
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

TCP startup performance in large bandwidth delay networks / Wang, Ren*; Pau, Giovanni; Yamada,
Kenshin; Sanadidi, M.Y.; Gerla, Mario. - ELETTRONICO. - 2:(2004), pp. 796-805. (Intervento presentato al
convegno IEEE INFOCOM 2004 - Conference on Computer Communications - Twenty-Third Annual Joint
Conference of the IEEE Computer and Communications Societies tenutosi a Hongkong, China nel 2004)
[10.1109/INFCOM.2004.1356968].

Published Version:

TCP startup performance in large bandwidth delay networks

Published:
DOI: http://doi.org/10.1109/INFCOM.2004.1356968

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/643891 since: 2018-09-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/INFCOM.2004.1356968
https://hdl.handle.net/11585/643891


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Wang, R., et al. TCP Startup Performance in Large Bandwidth Delay Networks, vol. 
2, 2004.  

The final published version is available online at: 
http://dx.doi.org/10.1109/INFCOM.2004.1356968 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1109/INFCOM.2004.1356968


TCP Startup Performance in Large Bandwidth Delay 
Networks 

Ren Wang, Giovanni Pau_ Kenshin Yamada, M.Y.  Sanadidi, and Mario Gerla 
Computer Science Department 

Universitp of California, Los Angeles 
Los Angeles; CA 90095, USA 

{ renn\vang,~au;kenshin;medy.gerla: @.cs.ucla.edu 

.4brtroct - Nest generation nehvorlis with large bandwidth and 
long drlay pose a major challenge to TCP performance, 
especially during the startup period. In this paper we evaluate the 
performance of TCP RenaiNcwrcno. Vegns and Hoe's 
modification in large bandwidth delay nrhvork. We propose n 
modified Slow-start mechanism, rnllcd Adaptive Start (Astart), to 
improve the startup performance in such networks. When a 
connection initially begins or re-starts after a coarse timrout, 

- Astart ndaptivcly and repentedly resets the Slow-start Threshold 
(suthreslr) based on an cligihlr sending I'iitr estimation mrchanisrn 
proposrd in TCP Westwond. By iidapting to network conditions 
during the startup phase. it wndw is able to grow the congestion 
window ( o c n h  fast without incurring risk of huNw owrflow and 
multiple Iossrs. Simulation rxpcrirncnts show that Astart can 
significantly improve the link utiliiation under various 
bandwidth, buNrr sur ;~nd round-trip propagation timrs. The 
mrthud avoids both under-utiliriition dur to prrmature Slow- 
start termination, a s  wcll ils multiple I~XII~S due to initinlly setting 
srrlire.sli too high, or. increaing n m d  tin) fiat. Experiments also 
show that Astart uchiews good fttirnrss rind fricndlincss toward 
T C P  NewReno. Lab measuremrnts using a FrreBSD Astart 
implementation are also reported in this paper, providing futrhcr 
evidence of the gains nchirvahlr via Astart. 

Kqw-orr%r-congesrionn control; .sIow-.start; rate estimution. large 
bundwidth d d q  nehvorks 

I. INTRODUCTION 

TCP is a reliable data transfer protocol [I51 used widely 
over the Internet for numerous applications, from FTP to 
HTTP. The cument implementation of TCP RenoMewReno 
mainly includes two phases: Slowstart and Congestion- 
avoidance. In the Slow-start phase, a sender opens the 
congestion window (~~114 exponentially; doubling cu.rid every 
Round-Trip Time (RTT) until it reaches the Slom-stalt 
Threshold (srrliiesh). The connection switches then ' to 
Congestion-a\.oidance~ where cwid  grows more conser- 
.vatively, by only I packet every RTT (or linearly). The initial 
ssrliiesh is set to an arbitrav default value: ranging from JK to 
6JK Bytes, depending on the operating ?stem implementation. 

This research was supportsd by NSF under grant ANI-0221528. 

By setting the initial ssrliresli to an arhitray value, TCP 
performance may suffer from two potential problems: (a) if 
ssrhlrsh is set too high relative to the network Bandwidth 
Delay Product (BDP), the exponential increase of cwid  
generates too many packets too fast, causing multiple losses at 
the bottleneck router and coarse timeouts; with significant 
reduction of the connection throughput: (b) if the initial 
ssrhiesh is set low relative to BDP; the connection exits Slow- 
start and switches to linear cwnd increase prematurely, 
resulting in poor startup utilization especially when BDP is 
large. 

Recent studies [IO] reveal that a majority of thc TCP 
connections are short-lived (mice), while a smaller number of 
long-lived connections c a m  most Internet traffic (elephants). 
A short-lived connection usually terminates even before it 
reaches "steady state". That is; before cwid g o w s  to make 
good utilization of the path bandwidth. Thus, the startup stage 
can significantly affect the performance of the mice. In a larye 
BDP network; with the c m e n t  Slowstart scheme; it t kes  
many RTTs for a TCP connection to reach the ideal window 
(equal to BDP). For example, in current RenoNewReno 
implementation with initial ssrhresli set to 32 Khytes, a TCP 
connection takes about 100 sec to reach the ideal window over 
a path with a bottleneck bandwidth of 100 Mhps and RTT of 
IOOms. The utilization in the first 10 sec is a meager 5.97%. 
With the rapid developmenl of the Internet and ever-gowine 
BDP: a more efficient Slowstart mechanism is required to  
achieve good lik-utilization. 

