solves the 2-D shallow wa-

ter Saint-Venant equations using the finite-element method

within a computational mesh of triangular elements (see Gal-

land et al., 1991; Hervouet and Bates, 2000, for details). This

computational model complies with the validation protocol

by the International Association for Hydro-Environment En-

gineering and Research (IAHR) and has been successfully

applied to case studies around the globe (Hervouet and Bates,

2000; Brière et al., 2007).

Concerning the inundation event, the dynamics of the wet-

ting front were strongly influenced by the presence of topo-

graphic discontinuities (e.g., road embankments, artificial as

well as natural channels belonging to the minor stream net-

work; see D’Alpaos et al., 2014). In order to correctly repro-

duce ground elevation and discontinuities in the model, a de-

tailed lidar DEM with a spatial resolution of 1 m is used and

an unstructured triangular finite-element mesh of the study

area is generated. The mesh consists of 34 082 nodes con-

necting 66 596 elements with variable length side from 1 to

200 m in flatter zones, covering a total of 112 km2. This ac-

curate mesh ensures the correct representation of all major

linear discontinuities existing in the study area.

The outflowing hydrograph of the levee breach, as recon-

structed by the scientific committee that studied the event

(D’Alpaos et al., 2014), is used as a boundary condition, in

particular as inflow to the boundary elements representing

the levee breach.

The calibration of the 2-D model is performed by vary-

ing floodplain roughness coefficients in order to reproduce

the real extent of the inundation, at different time steps,

as documented by maps and aerial images made available

immediately post event by competent authorities and res-

cuers (D’Alpaos et al., 2014), and as also confirmed by

later studies (see, e.g., Vacondio et al., 2016). In particu-

lar, Manning’s coefficient values were differentiated between

agricultural areas and urban areas, and resulting coefficients

(0.033 and 0.1 m−1/3 s, respectively) are in line with values

reported in the scientific literature (see, e.g., Vorogushyn,

2008; Domeneghetti et al., 2013).

After the event, local authorities collected information

about water depths reached at different points of the inun-

dated area. This information is used for the validation of the

model, together with pictures, videos and reports made avail-

able on the Internet, as well as through in situ interviews.

At about 50 points, uniformly distributed in the study area,

simulation outcomes are compared in terms of water depth

with the information available. Results show a good agree-
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Figure 2. Maximum water depths simulated by the 2-D model; geolocated building damages (colors reflect municipalities).

ment between simulated and observed flooding dynamics,

with the residuals between observed and simulated water lev-

els always smaller than ±20 cm. In order to avoid errors due

to the model uncertainty, we consider the area with simu-

lated water depth greater than 10 cm to be “flooded” (see,

e.g., Castellarin et al., 2009; Samuels, 1995).

The calibrated and validated model is then used to recon-

struct the detailed spatiotemporal dynamics of the inundation

event and to identify the spatial distribution of the hydraulic

variables of interest. In fact, combining 2-D model outcomes

and geocoded locations shown in Fig. 2, it is possible to ex-

tract maximum water depth, maximum flow velocity and du-

ration of the inundation at each site (see Table 3). Maximum

water depth and the maximum flow velocity commonly refer

to different time steps of the flood event.

4 Damage models

As already discussed in Sect. 1, damage models return the

amount of loss potentially suffered by certain elements (pop-

ulation, buildings, economic activities, ecosystem, etc.) as a

result of a specific flood event, thus providing an estimate

of the objects’ susceptibility. These models associate rela-

tive (or monetary) loss with different input variables. The

most frequently used loss models in Europe are univariable

damage models, i.e., they estimate the amount of damage as

a function of a single input variable, most commonly wa-

ter depth (Merz et al., 2010; Messner et al., 2007; Jongman

et al., 2012), distinguishing among different building uses,

types, etc. (Gerl et al., 2016). Although each model is devel-

oped with different approaches and uses different economic

values for assets, the damage values can be relativized based

on each different context in order to make the models com-

parable to each other.

This section briefly recalls well-known and largely em-

ployed literature depth–damage models (also called stage-

damage models, shown in Fig. 3). Furthermore, it describes

empirical depth–damage models and a multivariable loss

model that we derived for the Secchia loss dataset. All uni-

and multivariable models illustrated here are applied for pre-

dicting loss to buildings and household contents resulting

from the January 2014 Secchia flood event.

