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Keywords:
Supersymmetry
Wess–Zumino model
Vacuum energy

We check the cancellation of the vacuum energy in the Wess–Zumino model at the two-loop order in the 
component field formalisms with and without auxiliary fields. We show that in both cases the vacuum 
energy is equal to zero. However, in the formalism where the auxiliary fields are excluded, the vanishing 
of the vacuum energy arises due to the cancellation between the potential and kinetic energies, while in 
the formalism with the auxiliary fields, both terms vanish separately.
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1. Introduction

The discovery of the supersymmetry – the symmetry between 
bosons and fermions in the early seventies [1–3] was one of the 
most impressive achievements of the modern theoretical physics. 
In spite of the fact that the particles, which play the role of super-
partners of the known particles belonging to the Standard Model, 
are not yet observed experimentally, the interest in supersymmetry 
and to its applications in different areas of physics and mathemat-
ics is still growing and the number of original papers and reviews 
dedicated to different aspects of the supersymmetry is really im-
pressive. One of the most studied objects in this context is the 
Wess–Zumino model [4,5] – a simple, but very rich model, where 
many basic features of the supersymmetry were observed for the 
first time. Amongst these features there are cancellation of the 
essential part of the ultraviolet divergences [4] and the vanish-
ing of the vacuum energy [6]. The fact that the vacuum energy 
in exactly supersymmetric theories vanishes has a rather general 
nature. Indeed, the fundamental relation defining the supersym-
metric extension of the Poincaré algebra is

{Q a, Q̄ b} = 2γ
μ

ab Pμ, (1)
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where Q is the generator of the supersymmetry transformation 
and Pμ is the energy–momentum vector. The vacuum expectation 
value of the energy 〈0|P 0|0〉 vanishes if the supersymmetry gener-
ators annihilate the vacuum state:

Q |0〉 = 0, Q̄ |0〉 = 0 ⇒ 〈0|P 0|0〉 = 0. (2)

However, it is interesting also to see how this cancellation of 
the vacuum energy works at the level of the concrete fields and di-
agrams. Indeed, in the case of a broken supersymmetry exact can-
cellation of the vacuum energy, discussed above, does not work; 
however one can still hope that at least the ultraviolet divergences 
in the vacuum energy expressions are cancelled due to the fact, 
that the numbers of the bosons and fermions present in the mod-
els under consideration are equal.

In fact, already in fifties Pauli [7] suggested that the vacuum 
(zero-point) energies of all existing fermions and bosons com-
pensate each other. This possibility is based on the fact that the 
vacuum energy of fermions has a negative sign, whereas that 
of bosons has a positive one. Later, in a series of papers Zel-
dovich [8,9] related a finite part of the vacuum energy to the 
cosmological constant, however rather than eliminating the diver-
gences via the boson–fermion cancellation, he suggested the Pauli–
Villars regularisation of all divergences by introducing a number of 
massive regulator fields. Covariant regularisation of all contribu-
tions then leads to finite values for both the energy density ε and 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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(negative) pressure p corresponding to a cosmological constant, i.e. 
related by the equation of state p = −ε.

Recently, this Pauli–Zeldovich cancellation mechanism for the 
divergences of the vacuum energy due to the balance between 
the contributions of bosons and fermions has attracted growing 
attention [10–14]. Similar questions were also discussed in pa-
pers [15–19]. In particular, in [14] several models with interactions 
between different particles at the lowest order of the perturba-
tion theory were considered. Here a certain subtlety is present. 
To provide the cancellation of the vacuum energy divergences it 
is necessary to have the balance between the fermion and the 
boson degrees of freedom not only on shell, but also off shell. 
Let us try to be more precise in the terminology. Speaking about 
the on shell or physical degrees of freedom, one means the num-
ber of independent Cauchy data, which can be imposed on the 
field under consideration. This number is associated also with the 
number of different particle states. Speaking about the off shell de-
grees of freedom, one means instead the number of independent 
field components. For example, the Dirac spinor has four complex 
or eight real components. When we impose the first-order Dirac 
equation the number of independent real components (or Cauchy 
data) dwindles and becomes equal to four, which corresponds to 
a particle and antiparticle, having two helicity states each. Thus, 
one can say that the number of degrees of freedom of a spinor 
field, interpreted as the number of independent field components, 
doubles when it is off shell. Then the Majorana spinor has two 
complex components, i.e. four degrees of freedom off shell. When 
we impose the first-order Dirac equation the number of degrees of 
freedom, interpreted as the number of initial data for this equa-
tion, becomes equal to two (see e.g. [20]).