In this paper; we evaluate the performance in large 
bandwidth delay networks of three current TCP Slow-start 
implementations: ( I )  ReuoNewReno, ( 2 )  NewReno with 
Hoe's modification [l?] and ( 3 )  Vegas [3] .  We then propose a 
sender-side only modification, called Adaptive Start (Astart), to  
improve TCP startup pelformance. Astart takes advantage of 
the Eligihle Rate Estimation (ERE) mechanism proposed in 
TCP Westwood (TCPW) [?0], adaptively and repeatedly 
resetting ssrlwesh during the slowstart phase. When ERE 
indicates that there is more available capacih, the connection 
opens its cwiid faster, enduring better utilization. On the other 
hand; when ERE indicates that the connection is close to steady 
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state. it switches tu Congestion-avoidance; limiting the risk of 
buffer overtlow and multiple losses. Ns-2 simulation 
experiments show that Astart significantly enhances 
performance of TCP connections, and show that the 
enhancement increases as BDP increases. When BDP reaches 
around 750 packets, the throughput improvement is an order of 
maplitude higher than that of TCP RenoMewReno for short- 
lived connections. We also conduct experiments tu compare 
Astart with the method using a large initial window of 64 
Khytes IS] in commercial satellite wotks; and evaluate Astart 
fairness. friendliness and performance under dynamic loading. 
Lab measurements are also carried out using a FreeBSD 
implementation. 

The rest of the paper is organized as follo\vs. In Section I1 
we review background work, and give a brief overview of 
TCPW and the eligihle rate estimation. In Section I11 we 
evaluate startup performance of several TCP variants, including 
RenoMemReno; Hoe's modification and Vegas. Section IV 
presents Adaptive Start, our pioposed modification of TCP 
slow-stalt, and illustrates its hasic behavior. In Section V; we 
conduct simulation experimcnt to evaluate Astart throughput 
performance, adaptivity against congestion and multiple 
congestion, fairness and friendliness; performance under 
dynamic load. We also compare Astart with the use of large 
initial window method in this section. Lab experiments using 
FreeBSD implcmentation are provided in Section VI. Finally; 
Section VI1 discusses future w r k  and concludes the paper. 

11. BACKGROUND 

.4. Relured 1 l b r . X  on TCP Slow-srarr Mec/iaiiisiii 
TCP congestion control consists mainly of two phases: 

Slow Start and Congestion avoidance [ l j ] .  A new connection 
begins in Slowstart, setting its initial ovnd to 1 packet, and 
increasing it hv 1 for e v e p  received Achowledgment  (ACK). 
After cuwd reaches ssrhresh. the connection switches to 
congestion-avoidance where cwid g~ows linearly. 

A variety of methods have been suggested in the literature 
recently aiming to avoid multiple losses and achieve higher 
utilization during the startup phase. A larger initial c w d :  
roughly JK bytes, is proposed in [I] .  This could greatly speed 
up transfers with only a few packets. However. the 
improvement is still inadequate when BDP is v e ~  large; and 
the file to transfer is bigger than just a few packets [22]. Fast 
start [I91 uses cached cwid and sstliresh in recent connections 
to reduce the transfer latency. The cachcd parameters may be 
too aggressive or too con.wrvative when network conditions 
change. 

Smooth start [21] has hecn proposed to slow down cwnd 
incrcase when it is close to ssrlilesk. The assumption here is 
that default value of ssrlzmli is often larger than the BDP; 
which is no longer true in large bandwidth delay networks. [ 121 
proposes to set the initial ssrhresh to the BDP estimated using 
packet pair measurements. This method can he too agpessive; 
as we will shorn in Section 111. In [22] ,  SPAND (Shared 

Passive Network Discovery) has been proposed to derive 
optimal TCP initial parameters. SPAND needs leaky bucket 
pacing for outgoing packets; which can be costly and 
problematic in practice [2] .  

TCP Vegas [3] detects congestion by comparing the 
achieved throughput over a cycle of length equal to RTT; to the 
expected throughput implied by cuwd and haseRTT (minimum 
RTT) at the beginning of a cycle. This method is applied in 
both Slow-start and Congestion-avoidance phases. During 
Slow-start phase, a Vegas sender doubles its cwid only 

RTT; in contrast with Reno's doubling e v e p  RTT. A 
Vzgas connection exits slowstart when the difference between 
achieved and expected throughput exceeds a certain threshold. 
However, Vegas is nut able tu achieve high utilization in large 
bandwidth delay networks as we will show in Section 3% due to 
its over-estimation of RTT. 

We believe that estimating the eligible sending rate and 
properly using such estimate are critical to improving 
handwidth utilization during Slowstart. 