4.1 Literature damage models

4.1.1 Multi-Coloured Manual (MCM) model

The depth–damage curve implemented in the Multi-

Coloured Manual (MCM; Penning-Rowsell et al., 2005) is

considered to be one of the most comprehensive and detailed

models for flood damage estimation in Europe and it is used

as a support for water management policy and quantitative

assessment of the effect of investment decisions (Penning-

Rowsell et al., 2010; Jongman et al., 2012). This model es-

timates loss based almost exclusively on synthetic analysis

and expert judgment from the insurance industry or engineers

(Penning-Rowsell et al., 2005; Bubeck and Kreibich, 2011).

Different from the majority of other damage models, MCM

estimates building damages using a monetary depth–damage

curve, i.e., it defines monetary potential loss relative to water

depth, rather than providing damage ratios (Penning-Rowsell
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Figure 3. Literature stage-damage models and observed data: grey points in the background represent the observed relative loss (buildings

only); literature models are limited to the maximum water depth reconstructed for the inundation event through the 2-D hydrodynamic model

(i.e., 2.5 m).

et al., 2005; Bubeck and Kreibich, 2011; Jongman et al.,

2012). Similar to previous studies (see, e.g., Domeneghetti

et al., 2015) and aiming at performing a fair comparison

among all considered models, we make use of the relative

depth–damage curve as obtained by Jongman et al. (2012),

who rescaled the original MCM monetary curve by referring

the total building damage (100 %) to an average pre-flood de-

preciated building value in 2005 pound sterlings (GBP) (see

Table 2 in Jongman et al., 2012).

4.1.2 Flood Loss Estimation MOdel for the private

sector (FLEMOps)

The Flood Loss Estimation MOdel for the private sec-

tor (FLEMOps) (Thieken et al., 2008) is an empirical model

based on an extensive dataset from 2158 private households

that were significantly affected by flood events in 2002, 2005

and 2006 in Germany. According to Thieken et al. (2008),

the database used for identifying FLEMOps was compiled

through computer-aided telephone interviews with a sample

of people affected by these serious events. FLEMOps as-

sesses relative flood damages to private households by re-

ferring to several factors: inundation depth, building type,

building quality, water contamination and private precaution.

Although the original FLEMOps was developed as a mul-

tivariable model, in this study we implemented it as a uni-

variable one, by referring to the water depth as the only pa-

rameter available in our data collection. The curve taken into

account in this study (see Fig. 3) is the one that considers a

uniform distribution of building types in the study area (see

Apel et al., 2009), while no information about building qual-

ity, water contamination and private precaution was available

(concerning these last three factors, the first classes of the

original model are considered).

4.1.3 Rhine Atlas damage model

The Rhine Atlas damage model was designed by the Interna-

tional Commission for the Protection of the Rhine (ICPR)

for hydraulic risk assessment within the watershed of the

Rhine River after two severe floods caused a large amount

of economic damage in Germany and the evacuation of

250 000 people in the Netherlands in 1993 and in 1995

(Bubeck et al., 2011). For developing the model, damage

intensity and maximum damage values were set on the ba-

sis of collected empirical data in the two mentioned floods

and expert judgments, combined with a synthetic approach

(Bubeck and Kreibich, 2011). This model includes five dif-

ferent stage-damage functions, each of which is associated

with a different land-use class derived from the CORINE

Land Cover project (European Environment Agency, 2007).

The Rhine Atlas model used in this analysis (see Fig. 3) is the

stage-damage curve associated with the residential sector.

4.1.4 Joint Research Centre (JRC) damage models

These curves were developed by the European Commission’s

Joint Research Centre – Institute for Environment and Sus-

tainability (JRC-IES) (Huizinga, 2007) as part of a project to

estimate trends in European flood risk under climate change

(Ciscar et al., 2011; Feyen et al., 2012). They consist of dif-

ferent depth–damage functions and maximum damage values

which can be used by all EU countries (see Fig. 3). On the ba-

sis of land-use data retrieved from the CORINE project (Eu-

ropean Environment Agency, 2007), stage-damage functions

were identified for 10 countries from existing studies (for

example, depth–damage models based on Penning-Rowsell

et al., 2005, and van der Sande, 2001, were used to develop

a stage-damage model for the UK and, regarding Germany,
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depth–damage functions were chosen using a combination of

many existing models; see Jongman et al., 2012) and applied

to the corresponding damage classes. In addition, an average

of all available land-use-specific curves was used to develop

a model for countries where stage-damage curves were not

available (“JRC other countries”), and Italy is among these

(Manciola et al., 2003; Molinari et al., 2012). We selected

seven out of the 11 JRC available curves for our analysis:

we neglected the curves that provide the highest and the

lowest damage estimation for water depths between 0 and

2.5 m, which is the range that includes our observed data.