We can also add that while the difference between the number 
of independent Cauchy data and the number of the field com-
ponents for spinors is connected with the fact that they satisfy 
first-order differential equations, this last fact has in turn deep 
group-theoretical roots. Indeed, requirement that a field belongs 
to a certain representation of the Lorentz group implies a definite 
form of the invariant wave equation for this field. Namely, the be-
longing of the spinor to the (1/2, 0) ⊕ (0, 1/2) representation of 
the Lorentz group implies that it subject to the first-order Dirac 
equation (see, e.g. [21,22]).

As is well known in the Wess–Zumino model one has two 
fermion degrees of freedom of the Majorana spinor and two boson 
degrees of freedom associated with the scalar and pseudoscalar 
fields. Off shell the number of fermion degrees of freedom be-
comes equal to four while the role of two additional boson fields 
is played by two auxiliary fields, which are independent off shell. 
If we consider the non-supersymmetric models with the Pauli–
Zeldovich mechanism of cancellation of UV divergences for the 
vacuum energy in the presence of interactions, then the numbers 
of the boson and fermion degrees of freedom should also coincide 
not only on shell, but off shell as well [14].

Thus, it looks like the introduction of the auxiliary fields be-
comes unavoidable even for non-supersymmetric models if we 
want to make the Pauli–Zeldovich mechanism efficient. Indeed, it 
was explicitly shown in the seminal paper by Zumino [6] that the 
potential vacuum energy (under the potential we mean the cubic 
and quartic terms in the action) in the Wess–Zumino model van-
ishes at the level of two-loop Feynman diagrams. Then it is easy 
to show (and we shall do it in Sect. 3 of the paper) that this can-
cellation fails in the formalism with the auxiliary fields excluded 
via the equations of motion. However, explicit calculations show 
that in this formalism the kinetic vacuum energy (under the ki-
netic we mean all the quadratic terms in the action, including mass 
terms) is also non-vanishing while the sum of both vanishes. Thus, 
all the calculations can be coherently done also in the formal-
ism without the auxiliary fields. Hence, the detailed presentation 
and comparison of the results, obtained in different formalisms for 
a simple but very rich Wess–Zumino model, seems to be rather 
instructive. We hope that these results could be useful for more 
complicated models as well. Besides, while the general arguments 
about the difference between the numbers of the on shell and off 
shell degrees of freedom for spinors are well known, especially 
in the context of the supersymmetric theories (see, e.g. [20,23]), 
the concrete analysis of the manifestation of these difference in 
the diagram calculations are not so elaborated, at least, up to our 
knowledge. Thus, it also can be of some interest.

The paper has the following structure: in the Sect. 2 we demon-
strate at the two-loop order the vanishing of the vacuum energy 
in the Wess–Zumino model in the presence of the auxiliary fields. 
In Sect. 3 we do the same in the formalism with the auxiliary 
fields excluded, while the last section contains a discussion which 
briefly mentions a similar derivation in the superfield formalism 
along with its relation to the Pauli–Zeldovich cancellation mecha-
nism.