B. TCP rveshvood and Eligilbe Rare Estinurioii Oveiview 
In TCP Westwood (TCPW) [J]; the sender continuouslv 

monitors ACKs from the receiver and computes its current 
Eligible Rate Estimate (ERE) [20]. ERE relies on an adaptive 
estimation technique applied to ACK stream. The goal of ERE 
is tu estimate the connection eligible sending rate with the goal 
of achieving high utilization, without starving other 
connections. We emphasize that what a connection is eligible 
for is nut the residual handwidth on the path. The connection is 
often eligible more than that. For example; if a connection joins 
t\v<> similar connections, alreadv in progress and fully utilizing 
the path capacity: then the new connection is eligible for a third 
of the capacity. 

Research on active network estimation [5] reveals that 
samples obtained by -'packet pair" is more likely to reflect link 
capacity, while samples obtained hy "packet train" give short- 
time throughput. In TCPW, the sender adaptively computes T,; 
an interval over which the ERE sample is calculated. An ERE 
sample is computed by the amount of data in bytes that were 
successfully delivered in T,. T, depends on the congestion level, 
the latter measured by the difference between 'expected rate' 
and 'achieved rate' as in TCP Vegas. That is T, depends on the 
network congestion level as follows: 

where RTT,,,, is the minimum RTT value of all acknowledged 
packets in a connection; and RTT is the smoothed RTT 
measurement. The expected rate of the connection when there 
is no congestion is given by cnvidiRTT,,, while RE is the 
achieved rate computed based on the amount of data 
acknowledged during the latest RTT, and exponentially 
averaged over time using a low-pass filter. When there is no 
congestion, and therefore no queuing time, cuvidRTT,, is 
almost the same as RE; producing small T,. In this case: ERE 
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becomes close to a packet peir measurement. On the other hand. 
under congestion conditions, RE will be much smaller than 
ruvidiRTT,,due to longer queuing delays. As a result, Tk will 
he larger and ERE closer to a packet train measurement. After 
computing the ERE samples. a discrete version of a continuous 
first order low-pass filter using the Tustin approximation [23] 
is applied to obtain smoothed ERE. 

In current TCPW implementation; upon packet loss 
(indicated by 3 DWACKs or a timeout) the sender sets civiid 
and rsrliresh based on the current' E R E  TCPW uses the 
following algorithm to set cu.iid and ssrhresh. (We will 
descrilx our proposed Adaptive Start in Section IV; which 
applies to both initial start-up phase and Slowstart after coarse 
Limeouts.) 

g(3 DLIP.4ChS ai'e received) 
ssrhresli = /ERE *RTTiii iiijheg~size; 
iJ(cwiid >ssrhreslij /*coiigesrioii avoid*/ 

endif 
cw~ld=ssr/l~esh: 

eiidif 

if(coavse r;iiieoiir erpires) 
. .  

cwrid = I :  
ssrhresh =(ERE *R TTiniiii/seg-size: 
f(.isrliresli < 2j. 

ssrhresli = 2; 
eiiiiif 

. ~ eiidif 

111. TCP SLOW STARTPERFOR~LANCE 
In this section' we state hnefly the current TCP Slowwart 

mechanisms, and evaluate their startup peiiormance in large 
bandwidth delay networks by simulation. We illustrate the 
inadequacy of the current schemes when facing networks with 
large BDP, and reveal the.reason behind it. 

.4. Sirr~~llolio~l SCOrtlqJ 

@ - \  ,@ 

Figuw I Network topology for siniulations 

All results in this paper are obtained using ns-2 [l3]. The 
network topoloF is shown in Figure I ;  where S, represents a 
TCP sender and H, a TCP receiver. RI and R 2  are two routers 
with finite buffer capacity, each set equal to the Bandwidth 
Delay Product (BDP) unlcss.othenvise specified. Results are 
obtained for vaving propagation time and bottleneck 

bandwidth. FTP is the simulated application. The receiver 
issues an ACK for even; data packet received. We assume the 
receiver's advertiszd window is always large so that the actual 
sending window is always equal to cwiid. For the convenience, 
the window sire is measured in number of packets, and the 
packet size is 1000 bytes. The initial ssrhresh for 
RenoNewreno is set to he 32 packets, equal to 32 Khytes. 

B. TCP Reiio/!Veii~Reiio 

In TCP RenoNewReno; a sender starts in Slowstart, c i w d  
< sstliivsli; and even; ACK received results in an increase of 
cwnd by 1 packet. Thus, the sender exponentially increases 
ciuiid. When cwid hits ssrlirrsli, the sender switches to 
congestion avoidance phase, increasing c i d  linearly, 
considerably slower than in slow start. 