In fact, these curves would be located, respectively, above

and below the observed grey data points in Fig. 3 and would

provide unrealistic over- and underestimations for our case

study. Therefore, the curves that we considered for our anal-

ysis are JRC Belgium, JRC Czech Republic, JRC Germany,

JRC Netherlands, JRC Switzerland, JRC UK and JRC other

countries.

4.2 Models developed on Secchia dataset

4.2.1 Secchia Empirical damage model (SEMP)

The Secchia empirical damage model (SEMP) is an empiri-

cal stage-damage curve that we derive from the observed rel-

ative loss for the inundation event of 2014. It is obtained by

binning water depth values into 25 cm wide classes (i.e., 0–

25, 25–50 cm) and by calculating the median damage for

each bin. Then, for each bin the median damage value is asso-

ciated with the mean water depth of the bin itself (e.g., 12.5,

37.5 cm), and the empirical damage curve is then obtained by

linearly interpolating the binned values. This curve is obvi-

ously limited to the maximum water depth resulting from the

2-D simulation. Further, the intercept is equal to zero in or-

der to reproduce a realistic and representative situation of the

buildings in the study area where only a few affected build-

ings have a basement: a water depth equal to zero means no

damages. Different class subdivisions have been tested (from

10 cm to 1 m water depth) and the one chosen (25 cm) results

in the one with the best performance in terms of root-mean-

square error (RMSE – see Sect. 5.1 for details) in reproduc-

ing observed loss data. Table A1 in the Appendix displays

the curve’s formulation.

4.2.2 Secchia Square Root Regression damage

models (SREGx)

We obtain the Secchia square root regression damage mod-

els (SREGx) by regressing observed relative loss against

maximum water depth (SREGd), maximum water veloc-

ity (SREGv) and building footprint or area (SREGa) recorded

for every building. It is worth pointing out that SREGa refers

only to footprints of buildings that are flooded during the

considered event (i.e., a real inundation or a flooding sce-

nario). Regression curves based on water depth and building

area have an intercept equal to zero: for the reason explained

in Sect. 4.2.1, no damages are produced if the water depth

or the footprint of the building are null. Conversely, the in-

tercept of the regression model based on water velocity is

different from zero because it is possible to also have dam-

ages if the water is stagnant. We tested linear, logarithmic

and square root regression of observed data, obtaining the

best prediction performance in terms of RMSE with the lat-

ter.

The identified regression relationships read

DSREGd
= 0.113

√
h, (1)

DSREGv = 0.007
√

v + 0.104, (2)

DSREGa = 0.009
√

a, (3)

where DSREGd
(–), DSREGv (–) and DSREGa (–) represent rel-

ative economic damages to buildings estimated by referring

to the maximum water depth h (m), maximum water veloc-

ity v (m s−1) and building area a (m2), respectively.

For the sake of completeness, we point out that an addi-

tional curve has been developed based on the maximum in-

tensity (i.e., water depth times velocity), but it is not reported

here and in the following paragraphs because it does not im-

prove the results.

4.2.3 Secchia Multi-Variable damage model (SMV)

The Secchia multivariable model (SMV) of this study takes

advantage of the Secchia 2014 dataset by applying data min-

ing procedures used by Merz et al. (2013). While Merz et al.

(2013) used Bagging decision trees from the MATLAB tool-

box implementation, the multivariable model derived in this

study uses the random forest (RF) algorithm implemented in

the R package randomForest by Liaw and Wiener (2002).

Both RF and Bagging decision trees are tree-building al-

gorithms which can be used for predicting continuous de-

pendent variables. The procedure of growing each tree con-

sists of the approximation of a nonlinear regression structure,

recursively repeating a subdivision of the given dataset into

smaller parts in order to maximize the predictive accuracy

of the model. The classification and regression tree (CART)

methodology (Breiman et al., 1984) is used to select and split

variables and to identify leaf nodes which give the prediction

for the dependent variable. CART uses an exhaustive search

method on a randomly chosen set of variables to identify the

variable with the best split based on a measure of node im-

purity (in our case the RMSE of the response values in the

respective parts). The splitting is stopped if either a thresh-

old for the minimum number of data points in leaf nodes

is reached or if no further splitting is possible. These steps

create a tree structure with several nodes, whereby the be-

ginning node is called the root node and the last nodes are

called leaf nodes. Each resulting node of the tree represents

the answer to the partition question asked in the previous in-

terior nodes and the prediction for an input x1, x2, . . . , xk de-
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Figure 8. Relative damages to buildings estimated with SMV.