2. Wess–Zumino model in the presence of the auxiliary fields: 
calculation of the vacuum energy

The Lagrangian density of the Wess–Zumino model is

L = 1

2
(∂μ A)(∂μ A) + 1

2
(∂μB)(∂μB) + 1

2
ψ̄(i∂̂ − m)ψ

+ 1

2
F 2 + 1

2
G2 + mF A + mG B + g F (A2 − B2)

+ 2gG AB − g(ψ̄ψ A + iψ̄γ 5ψ B), (3)

where A is a scalar field, B is a pseudoscalar field, ψ is a Ma-
jorana spinor, F and G are auxiliary fields. The symbol ∂̂ means 
∂̂ ≡ γ μ∂μ . The propagators or contractions of these fields in the 
momentum representation have the following form [4,24]

D A A = D B B = i

k2 − m2
,

D A F = D BG = −im

k2 − m2
,

D F F = DGG = ik2

k2 − m2
,

Dψψ̄ = i(k̂ + m)

k2 − m2
. (4)

Let us add that in contrast to Dirac spinors, Majorana spinors also 
have Dψψ and Dψ̄ψ̄ propagators which are related to the standard 
“Dirac” propagator by the formulae (see e.g. [25]):

Dψψ = Dψψ̄C
−1,

Dψ̄ψ̄ = C−1 Dψψ̄ , (5)

where C is the charge conjugation operator. However, in all the cal-
culations in the Wess–Zumino model the presence of the propaga-
tors (5) is boiled down only to the appearance of some additional 
combinatorial factors, which multiply the standard Dirac propaga-
tor Dψψ̄ .

The interaction Hamiltonian density of the model (we also call 
it “potential”) includes 5 terms and is given by the expression

H I = −g F (A2 − B2) − 2gG AB + g(ψ̄ψ A + iψ̄γ 5ψ B). (6)

The vacuum expectation value of the potential part of the Hamil-
tonian (6) is given by the expression
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Epot(x) =
∫ [dφ ] H I (x) eiS∫ [dφ ] eiS

= 〈 H I (x) eiS I 〉
〈 eiS I 〉 , (7)

where S I is the interaction part of the full action

S I = −
∫

d4 y H I (y) (8)

and the brackets 〈...〉 denote the quantum average with respect to 
the free theory whose action is quadratic in the quantum fields 
φi = A, B, F , G, ψ, ψ̄ and incorporates Dij(k) as the momentum 
space propagator with the components (4).

The two-loop or g2-order of the expression (7), obtained by 
expanding it in S I ∝ g , looks like

E2-loop
pot = i〈 H I (x)S I 〉 − i〈 H I (x) 〉 〈 S I 〉, (9)

where the second term (actually vanishing because both H I (x) and 
S I are odd in quantum fields) subtracts the disconnected diagrams 
part of E2-loop

pot . The expression (9) corresponds to two types of the 
Feynman diagrams: those with the topology of a “dumbbell” and 
those with the “nut” topology. The dumbbell diagrams – two tad-
poles connected by the propagator,

〈 H I (x)S I 〉dumbbell ∝ D jn(x, x) S(3)
jni

∫
d4 y Dik(x, y) S(3)

klm Dlm(y, y),

(10)

give the vanishing contribution (here S(3)

klm is a three-vertex corre-
sponding to the cubic interaction term (8)). This follows from the 
fact that the tadpole diagrams in the Wess–Zumino model are can-
celled due to supersymmetry. Even though this fact is well known, 
let us illustrate it once again for completeness.

In view of the only nonvanishing propagator components (4)
the tadpoles

〈φi S I 〉 ∝
∫

d4 y Dik(x, y) S(3)

klm Dlm(y, y)

= Dik(0) S(3)

klm

∫
d4k

(2π)4
Dlm(k) (11)

with the fermion leg, φi = ψ or φi = ψ̄ , vanish identically. The 
same is true for the tadpoles with the pseudoscalar field B leg 
and the auxiliary field G leg. The tadpole with the scalar field leg, 
φi = A, is proportional at the one-loop order to

〈 A(F A2 − F B2 + 2G AB − ψ̄ψ A) 〉
= 2D A A

∫
D A F + D A F

∫
D A A D A F

∫
D B B

+ 2D A A

∫
D BG − (−1)D A A

∫
Tr Dψψ̄ , (12)

where for brevity we omit the momentum space integration mea-
sure. Taking into account the formulae (4) and the fact that∫