In this Subsection, we evaluate RenoNemReno startup 
performance in large BDP networks. If the initial ssthresh is 
too low' , a connection exits Slow-start and switches to  
Congestion-avoidance prematurely, resulting in poor 
utilization. Figure 2 shows the Reno ciwd dynamics in the 
startup stage. The results are obtained for a bottleneck 
bandwidth of JOMbps; and RTT values of 40, 100 and 20Cms. 
The bottleneck buffer size is set equal to BDP in each case. 

cwnd(RTT=POOrns) - - - 
350 

Time (sec) 

Figure 2. cwnd dynamic during the s m - u p  phase 

From Figure 2; we see that when RTT=IOhs ,  Reno stops 
exponentially growing cwiid long before it reaches the ideal 
value (BDP=jOO). After that, cwiid increases slowly; and has 
not reach 500 by 20sec. As a result, the achieved throughput is 
only 12.90 Mbps, much lower than the desired 40 Mbps. 
Another observation concerns how RTT affects performance. 
When RTT increases; the ideal window grows too. On the 
other hand: because c n d  increases 1 packet per RTT during 
Congestion-avoidance. longer RTT means slon-er c w d  
growth, resulting in even lower utilization. The results in Table 
I show the drastic reduction in utilization as RTT increases. 

I In a n&ork nith small BDP. the initial ~ d t r e s h  ,night be set too 
high. As a result: at some cycle in slow start. a Reno sender otien 
overshoots the BDP, causing multiple losses and a coarse timcout. 
This is also a problem resulting from an inappropiate setting of 
ssthresh. 
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TABLE 1 NE\% REYO U T U l Z h ~ G N  DURUiG FlRTST 20 SEC ( BAND\VDTH 
40SlBPS) 

Utilization(%) 95.6 71.8 23.2 11.9 7.2 

Bandnidth(Mhps) I O  20 

1 
40 I00 200 

C. TCP Reiio4VewReiio with Hue b Slow Start .lludijcatioii 
In [l?]; Hoe proposes a method for setting the initial 

.ssr/ires/i to the product of delay and estimated bandwidth. The 
handwidth estimation is calculated by applying the least 
squares estimation on three closely-spaced ACKs (similar to 
the concept of packet pair [17]). RTT is obtained by measuring 
the round trip time of the first segment transmitted. 

Hoe's modification enables the sender to get an estimation 
of the BDP at an early stage and set the ssthresh accordingly, 
thus avoiding switching to congestion avoidance prematurely. 
As illustrated in Figure 3 with large buffer space (buffer 
size=BDP=jOO), Reno with Hoe's modification increases c w d  
exponentially and exits properly. 

Ho\vxer, Hoe's modification may encounter multiple-loss 
problems when the bottleneck buffer is not big enough 
compared to the BDP, which could easily happen in large 
handwidth delay networks. In Figure 3 when the buffer size is 
I 2 5  packets (l/4 BDP), the connection encounters multiple 
losses and iuns into a long recoven time (from 0.9 sec to 14.8 
sec). The achicved throughput during the first 20 sec is only 
3.61 Mbps; translating into 9% utilization. 

The reason for the multiple losses is as foltows. Dusing 
Slow-stan, for e v e n  ACK received; the sender increases cuvid 
hy 1 and sends out 2 new packets. If the receiver a&nowledges 
e v e n  packet; then after 11 RTT; civiid will be 2". Suppose the 
access link capacity is at least twice as large as the hottleneck 
capaciv; these 2" packets will arrive at the bottleneck back to 
hack at a speed twice that of the bottleneck link. Thus; to avoid 
losses at least a buffer of 2"' packets is needed to hold off the 

temporarily bursting packets. Hoe's modification sets ssthresh 
to the estimated BDP; thus; a buffer size of BDPI? is required 
to prevent multiple losses €or single connection. 

L 2 500 cwnd with large buffer (500) ~ 

0 cwnd wth small buffer (125) ---.--.- 

300 

100 

_.~.. ...... 
~ ..................... -- 

I 
0 1  I 

0 5 10 15 20 25 3C 
Time (sec) 

Figure 3. cwnd dyurnics in KicwRcno with Hoc's rndificalion 

More importantly, Hoe's modification does not adjust to 
changing path load. If there are multiple connections stalting 
up at approximately the same time, or other large volume 
traffic (for example, video transferring) joins in when a 
connection is in Slo\v-start; the Hoe's modification mill have 
set the initial ssthrvsh too high; resulting in multiple losses and 
coarse timeout. 

D. TCP I'egus 
Unlike 'TCP RenoNcwrcno that uscs packet loss as 

congestion indication, TCP Vegas [3 ]  detects incipient 
congestion by comparing the achieved throughput to the 
expected throughput at the beginning of a cycle (RTT). The 
difference he twen these two values reflects the queue length 
of the connection in the bottleneck router. 

This Vegas method is applied to both Slow-start and 
Congestion-avoidance phases. In congestion-a\,oidance; cwnd 
increases by I per RTT if the difference is small, meaning that 
there is mough network capacity Vegas reduces cwnd in the 
same fashion (by 1 packet) when the achieved throughput is 
considerably lower than the expected throughput. 

During Slow-start, Vegas doubles its congestion window 
only even. other RTT (compared to Reno's even. RTT). When 
the difference between actual and expected throughput exceeds 
a threshold, Vegas stops its window doubling and switches to 
Congestion-avoidance (See Figure 4). 