of four different performance metrics, namely bias, mean

absolute error (MAE), RMSE and the difference between

estimated and observed overall monetary loss to build-

ings (1LOSS), which are defined as follows:

bias =
1

n

n
∑

i=1

(Pi − Oi) , (4)

MAE =
1

n

n
∑

i=1

|Pi − Oi | , (5)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Pi − Oi)
2, (6)

1LOSS =

n
∑

i=1

(Pi · BAi · BVi) −
n
∑

i=1

(Oi · BAi · BVi)

n
∑

i=1

(Oi · BAi · BVi)

· 100, (7)

in which Oi and Pi are observed and predicted relative dam-

ages at the ith site, respectively; n is the number of sites in the

study area; and BAi and BVi are building area and building

value per unit area at the ith site, respectively (see Table 3).

SMV is associated with the lowest RMSE value

(i.e., 0.062), which is less than half the RMSE value of the

second-to-best models (i.e., SREGd and SREGv, with an

RMSE value of 0.125). SREGa and SEMP provide slightly

worse relative loss estimations than the previous models

(RMSE equal to 0.129 and 0.130, respectively). Results are

similar in terms of bias and MAE, although some differences

can be pointed out for SREGx models, which present a bias

value that is slightly lower than the one derived from SMV

estimation.

Concerning literature models described in Sect. 4.1 and il-

lustrated in Fig. 3, Table 5 shows that FLEMOps and JRC

Czech Republic outperform the others in terms of RMSE

(RMSE equal to 0.125 and 0.127, respectively) and are

Table 4. Performance of the uni- and multivariable models devel-

oped based on local data in estimating relative damages and overall

monetary loss to buildings (see Eqs. 4, 5, 6 and 7; the observed over-

all monetary loss is equal to EUR 15.2 million). Models are ranked

according to RMSE values, from the lowest to the largest. Corre-

sponding results for literature models are reported in Table 5.

Bias MAE RMSE 1LOSS

(–) (–) (–) (%)

SMV −0.012 0.035 0.062 −9.2

SREGd −0.003 0.089 0.125 2.6

SREGv 0.000 0.090 0.125 5.9

SREGa −0.010 0.090 0.129 13.1

SEMP −0.043 0.080 0.130 −35.4

Table 5. Performance of different literature univariable models in

estimating relative damages and overall monetary loss to buildings

(see Eqs. 4, 5, 6 and 7; the observed overall monetary loss is equal to

EUR 15.2 million). Models are ranked according to RMSE values,

from the lowest to the largest. Corresponding results for uni- and

multivariable models developed based on local data are reported in

Table 4.

Bias MAE RMSE 1LOSS

(–) (–) (–) (%)

FLEMOps −0.003 0.089 0.125 2.1

JRC Czech Republic −0.022 0.085 0.127 −16.4

JRC Netherlands −0.043 0.082 0.131 −36.7

JRC Germany −0.046 0.082 0.133 −40.0

JRC Belgium 0.056 0.119 0.142 58.4

Rhine Atlas −0.071 0.087 0.143 −64.3

JRC Switzerland 0.149 0.196 0.232 148.2

JRC other countries 0.256 0.272 0.300 252.5

MCM 0.350 0.364 0.406 342.4

JRC UK 0.585 0.586 0.607 570.0

comparable with the models developed based on Secchia’s

dataset. RMSE values derived from the relative loss esti-

mation with JRC Netherland, JRC Germany, JRC Belgium

and Rhine Atlas are between 0.131 and 0.143, while the

worst performance in terms of RMSE is associated with

JRC Switzerland, JRC other countries, MCM and JRC UK

(RMSE values higher than 0.2). These outcomes reflect the

fact that all these latter damage curves are in the upper part

of the diagram in Fig. 3 and significantly apart from the rest

of the models, which are instead close to each other. We ob-

tained similar results in terms of bias and MAE.

Analogous results can be observed in terms of 1LOSS,

which is reported in the rightmost column of both Tables 4

and 5. This indicator, different from MAE and RMSE and

similar to bias, highlights the tendency of models to under-

or overpredict damages to buildings; yet 1LOSS focuses on

the overall monetary damage in a given area, whereas bias

refers to relative damages. Hence, 1LOSS clearly shows if a
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Table 6. Validation of the models: performance of the uni- and mul-

tivariable models in estimating relative damages to buildings, de-

veloped based on two-thirds and validated based on the remaining

one-third of the local data. Models are listed as in Table 4.