D A A = i I,

∫
D B B = i I

∫
D A F = −imI,

∫
D BG = −imI

∫
Tr Dψψ̄ =

∫
d4k

(2π)4

Tr (k̂ + m)

k2 − m2
= 4imI,

I ≡ 1

(2π)4

∫
d4k

k2 − m2
, (13)

we see that the right-hand side of Eq. (12) vanishes. The tadpole 
with the auxiliary field F leg is proportional to
〈 F (F A2 − F B2 + 2G AB − ψ̄ψ A) 〉
= D F F

∫
(D A A − D B B) + 2D A F

∫
D A F

+ 2D A F

∫
D BG − (−1)D A F

∫
TrDψψ̄ = 0. (14)

Thus, considering the expression (9) we take into account only 
the diagrams with a nut topology, i.e. the diagrams, where two 
vertices are connected by three propagators. There are two types of 
such diagrams, ones including fermions, and those including only 
boson fields. The contribution of the diagrams of the first type to 
the vacuum energy is given by the expression

E1(x) =
∫

d4 y
〈
(gψ̄ψ A)(x) · (−igψ̄ψ A)(y)

+(igψ̄γ 5ψ B)(x) · (−i(i)gψ̄γ 5ψ B)(y)
〉
, (15)

where · separates the factors at the points x and y, between which 
and only which the chronological contractions are taken in the 
“nut” diagram. This expression reads

E1 = 16g2
∫

d4kd4 p
k · (p + k)

(k2 − m2)(p2 − m2)((p + k)2 − m2)

= 8g2
∫

d4kd4 p
(p + k)2 − p2 + k2

(k2 − m2)(p2 − m2)((p + k)2 − m2)

= 8g2
∫

d4kd4 p
1

(p2 − m2)((p + k)2 − m2)

+8g2m2
∫

d4kd4 p
1

(k2 − m2)(p2 − m2)((p + k)2 − m2)

= 8g2 I2 + 8g2m2 K , (16)

where

K ≡
∫

d4kd4 p
1

(k2 − m2)(p2 − m2)((p + k)2 − m2)
. (17)

The sum of the contributions of the diagrams, which include only 
the boson fields is

E2 = −ig2
∫

d4 y
(〈

(F A2)(x)(̇F A2)(y) + (F B2)(x) · (F B2)(y)

+4(G AB)(x) · (G AB)(y) − 4(F B2)(x) · (G AB)(y)
〉)

= −ig2
(

2
∫

D F F D A A D A A + 4
∫

D A F D A F D A A

+2
∫

D F F D B B D B B + 4
∫

DGG D A A D B B

+4
∫

D A A D BG D BG − 8
∫

D A F D BG D BG

)
. (18)

Using the presentation

D F F = DGG = i + im2

k2 − m2
(19)

and other formulae from Eq. (4), one can reduce the right-hand 
side of Eq. (18) to the following sum

E2 = −8g2 I2 − 8g2m2 K . (20)

In other words, the nut diagrams, including two vertices linear in 
auxiliary fields and bilinear in scalar (pseudoscalar) fields give rise 
to two types of diagrams with simple scalar-type propagators: ones 
with the topology of a nut and those with the topology of the 
“eight” diagram, including one 4-vertex and two one-propagator 
scalar loops – the product of two one-loop integrals. Finally, we 
see from Eqs. (16) and (20) that
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E1 + E2 = 0. (21)

The corresponding diagrams (without detail) were presented in the 
paper by Zumino [6].