By pawing cavd slower and monitoring even. RTT for 
incipient congestion. Vegas avoids multiplc losses and the 
coarse timeout that would result [ I  I ] .  However, when the BDP 
is large, Vegas may under-utilize the available handwidth by 
switching to congestion avoidance too early [IS]. The 
premature slowstart termination is caused by RTT over- 
estimation in the Vegas algorithm. In Vegas, the sender checks 
the difference between expected and actual throughput: 
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c,snd c ~ d  only at the heginning of the RTT where d2ff =--- 
bareRTT RTT, 

Bandmidth(Mbps) I O  20 30 80 

cwrid is doubled' 

I50 

' ,..,- ..... _..- 140 Vegas cwnd ..--.-! 

120 
Instant Queue Length ~ _.I.. _....' 

Ratio ~0.384 0.192 0.192 0.096 

1 
o i 2 3 4 5 6 7 e  

Time (sec) 

Figure 4. Vcgss cwnd dynamic aid  quem length during startup phase 
(Bottleneck bm~dnidth =JO hlbpr. bnscRTI =100mr) 

At this point, -RTTn is over-estimated because of the 
temporan, queue buildup at the router during the previous cycle 
(the last two RTTs). Figure 4 sho\vs the instantaneous queue 
length pattem. As a result of RTT over-estimation. dflis orer- 
estimated too; and Vegas exits Slowstart prematurely. A more 
detailed analysis of this problem can he found in [IS]. Figure 4 
also sholrs Vegas cwriddynamic over a path with BDP equal to 
500 Packets. Vegas exits slow start at cw1&96, while the ideal 
window is 500 packets 

The stanup under-utilization of Vegas is aggravated as 
BDP gmws.  Table 3 shows the ratio of the slow start 
termination c k d  to the ideal window value for different 
bottleneck handwidth. The ratio is reduced to about 0: I with a 
bottleneck of 100 Mbps. 

0.101 

IV. MODIFIED TCP SLOW ST-\RT FOR L.ARGE BANDWIDTH .. 
DELA\- NETWORKS 

In this Section; we propose a simple sender-side only 
modification; which we call Adaptive Start (Astart), to the 
traditional RenofNewReno sloiv start algorithm. We take 
advantage of the TCPW eligible rate estimate. using it to 
adaptively and repeatedlv reset s s ~ h , r s h  during the startup 
phase, hoth connection startup. and after evei? coarse timeout. 
The pseudo code of the algorithm is as follows. When an ACK 
anives: 

' Provided that .the difference indicates no congestion 

i f / 3  DLE4CKS are rrceiwd) 

</se M ' K  is received) 
s w i d i  IO conges~ion ovoidonce phose: 

if /ssilzreslz < ( E R E * R ~ n , i , i ) i i ~ e )  

utdg 
tf(ovrrd >=sstlrresld /*mini linear $,creme pIme*/ 

else f o w d  <ssrlreslzj /*mini e.vpommtioI irrcreae plrnse */ 

rrtdq 

ssrltrrslt = (ERE*RTTnri,i)/seg_Fi=~: 

imrense ovrid hv I/cwnd: 

increrise cinid bj' I :  

r rd f  

In TCPW, an eligible rate estimate is d e t m i n e d  after 
even, ACK reception. In Astart, when the current ssthrash is 
much lower than ERE*RTT,, the sender resets ssrliresli 
higher accordingly, and increases cwnd in slow-start fashion. 
Othenvise, cw~id increases linearly to avoid overflow In this 
\Tay; Astart probes the available network bandwidth for this 
connection, and allows the connection to eventually exit Slow 
start close to the ideal window (See Figure 5). Compared to 
Vegas; TCPW avoids premature exit,of slow stalt since it relies 
on hoth RTT and ACK intervals, while Vegas only relies on 
RTT estimates. 

Time (sec) 

(a) Buffsr = 500 packas 

- y) q ///---j 1" 500 ................................. ~~ ...................... 

cwnd __ 
Slow Start Threshold --...--. f 200 

0 100 

i.400 1 / 
cwnd __ 

Slow Start Threshold --...--. 

0 "  I 
0 5 10 15 20 25 3C 

Time (sec) 

(h) buffsr= IZjpackds 

Figure 5 .  Astat cwnd d,namic during statup phase (Bonkneck bandwidth 
=4O Xlhps. RIT=10flms. BDP =500 packets,) 

Figure 5(b) illustrates the c w i d  dynamic in the case of 
small huffer (equal to BDPIJ). By applying Astart. the sender 
does not overtlorn the bottleneck buffer and thus multiple 
losses are avoided. Figure 6 gives a closer look at the c w d  
dynamic. In eRect; Astart consists of multiple mini-linear- 
increase and mmi-cxponential-increasa phases. Thus, cuvd 
does not increase as fast as in Hoe's method, especially as 
cwnd approaches BDP. This prevents the temporay queue 
from building up too fast, and thus; prevents a sender from 
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overilowing a small butTer. Comparing the c u v d  evolution in 
Figure 5 and Figure 6 to tho= in Figui-e 3; i t  is clear that cwiid 
increase in Astart folloivs a smoother c n n e  when it is close to 
RDP. 