Bias MAE RMSE

(–) (–) (–)

SMV −0.021 0.078 0.120

SREGd −0.003 0.089 0.125

SREGv 0.000 0.090 0.125

SREGa −0.010 0.090 0.129

SEMP −0.042 0.080 0.130

model is biased in predicting the overall monetary loss, that

is, if the model systematically predicts higher or lower (pos-

itive and negative bias, respectively) damages for the entire

study area than those observed. This is shown in Fig. 8, in

which most of the predictions provided by SMV, especially

for observed relative damages higher than 10 %, lie under

the 1 : 1 line: this means that the model is negatively biased.

Predictions obtained with the other models are spread more

evenly around the 1 : 1 line, denoting a smaller bias. In terms

of bias and 1LOSS, SMV seems to have a slightly worse per-

formance than SREGd, SREGv and SREGa (and FLEMOps,

regarding these specific outcomes).

The large overestimation of overall losses associated with

JRC UK, MCM, JRC other countries, JRC Switzerland and

JRC Belgium reported in Table 5 is expected from the com-

parison among these models and empirical data presented

in Fig. 3. The overestimation may result from morphologic

and socioeconomic contexts for which these models were

constructed, as well as criteria adopted for their develop-

ment, which might differ considerably from our case study

and empirical models. For example, due to the diverse study

area topographies and land uses, floods can propagate with

various dynamics, differently influencing hazard indicators.

Also, building characteristics and the overall well-being of

an area can differ considerably among regions and coun-

tries, therefore compromising the transferability of literature

curves.

Another feature of the rightmost column of Table 5 worth

noting is that four of the literature models that perform the

best in terms of RMSE (JRC Czech Republic, JRC Nether-

lands, JRC Germany and Rhine Atlas) underestimate the

overall monetary loss. This fact can be explained by several

reasons, among which an important one is certainly compar-

ing damages claimed by citizens with the four models listed

above, which were developed on the basis of expert-based

judgment only, or by considering expert knowledge together

with empirical data.

An additional important factor that influences the perfor-

mance of literature models applied to the Secchia case study

is the different scale on which these curves are calibrated

and applied: some of them are developed to be applied at the

microscale (e.g., MCM, FLEMOps), while others are devel-

oped to be applied at the mesoscale (e.g., Rhine Atlas, JRC

curves). However, among mesoscale models there is a large

variability in terms of performance. In several practical ap-

plications, identifying the best performing damage model a

priori can be an extremely difficult task. This is also compli-

cated by difficulties in obtaining detailed information about

original datasets used for developing literature models (in-

cluding damage data and characteristics of the flood event

and of typology of affected buildings). Deeper investigation

on model properties and assumptions (e.g., hazard and vul-

nerability features based on the context for which they have

been derived, values used for translating monetary damage

into relative damage, level of aggregation of original data)

can guide the selection of models; moreover, a variety of

them should be used to additionally obtain information on

associated uncertainty (Figueiredo et al., 2018).

5.2 Validation of locally derived damage models

The results reported in Table 4 refer to calibrations of em-

pirical models based on our entire dataset. We also validate

all empirical models by using a split-sample validation pro-

cedure. Specifically, two-thirds of the records are randomly

selected from the dataset for calibrating each model, which

is then applied to the remaining one-third of the data. Bias,

MAE and RMSE calculated in this context and reported in

Table 6 are very similar to the ones reported in Table 4 con-

cerning SREGx and SEMP. Results of the validation of SMV

by means of the same approach instead indicate lower per-

formance of this model, when calibrated on a smaller dataset

(see Table 6). In fact, values of bias, MAE and RMSE are

twice as high as values reported in Table 4. These outcomes

highlight the need for extensive datasets for identifying ro-

bust and reliable damage models. From the comparison of

the different considered models (uni- and multivariable), it

is clear that this aspect is more evident for the multivariable

model, whose performance is significantly worse when cal-

ibrated on a smaller number of observed data. Conversely,

univariable models, though simpler than SMV, appear more

robust in the case of a smaller number of calibration data,

providing better results in the validation.

Based on the output of Sect. 5.1, it is worth noting that the

application to the Secchia case study of JRC other countries,

in which Italy should be included, provides very poor results

in terms of building loss. This confirms how challenging the

identification of a regional or large-scale model with a gen-

eral validity could be (see also Sect. 1 and Cammerer et al.,

2013; Amadio et al., 2016; Molinari et al., 2012). This sec-

tion further assesses the transferability of damage models to

very similar socioeconomic contexts.