What can one say about the vacuum kinetic energy in the 
Wess–Zumino model? One knows that in the absence of interac-
tions the quantum fields can be considered as the systems of free 
harmonic oscillators and that the zero energy of a boson oscilla-
tor is positive while that of a fermion oscillator is negative. As we 
have already mentioned in the Introduction, the requirement of 
the disappearance of the ultraviolet divergences in the vacuum en-
ergy of the free fields is reduced to the equality of the numbers 
of boson and fermion degrees of freedom and to certain sum rules 
[7–12]. In the case of the supersymmetric models all the masses 
inside of a supemultiplet are equal and the mass sum rules are 
satisfied automatically. Moreover, when the interaction is switched 
on the masses begin their running, but their anomalous mass di-
mensions are such that the running masses of different particles 
are still equal. In the case of the Wess–Zumino model in the for-
malism with the auxiliary fields there is only one renormalization 
constant – the wave function renomralization, which is equal for 
all fields. This implies the equality of the running masses. Thus, 
one can say that both the kinetic vacuum energy and the poten-
tial vacuum energy in the Wess–Zumino model with the auxiliary 
fields are cancelled separately.

3. Wess–Zumino model without auxiliary fields and the vacuum 
energy

The Euler–Lagrange equations for the auxiliary fields F and G
are

F + g(A2 − B2) = 0,

G + 2g AB = 0. (22)

Substituting the expression for the auxiliary fields taken from 
Eq. (22) into the Lagrangian of the Wess–Zumino model (3), we 
obtain an expression which contains only the “physical” fields A, B
and ψ :

L = 1

2
(∂μ A)(∂μ A) + 1

2
(∂μB)(∂μB) + 1

2
ψ̄(i∂̂ − m)ψ

−1

2
m2 A2 − 1

2
m2 B2 − 1

2
g2(A2 + B2)2 − mg A(A2 + B2)

−g(ψ̄ψ A + iψ̄γ 5ψ B). (23)

Now the interaction Hamiltonian density is

H I = 1

2
g2(A2 + B2)2 + mg A(A2 + B2) + g(ψ̄ψ A + iψ̄γ 5ψ B).

(24)

We can now calculate the potential vacuum energy corresponding 
to the potential (24). Obviously, the contribution of the Yukawa 
terms will coincide with that calculated in the preceding section 
and will be given by the formula (16). Then we have the “eight”-
diagram type contribution of the quartic scalar-pseudoscalar inter-
action

E3 = g2

2

〈
(A2 + B2)2 〉

= 3

2
g2

∫
D A A ·

∫
D A A + 3

2
g2

∫
D B B ·

∫
D B B

+g2
∫

D A A ·
∫

D B B = −4g2 I2. (25)
The contributions of the triple scalar–preudoscalar interactions 
have the form of the “nut” diagram integral

E4 = −im2 g2
∫

d4 y
〈

A3(x) · A3(y) + AB2(x) · AB2(y)
〉

= −im2 g2(6
∫

D A A D A A D A A + 2
∫

D A A D B B D B B)

= −8m2 g2 K . (26)

Thus, we see that the total contribution of the potential terms into 
the vacuum energy is

E1 + E3 + E4 = 4g2 I2 	= 0. (27)

Where was the balance between the fermion and boson con-
tributions lost? To answer this question let us try to calculate 
explicitly the vacuum kinetic energy terms. This terms will come 
from the expression

Ekin = 1

2

〈(
∂μ A ∂μ A + m2 A2) eiS I

〉
c

+1

2

〈(
∂μB ∂μB + m2 B2) eiS I

〉
c

+1

2

〈
ψ̄

(
iγi∂i + m

)
ψ eiS I

〉
c
, (28)

where i = 1, 2, 3 and

∂μ A ∂μ A = (∂0 A)2 + (∂i A)2

of course denotes Lorentz non-invariant combination contributing 
to the energy density of the scalar field A. The subscript “c” means 
that only connected diagrams should be considered, disconnected 
contributions being subtracted similarly to Eq. (9).

The two-loop contribution of the quartic interaction into the 
kinetic energy of the scalar field is

E5 =
∫

d4 y

〈(
1

2
∂μ A ∂μ A + 1

2
m2 A2

)
(x)

·
(

− i

2
g2(A2 + B2)2(y)

)〉
c

= −4g2 I ·
∫

d4k
kμkμ + m2

(k2 − m2)2
. (29)

The corresponding contribution of the quartic interaction to the 
kinetic energy of the pseudoscalar field is the same.