31" I I I I 
500 

430 120 1.6 U 1.7 1.6 1.9 2 2.1 2 ;  

Time iseci 

Figurc 6 .  a closer look at -\stan cwid dynamic during stanup phase 

V. SIXIUWTION RESL~LTS .&VD DISCUSSION 
In this Section: we evaluate the performance of Astart, 

comparing the throughput performance of the proposed Astart 
algorithm to othcr mechanisms we descrihed and evaluated in 
the previous section. We also compare Astart with commercial 
satellite transport protocol where \:en large initial window is 
used. Finally we will evaluate how well Astart co-exists with 
TCP NewReno, the de facto Internet data transport protocol. 

.1. -4stal.t Beliavior. wid ,  :\/ultiple Connectiom 

We ran simulation with 5 connections stming at the same 
time (the network parameter is the same as in Figure j(a)). The 
results in Figure 7 show that each connection is able to estimate 
its share of bandwidth and switch to Congestion-avoidance at 
the appropriate time. 

We drew graph with 5 connections €or the come-nience of 
presentation, simulations with more connec-tions shorn that 
Astart can promptly pump up its cwriil and then switch to 
Congestion-avoidance properly. 

B. 
To evaluate the adaptivlty of Astart when the network 

becomes congested, we also tested the startup hehavior when 
another high-rolume UDP connection joins the TCP 
connection during the slow start phase. We ran simulations 
with one TCP connection starting at time 0 over a link with 
capacity 40 Mbps. A UDP flom with intensity of 20 Mhps 
starts at 0.5 sec. Figure 8 shows that Hoe's method nms into 
multiple losses and finally times out. The reason is the setting 
of the initial ssrhrPsh to 500 (BDP) at the \'e? heginning of the 
connection, and the lack of adjustment to the change in 
network load later. In contrast, Astan has a more appropriate 
(lower) slowstan exit cuvzd~ thanks to the continuous 
estimation mechanism; which reacts to the new traffic and 
determines an eligible sending rate that is no longer the entire 
hottleneck link capacity. 

Sia~rzrp in a Congesred ~Vetwork 
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Figure 8. uwnd mnamic  with UDP tra& joins in during srartop(Bottlcncck 
cupacily=.lO blbps. R7T=10Gms. BDP =500 packrts) 

C. T/iroziglzp~rt Coinparison 
The summa? of this sub-section is that Astart sipilicantly 

improves TCP startup performance with regards to various 
bottleneck handwidth, buffer sire and round-trip time. To focus 
on the start-up performance of different schemes, we only 
calculate the throughput during the first 20 seconds. 
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Figure 9. Throqhput vs. bonlcncck capacity (fin1 20 seconds) 
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The throughput of Astart, NewReno; NewReno with H x ' s  
modification and Vegas are examined under bottleneck 
bandwidth varying from I O  to IS0 Mbps (while fixing the 
round-trip time at 100ms). The results in Figure 9 show that 
Astart and Hoe's modification achieve higher throughput, and 
scale with bandwidth. NewReno and Vegas pertbmiance lags 
in this scenario. Another ohserifation is that Nemreno with 
Hoe's modification slightly outpertbrms Astart. .In Hoe's 
method, the initial ssrhresh is immediately set to the bandwidth 
after -3 closely spaced ACKs returned, so nviid increases by 
one for e v e n  ACK received. On the other hand: Astart 
gradually prohes for bandwidth and slow down when the 
estimate is closer to the connection bandwidth share. We 
helieve that the slightly lower throughput achieved hv Astart 
abovc is more than compensated for hy its avoidance of buffer 
overflow and multiple losses in other cases. 

To assess the rohustness of the differcnt schemes to huffer 
size; we ran simulations with hottlcneck huffer size v q i n g  
from 100 (BDPIS) to 250 (BDPI2) packets. The bandwidth is 
40 Mhps and RTT is 100 msec. The results in Figure 10 show 
that Astart is robust to buffer size reductions; while NewReno 
with Hoe's modification suffers when the buffer size is smaller 
than BDP12. The reduction in huffer size has no meaningful 
impact on NewReno and Vegas. They still exit Slowstart 
prematurely as explained in Section 111. 
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RTT can considerahly affect the startup performance. 
Figure I I s h o w  the throughpat of Astart, NewReno, Hoe's 
modification and Vegas with RTT wrying from 20 to 200 
msec. The Bottleneck bandwidth is fixed here at 40 Mbps and 
hutkr  size is set equal to BDP. Figure I 1  shows that Astart and 
Hoe's method both scale well with RTT with Hoe's 
modification slightly better for the same reason previous stated 
(Hoe's method set the ssrhresh immediately to the BDP where 
Astalt prohes and slows down when c w d  is close to the BDP). 
The pertormance of NewReno and Vegas deteriorate s i p i -  
ficantly as RTT increases. 