In order to test the transferability of the empirical locally

derived models to similar contexts, we identify analogous

models (SREGx , since it is the best model among the lo-

cally derived ones, and SMV) on the basis of the building loss
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data collected in a single municipality and then apply these

models for predicting flood building loss in a neighboring

municipality. In particular, among the three municipalities

considered in the study (i.e., Bomporto, Bastiglia and Mod-

ena), we consider Bastiglia (887 observed records) and Bom-

porto (392 observed records) because of the larger number of

data available. We calibrate the models on Bomporto’s sub-

set (Bo_MV, Bo_REGd, Bo_REGv and Bo_REGa) and we

apply them for predicting Bastiglia’s flood damages to build-

ings. Then, we calibrate the same models on the Bastiglia

subset (Ba_MV, Ba_REGd, Ba_REGv and Ba_REGa) and

apply them to Bomporto.

Figure 9 shows the results of these split-sampling ex-

periments. Figure 9a refers to Bastiglia’s relative damages

to buildings, estimated via Bo_MV and Bo_REGd, while

Fig. 9b indicates Bomporto’s damages estimated via Ba_MV

and Ba_REGd; in each graph grey dots represent the estima-

tion of relative loss using the multivariable models and red

dots indicate relative damages to buildings estimated with

square root regression models.

Square root regression models in Fig. 9 show rather poor

performances, capable of capturing only the average loss,

while better results seem to be associated with multivari-

able models in both graphs. Some differences between the

two panels are worth noting: grey dots in Fig. 9a (appli-

cation of models calibrated in Bomporto with 392 data to

Bastiglia) seem to overestimate relative loss to buildings,

while in Fig. 9b (application of models calibrated in Bastiglia

with 887 records to Bomporto) they lie closer to the 1 : 1 line.

The studies performed in terms of relative damages to build-

ings related to maximum water velocity and building area

present very similar results and are reported in the Appendix

(see Figs. C1 and C2).

These outcomes are also visible in Table 7, which presents

the results of the split-sampling experiments in terms of the

usual bias, MAE and RMSE indexes. While uni- and mul-

tivariable models calibrated on Bastiglia’s data and applied

to Bomporto’s subset do not differ much, with slightly better

performances for Ba_MV, Bo_MV is associated with much

higher prediction errors when applied to Bastiglia. The worse

performance of Bo_MV can be explained by the smaller size

of the Bomporto subset of data used for its calibration (less

than a half of Bastiglia’s sample). As already outlined in

Sect. 4.2.3, in order to have robust results from multivari-

able models, a large number of empirical data are required.

Furthermore, the inundated area in Bomporto is larger than in

Bastiglia (see Fig. 2). This explains rather clearly the differ-

ence in terms of accuracy of Ba_MV and Bo_MV in Table 7:

the higher the loss data density the more robust the relation-

ship between different predictor variables and loss data and

the higher the ability of the model to explain local character-

istics of the study area (Schröter et al., 2014).

The transferability of the models is also hampered by the

different distribution of the water depths in the different mu-

nicipalities: Fig. 10 shows that water depths in Bastiglia are

Figure 9. (a) Bastiglia relative damages to buildings estimated with

Bo_REGd (red dots) and Bo_MV (grey dots); (b) Bomporto rela-

tive damages to buildings estimated with Ba_REGd (red dots) and

Ba_MV (grey dots).

lower than in Bomporto, despite the quite similar distribution

of observed relative damages. This might be due to the fact

that, other than being a hazard, different buildings’ vulnera-

bility plays an important role in the damage process too and

it also explains prediction errors in the analysis. This aspect

has to be taken into consideration whenever the loss estima-

tion is performed by using a model calibrated for a different

flood event.

5.3 Modeling flood loss to contents

Similar to the procedure for assessing damages to buildings,

first of all we analyze the Spearman correlation between

the observed flood loss to contents and all potential predic-

tive variables, included monetary damages to buildings. Fig-

ure 11 shows the results of this assessment, where full boxes

represent a statistically significant correlation coefficient at

a 5 % significance level. On the one hand, similar to the
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Table 8. Performance of different uni- and multivariable models in

estimating relative damages and overall monetary loss to contents

(see Eqs. 4, 5, 6 and 7; the observed overall monetary loss is equal to

EUR 10.4 million). The first row shows the performance of Eq. (8)

applied to the observed monetary damages to buildings; the first

block represents the results of the application of Eq. (8) to monetary

building damages estimated with locally derived models, while the

second represents those estimated with literature models. Models in

each group are ranked according to RMSE values, from the lowest

to the largest.