The contribution of the triple scalar (pseudoscalar) interaction 
to the kinetic energy of the scalar field, which is obtained by ex-
panding eiS I to quadratic order in mg

∫
d4 y A(A2 + B2)(y), is the 

following “nut” diagram

E6 = −1

2
m2 g2

∫
d4 y d4z

〈(1

2
∂μ A ∂μ A + 1

2
m2 A2

)
(x)

·
(

A3(y) · A3(z) + AB2(y) · AB2(z)
) 〉

c

= −10m2 g2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)2(p2 − m2)((k + p)2 − m2)
.

(30)

The sign · again separates groups of factors at different spacetime 
points, the chronological contractions inside each group being dis-
regarded like in (15).

A similar contribution of the triple scalar interaction to the ki-
netic vacuum energy of the pseudscalar field is different:
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E7 = −1

2
m2 g2

∫
d4 y d4z

〈(1

2
∂μB ∂μB + 1

2
m2 B2

)
(x)

· AB2(y) · AB2(z)
〉

c

= −2m2 g2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)2(p2 − m2)((k + p)2 − m2)
.

(31)

The contribution of the Yukawa interaction to the kinetic vacuum 
energy of the scalar field is

E8 = −1

2
g2

∫
d4 y d4z

〈(1

2
∂μ A ∂μ A + 1

2
m2 A2

)
(x)

· ψ̄ψ A(y) · ψ̄ψ A(z)
〉

c

= 4g2
∫

d4kd4 p
(kμkμ + m2) (p · (p + k) + m2)

(k2 − m2)2(p2 − m2)((k + p)2 − m2)

= 4g2 I ·
∫

d4k
kμkμ + m2

(k2 − m2)2

−2g2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)(p2 − m2)((k + p)2 − m2)

+6g2m2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)2(p2 − m2)((k + p)2 − m2)
.

(32)

The contribution of the Yukawa interaction to the kinetic vacuum 
energy of the pseudoscalar field is instead

E9 = −1

2
g2

∫
d4 y d4z

〈(1

2
∂μB ∂μB + 1

2
m2 B2

)
(x)

·iψ̄γ 5ψ B(y) · iψ̄γ 5ψ B(z)
〉
c

= 4g2
∫

d4kd4 p
(kμkμ + m2) · (p · (p + k) − m2)

(k2 − m2)2(p2 − m2)((k + p)2 − m2)

= 4g2 I ·
∫

d4k
kμkμ + m2

(k2 − m2)2

−2g2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)(p2 − m2)((k + p)2 − m2)

−2g2m2
∫

d4kd4 p
kμkμ + m2

(k2 − m2)2(p2 − m2)((k + p)2 − m2)
.

(33)

Finally, the contribution of the Yukawa interaction with scalar and 
pseudoscalar fields to the kinetic vacuum energy of the Majorana 
spinor is

E10 = −1

2
g2

∫
d4 y d4z

〈 1

2
ψ̄(iγi∂i + m)ψ(x) · (ψ̄ψ A(y)

·ψ̄ψ A(z) + iψ̄γ 5ψ B · iψ̄γ 5ψ B
)〉

c

= 4g2
∫

d4kd4 p
Tr [(γiki + m)(k̂ + m)(p̂ + k̂)(k̂ + m)]
(k2 − m2)2(p2 − m2)((k + p)2 − m2)

= 8g2
∫

d4kd4 p
kiki + m2

(k2 − m2)(p2 − m2)((k + p)2 − m2)

+8g2
∫

d4kd4 p
m2

(k2 − m2)(p2 − m2)((k + p)2 − m2)

+16g2
∫

d4kd4 p
m2(kiki + m2)

(k2 − m2)2(p2 − m2)((k + p)2 − m2)
.