The studies in the last two Sections focused on the 
performance a TCP connection during its initial startup phase. 
But Asart can also be used after any coarse timeout. This is of 
particular value to TCPW since after a timeout; ERE is small 
relative to the connection actual bandwidth share. This is 
because duing a coarse timeout, the sender transmits so few 
packets, and therefore the share estimate is veg low Astart 
helps in this case by gradually probing for bandwidth share and 
switching to congestion avoidance at a more appropriate time. 

D. Coni~~arinp .-lsrnrr ro the Use oflarge Initial ll;Indoo,s 
(Llll;) over satellite l i i i b  

In a connection that incorporates a satellite l ink the main 
bottleneck in 'TCP performance is due to the large delay- 
bandwidth product nature ofthe satellite link As me mentioned 
in Section 11; a larger ciwid; roughly 4K bytes, is 
proposed in [I] .  This could greatly speed up transfers with only 
a few packets. However; the improvement is still inadequate 
when BDP is v e n  large; and the file to transfer is bigger than 
just a few packets. 

More aggressively, commercial satellite data communi- 
cation providers ppically use a ven large initial window 
(LIW) over satellite links, e.g.; 64 Kbytes. and thus bypass the 
slow start stage of the normal TCP evolution [SI. This method 
effectively increases the utilization during the startup. 
However. it cannot single-handedly solve the problem of poor 
startup utilization over satellite links. Below we mill show the 
reason and also compare the performance of Astart with LIW 
method. 

A commercial satellite tem using a geo-stations? 
(GEO) could have bandwidth up to 24 Mhps. Which results in 
a BDP of ahout 3000 with one-way propagation dela!- of 500 
ms. Under this situation, even with an initial window of 64 
Khytes, it ivould take a veri. long time for TCP to fully utilize 
the l i t k  

Figure I2 compares the startup hehavior of Astart and LIW 
method. The bottleneck capacity is I O  Mbps and one-way 
propagation delay is 250 ms. The graph s h o w  that although 
LIW method comes up strong at the v e n  beginning; it fades 
quickly comparing to Astart due to bypassing the slowstart 
stage. As a result; the throughput of LIW method during this 
period is only 2.80 Mhps comparing to Astart's 9.33 Mbps. 

~7803-8355-9/W/S20.~02004 IEEE. 802 



,000 t Astari.cwnd 
LIW cwnd - - - - - - - -  . i 

0 20 40 60 80 100 
Time (sec) 

Figws 12. Conpcetion window dywamics of . ban  and LIW method. 
(honlenduk=lOllhps. RTT=jOOrnn. HDP =600) 

Another challenge LIW method faces is caused b!, its 
inability to adapt to different network conditions. By setting the 
initial congestion to a large value, if the network is highly 
congested os many connections simultaneously join in; it is 
possible that using LIW overtlows the buffers and causes 
multiple losses. 

Moreover, a connection using a satellite link may also has a 
terrehfrial part, thus using LIW end-to-end could affect the 
peribrmance and fairness of the terrestrial part of the 
connection. 

E. 
Fairness relates to the relative performance of a set of 

connections of the same TCP variant. Friendliness relates to 
how sets of connections running different TCP flavors affect 
the performance of each other. The simulation topolog?. 
consists of a single bottleneck linl; with a capacity of 50 Mbps? 
and one-way propagation delay of 35,s. The buffer size at the 
bottleneck router is equal to the pipe size. The lit& is loss Cree 
except where othenvise stated 

A sct of simulations with 10 simultaneous flows was run to 
investigate fairness of Astart. l o  provide a single numerical 
measure reflecting the fair share disrihution across the various 
connections we use the Jain's Fairness Index defined as [16]: 

Fuimess mid Friem//iiirss IO TCP :VeaRr,zo 

where h, is the throughput of the ih flom and 11 is the total 
number of flows. The faimess index always lies between 0 and 
I .  A value of I indicates that all flo\vs got exactly the Ydme 
throu&put. 

We calculate the fairness index for both Reno and TCPW. 
The Jain's fairness index of Astart reached 0.9949; and that of 
NewReno is 0.9944. Therefore; fairness of Astart is 
comparable to that of NewRcno. 

Since Aslart invokes faster prohing during startup, the 
evaluation of Astart friendliness tovard NewReno is important. 
Thanlis to good friendliness characteristics of TCPW, Astart 
connections can effectively coexist with NewReno connections 
over the same path. Figure 13 shows cwiiddynamics for Astart 
and NewReno connections. 

The bottleneck link handwidth is 5OMbps and a two way 
propagation delay is 70msec. In Figure l3(a), one Atart and 
one NewReno connection start running at the same time. The 
Astan wnnection benefits initially.by quickly reaching cruising 
speed. Astart and NewReno connections both reach the same 
cwid after a few congestion episodes. In Figure 13 (h), five 
Astart and five NewReno connections start simultaneously. 
The firs started Atart connection gets more bandwidth initially, 
hut again a11 connections, regardless of Astarl or NewReno, 
reach fair share rate after a few congestion episodes. 
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Fiqure 13. cnnddvnurnicn hemeen .Astart and NewReno 

We evaluated thc pelfomance of Astart under highly 
dynamic load conditions. In 20 minutes simulation time, we ran 
I00 connections. Connections staiting times are uniformly 
distributed over the simulation time. 'The lifetime of a 
connection is fixed at 3 0  seconds. We compare the results 
among NewReno with Astart. 