Bias MAE RMSE 1LOSS

(EUR) (EUR) (EUR) (%)

Obs. building loss 0 6605 10 569 0

SMV 235 7121 10 918 2.9

SEMP −1066 8111 12 314 −11.5

SREGd 1644 9080 12 367 18.3

SREGv 1915 9303 12 524 21.2

SREGa 1651 9239 12 754 18.3

JRC Czech Republic 274 8520 12 274 2.9

JRC Netherlands −1160 8078 12 330 −12.5

JRC Germany −1608 7970 12 382 −18.3

FLEMOps 1523 9034 12 432 17.3

Rhine Atlas −3956 7667 12 922 −44.2

JRC Belgium 4678 10 591 13 256 1.9

JRC Switzerland 8032 12 871 15 632 89.4

JRC other countries 12 577 15 816 18 010 140.4

MCM 15 162 17 863 20 397 169.2

JRC UK 21 886 23 586 25 817 244.2

We therefore explore the possibility of exploiting the re-

lationship between monetary loss to buildings and contents

for predicting the latter. We test different types of mathemat-

ical relationships (i.e., linear, square root, logarithmic and bi-

logarithmic regressions), and the square root regression is the

one with the best prediction performance in terms of RMSE,

i.e., the one that best relates monetary building loss with

damages to contents. In fact, RMSE is equal to EUR 10 569,

while it was EUR 10 882, 10 971 and 15 531 for linear, log-

arithmic and bi-logarithmic relationships, respectively. The

identified regression relationship reads

Dcontents = 116
√

Dbuildings − 2311, (8)

where Dcontents (EUR) represents economic damages to con-

tents, and Dbuildings (EUR) indicates loss to buildings. Fig-

ure 12 depicts empirical vs. predicted monetary loss to con-

tents with Eq. (8).

In the last component of our analysis, we apply Eq. (8) for

estimating damages to contents as a function of the estimates

of monetary building loss resulting from the uni- and multi-

variable damage models that we considered in our study.

Table 8 lists the performance metrics bias, MAE, RMSE

and 1LOSS obtained while predicting monetary loss to con-

tents as described. The first row in Table 8 reports, as a ref-

Figure 12. Empirical vs. predicted monetary loss to contents for the

Secchia 2014 inundation event. Monetary loss to contents is pre-

dicted as a function of monetary loss to buildings through Eq. (8).

erence term, the same performance indexes that can be ob-

tained when Eq. (8) is applied to observed damages to build-

ings. In the second row, the first block of Table 8 shows the

performance in estimating monetary content loss, applying

Eq. (8) to monetary damages to buildings, estimated with

empirically derived models. The best performance in terms

of RMSE is always associated with SMV, followed by SEMP

and SREGx , all with comparable RMSE values. The out-

comes for literature models (last block of Table 8) also reflect

the results that we obtained when modeling building loss,

presented in Sect. 5.1. The ranking of the best-performing

literature models in terms of RMSE for an indirect assess-

ment of content loss is JRC Czech Republic, JRC Nether-

lands, JRC Germany, FLEMOps, Rhine Atlas and JRC Bel-

gium. Evidently, models associated with poor performances

in predicting monetary loss to buildings are also not reliable

for indirectly predicting loss to building contents by means of

Eq. (8) (see JRC Switzerland, JRC other countries, MCM and

JRC UK). The performance of most considered models, with

the exception of the last six in Table 8, show a difference be-

tween overall observed and predicted monetary loss to con-

tents that does not exceed EUR ±20 million. Different from

the results obtained when predicting damages to buildings,

11 damage models overestimate content loss, while SEMP,

JRC Netherlands, JRC Germany and Rhine Atlas underesti-

mate them. Small differences in the models’ ranking, com-

pared to Tables 4 and 5, are probably due to the fact that the

regression curve for content damages is applied to predicted

building damages, which are themselves affected by uncer-

tainty.
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6 Conclusions

Our study focuses on the development and validation of flood

loss models based on a comprehensive database of observed

loss data (1330 records), collected after a recent inundation

event in Italy. We derived empirical uni- and multivariable

damage models, whose performance has been compared with

that of stage-damage functions in the literature (MCM, FLE-

MOps, Rhine Atlas and JRC models for different countries).

Consistent with the findings of Cammerer et al. (2013),

Dottori et al. (2016a), and Scorzini and Frank (2015), lo-

cally identified empirical models provide better estimation

of relative and monetary damages to buildings. This result

underlines the criticality and uncertainty associated with the

application of literature damage models to different con-

texts from the ones in which they were originally developed.

Even though some literature models have performance sim-

ilar to locally identified empirical models, the difficulty to

retrieve detailed information about their development data

and procedures makes it difficult to identify a priori the best-

performing literature models. This hampers the practical uti-

lization of literature models themselves for predictive pur-

poses. The results of this study strengthen the need, in case a

literature curve should be applied, for a more informed and

rational selection of damage models; e.g., the level of detail

of each input variable required should not be overlooked nor

neglected.