(34)
Now, using the equality for Lorentz non-invariant combination 
kμkμ = k2

0 + k2
i ,

2kiki − kμkμ = k2 ≡ kμkμ, (35)

one can obtain

Ekin = 2E5 + E6 + E7 + E8 + E9 + E10

= −4g2
∫

d4kd4 p
1

(p2 − m2)((k + p)2 − m2

= −4g2 I2. (36)

Assembling Eqs. (36) and (27) we see that, even though sepa-
rately the kinetic and potential vacuum energies in the on-shell 
formalism of Wess–Zumino model are nonvanishing, their sum still 
equals zero as it should be.

4. Conclusions

In this paper we have compared the two-loop cancellation of 
the vacuum energy in the Wess–Zumino model in different for-
malisms – in the component field formalism with auxiliary fields 
and in the component formalism without auxiliary fields. It is also 
well-known that zero value of the vacuum energy directly follows 
without explicit calculations from the superfield formalism and is 
based on the general properties of the superfield Feynman graphs. 
Without going into details we just briefly remind the superfield 
mechanism responsible for that [26–28].

This mechanism holds separately for all superfield vacuum 
Feynman diagrams – any vacuum diagram is equal to zero. The 
point is that in the absence of external lines, a diagram under con-
sideration depends only on the differences of the internal Grass-
mann variables θα . Thus, the number of Grassmann integrations 
is larger than the number of independent Grassmann variables 
and the result equals zero because of the integration rule for θα , 
namely 

∫
dθα = 0 (see [29]). Thus, when we work in terms of 

the superfields, relatively simple algebraic manipulations allow us 
easily to attain the vanishing of the total vacuum energy along 
with a drastic decrease of the ultraviolet divergences in the super-
symmetric models. In particular, in the Wess–Zumino model it is 
necessary to introduce only one counter-term – the wavefunction 
renormalization constant (see e.g. the review [28] and the refer-
ences therein).

Explicit calculations in the component formalism with auxil-
iary fields are still not so complicated. The calculations in the 
formalism where the auxiliary fields are excluded by means of the 
equations of motion are more cumbersome and we have presented 
them in some detail in the section 3 of the present paper. We 
have seen that in this case the vacuum energy is again equal to 
zero. However its vanishing is a result of the cancelation between 
the non-zero contributions to the vacuum energy, representing its 
potential and kinetic parts. Note, that in the formalism with the 
explicit presence of the auxiliary fields these two terms (potential 
and kinetic) are equal to zero separately.

Why did we undertake these calculations in spite of the fact 
that the vanishing of the vacuum energy in the supersymmetric 
models is well established many years ago? There are two rea-
sons for that. First, it is interesting to study on one more example 
an involved question concerning the role of the auxiliary fields in 
the supersymmetric theories. To illustrate once again this prob-
lem, we shall cite some sentences from the review by Sohnius [23]
(p. 94): “There are several ways to understand why on – and off-
shell representations are different and why auxiliary fields appear 
in supersymmetric theories. At the root of the problem lies the dif-
ference between the vector space for the off-shell representations, 
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fields over xμ and that for on-shell representations, the Cauchy 
data for the fields equations. In both cases the fermions = bosons 
rule must hold. For different spins, however, there is a different re-
lationship between Cauchy data and fields. While, e.g., a real scalar 
field A(x) describes one neutral scalar particle, the Dirac field ψ(x)
has eight real components, but describes only the four states of a 
charged spin – 1

2 particle. Thus, in going from the fields to the 
states, we have lost some dimensions of our representation space, 
but differently so for different spins. Supersymmetric models with 
their strict fermions = bosons rule must somehow wiggle out of 
this, and they do so by means of auxi! liary fields whose off-shell 
degrees of freedom disappear completely on-shell”.

On the other hand, in recent years there has been a growing in-
terest in the Pauli–Zeldovich mechanism [7–9] of the cancellation 
of the vacuum energy divergences in the non-supersymmetric the-
ories with equal number of fermion and boson degrees of freedom 
[10–14]. In the corresponding models some relations between cou-
pling constants and masses should be imposed, but one cannot use 
the superfield formalism. Thus, a detailed knowledge of the mech-
anism of the cancellations between different contributions to the 
vacuum energy can be of interest in this context.
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