Figure I4 shows Total throughput vs bottleneck bandwidth. 
The total throughput is computed as the sum of throughputs of 
all connections. Propagation delays are 70ms, and the 
bottleneck buffer size is set cqual to the pipe size (BDP). In 
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IOMbps, Astai  does not get much benefit, because NewReno 
does not have any difficulty filling the smaller pipe. As the 
bottleneck link capacity increases, the difference between 
Astan and NewReno becomes more obvious. At 200 Mhps, 
Astart achieves about 60% more throughput than NemReno. 

140 - Astart f- 
NewReno ---*(--- 

. 

20 40 60 80 100 120 140 160 180 200 
Bottleneck capacity (Mbps) 

Figure 14. Throughput ss. bottlsncckcapuci? of :\start and Nai-Reno under 
d3namic load ( R T T  = 7 h n e c )  

50 loo 150 zoo 250 300 
Two-way Propagation Delay (msec) 

Fisure 15. 'Ihrougliput vs. RTT of Astart and NswReno unddidynamic load 
( Bottleneck capacity'= 100 hlbps) 

To assess the relation of the efficiency to the E2E 
propagation time under dynamic load; we ran simulations with 
a bottleneck capacity of 100 Mbps -and two-way .propagation 
ranging .from 20 to 300 msec. The'results in Figure I5 show a 
significant gain for Astart up to 1016% over NewReno. When 
the RTT increases: the performance of NewReno degrades 
severely. while Astart is able ' to maintain respectable 
utilization. 

VI. FREEBSD ISIPLESIENT.~TION 
To ixduate  Astart pelformance in actual ?:stems, we have 

implemented Astan algorithms, on FreeBSD systems. Lab 
measurements confirmed our simulation results, showing that 
Astart hehaves quite well in actual systems. 
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A. d1easwenieiir serrrp 
Figure I G  s h o w  the measurement configuration in our 

espenments. All PCs are running on FreeBSD [9] Release 4.5. 
CPU clock tick is l0nisec (default). We use Dumm!.net [6][7] 
to emulate the hottleneck router. The bottleneck link (from PC 
router to .TCP receiver) speed is xt to 10Mbps. The 
propagation time is 400msec; and the router buEer is set equal 
to BDP (500Khytes). Active Queue Management is not used; 
that is tail-drop is adopted to simplie the espenments. Further. 
no random packet loss was induced at this time. We use Iperf 
[Id] as a traffic generator. The receiver's advertised window is 
set large enough at 4 Mbytes. We fised the initial ssrhrcsl7 for 
NewReno equal to 32 Khytes in our measurements. 

TCP sender PC muter 
(dummy net) TCP receivet 

Figire 16. hlcasuemmt topology atid contiguration 

B. .4srar.r Behavior 
Figure 17 shows measured cwiid dynamics in Astart and 

NewReno connections at Slow Start. NewReno enters 
Congestion Avoidance phase after cwrid reaches the initial 
ssthresli (3%); and cw7d increases linearly by one packet p a  
RTT. owd reaches only ?Mbps, 20 '3'0 of the link capacity, for 
the first 25 seconds. On the other hand, in the Astart connection, 
C M ~ I Z ~  quickly converges to the link capacity due to the adaptive 
ssthrvsh resetting. We can also confirm that civrid @oo\\th is not 
esponential throughout startup. Initially oiwd increases rapidly 
for the first 3 seconds; and then increases more slowly as the 
connection approaches the link capacity 
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Figure 17. ciundd>namics, in Atan and NrwRcna at Start-up 
-. . (Lab hlsasaremotts Rrsults) 
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VII. COKCLIJSIONS -\hD FUTJRE WORK 

In this paper; \\-e evaluated the startup petionnance of TCP 
RenoNewreno, Vegas and Hoe's modification in large 
bandwidth delay networks. We proposed a modified Slowstart 
mechanism, called Adaptive Start (Astart), to improve the 
startup performance in such networks. Astart adaptivelp and 
repeatedly resets the Slow-start threshold (ssrhlus/7); based on 
the eligible rate estimation mechanism proposed in TCP 
Westwood. By adapting to network conditions in the startup 
phase; a sender is able to grow the congestion window (citwn) 
efficiently without overtlowing the bottleneck buffer. 
Simulations and lab measurement experiments have shown that 
Astart can significantly improve the link utilization especially 
for large BDP. Compared to previous proposals, Astart is more 
rohust to small buffer sizes: avoiding both premature 
termination of Slow-start, as well as multiple losses and the 
resultant coarse timeout. Experiments also have shown that 
Astart achieves good fairness and friendliness toward 
NewReno. 

Work in progress includes considering environments where 
random loss is also possible in the veri. initial phase of a 
connection (when using wireless links) or when the round trip 
time is extremely large (beyond 0.5 sec). Extensive 
measurement experiments on ivircdiwireless and satellite 
networks are also planned. 
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