Concerning the estimation of relative loss to buildings, the

Secchia Multi-Variable model (SMV), which was developed

using the RF approach, outperforms the other considered

models. This outcome is confirmed with regards to the con-

tent damages, estimated with a regression function applied to

the monetary damages to buildings estimated with different

models. Regression trees composing the multivariable forest

also provide the important advantage of avoiding the need

for a parametric function that works with all the data. Also,

RF provides useful information about the relationship among

the variables and how to exploit the local relevance of predic-

tors. These can be very useful information for authorities and

stakeholders to define preventive measures and/or mitigation

strategies.

The study on the transferability of empirical models,

i.e., models calibrated on the dataset of one given munici-

pality and applied to a different one located close by, shows

that the best performance is controlled by the size and con-

sistency of the loss dataset. This consideration is valid for all

models, but especially for the multivariable one, which re-

quires a large number of data to ensure a reliable loss estima-

tion (Merz et al., 2013; Schröter et al., 2014). To completely

exploit the potential of such models and sustain the possi-

bility of exporting their use in different areas, it is necessary

to pursue a detailed and structured acquisition of explana-

tory variables. According to Amadio et al. (2016), Moli-

nari et al. (2012, 2014b), and Scorzini and Frank (2015), the

most urgent need in Italy, concerning flood loss estimation,

is to identify guidelines, valid for the whole country, to col-

lect consistent and comparable data, even if they relate to

different contexts. According to Ballio et al. (2015), data-

collection protocols are urgently needed for harmonizing and

standardizing the compilation of flood loss datasets. These

data should include further useful information, such as ob-

served water depths, flood duration, presence of sediments,

contamination rate, early warning or precautionary measures

adopted, and other indications of the building composition

(numbers of floors, type of contents, presence of basements,

building condition, etc.), preferably collected immediately

post event (see also Merz et al., 2010), in addition to that

commonly collected.

As it emerges from our analysis, in the case of limited and

uncertain information, empirically univariable models still

represent a good compromise between model complexity and

reliable damage estimations. Different from other studies,

which developed site-specific models but rarely tested them

in other regions, this analysis focuses on transferability and

demonstrates that models can be transferred to other contexts

with satisfying results, provided that they are similar in terms

of territorial structure and building characteristics. Since the

creation of a “one-size-fits-all” model is almost impossible

due to large variability in geographical and geomorphologi-

cal contexts as well as urban patterns and building typologies

in Italy, the definition of various damage models for differ-

ent standardized Italian contexts is of paramount importance

to increase the reliability of future flood risk analyses. The

adoption of probabilistic modeling concepts could add an-

other useful level of detail in terms of quantitative informa-

tion about the uncertainty.

Data availability. Damage data used in this study, as well as build-

ing characteristics, provided by the Emilia-Romagna Region Re-

gional Agency for Civil Protection and Po River Basin Authority,

are not publicly accessible for privacy reasons. Economic building

values can be found at https://wwwt.agenziaentrate.gov.it/servizi/

Consultazione/ricerca.htm (Agenzia delle Entrate, 2018).
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Appendix A: Secchia Empirical damage model (SEMP)

SEMP is the linear interpolation of points with specific coor-

dinates, calculated as explained in Sect. 4.2.1. These coordi-

nates are reported in Table A1.

Table A1. SEMP model: empirical curve obtained from the bin-

ning procedure in terms of water depth (h) and relative damage to

buildings (see Sect. 4.2.1 for the procedure adopted to develop the

curve).

h (m) Relative

damage

(–)

0.000 0.000

0.125 0.058

0.375 0.058

0.625 0.059

0.875 0.060

1.125 0.060

1.375 0.072

1.625 0.094

1.875 0.161

2.100 0.226
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Appendix C: Validation of the locally derived damage

models

Figures C1 and C2 show the results of the validation of the

locally derived models, which estimate relative damages to

buildings as a function of maximum water velocity and build-

ing area.

Figure C1. (a) Bastiglia relative damages to buildings estimated

with Bo_REGv (red dots) and Bo_MV (grey dots); (b) Bomporto

relative damages to buildings estimated with Ba_REGv (red dots)

and Ba_MV (grey dots).

Figure C2. (a) Bastiglia relative damages to buildings estimated

with Bo_REGa (red dots) and Bo_MV (grey dots); (b) Bomporto

relative damages to buildings estimated with Ba_REGa (red dots)

and Ba_MV (grey dots).
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