
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

TCP startup performance in large bandwidth delay networks / Wang, Ren*; Pau, Giovanni; Yamada,
Kenshin; Sanadidi, M.Y.; Gerla, Mario. - ELETTRONICO. - 2:(2004), pp. 796-805. (Intervento presentato al
convegno IEEE INFOCOM 2004 - Conference on Computer Communications - Twenty-Third Annual Joint
Conference of the IEEE Computer and Communications Societies tenutosi a Hongkong, China nel 2004)
[10.1109/INFCOM.2004.1356968].

Published Version:

TCP startup performance in large bandwidth delay networks

Published:
DOI: http://doi.org/10.1109/INFCOM.2004.1356968

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/643891 since: 2018-09-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/INFCOM.2004.1356968
https://hdl.handle.net/11585/643891

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Wang, R., et al. TCP Startup Performance in Large Bandwidth Delay Networks, vol.
2, 2004.

The final published version is available online at:
http://dx.doi.org/10.1109/INFCOM.2004.1356968

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/INFCOM.2004.1356968

TCP Startup Performance in Large Bandwidth Delay
Networks

Ren Wang, Giovanni Pau_ Kenshin Yamada, M.Y. Sanadidi, and Mario Gerla
Computer Science Department

Universitp of California, Los Angeles
Los Angeles; CA 90095, USA

{ renn\vang,~au;kenshin;medy.gerla: @.cs.ucla.edu

.4brtroct - Nest generation nehvorlis with large bandwidth and
long drlay pose a major challenge to TCP performance,
especially during the startup period. In this paper we evaluate the
performance of TCP RenaiNcwrcno. Vegns and Hoe's
modification in large bandwidth delay nrhvork. We propose n
modified Slow-start mechanism, rnllcd Adaptive Start (Astart), to
improve the startup performance in such networks. When a
connection initially begins or re-starts after a coarse timrout,

- Astart ndaptivcly and repentedly resets the Slow-start Threshold
(suthreslr) based on an cligihlr sending I'iitr estimation mrchanisrn
proposrd in TCP Westwond. By iidapting to network conditions
during the startup phase. it wndw is able to grow the congestion
window (o c n h fast without incurring risk of huNw owrflow and
multiple Iossrs. Simulation rxpcrirncnts show that Astart can
significantly improve the link utiliiation under various
bandwidth, buNrr sur ;~nd round-trip propagation timrs. The
mrthud avoids both under-utiliriition dur to prrmature Slow-
start termination, a s wcll ils multiple I~XII~S due to initinlly setting
srrlire.sli too high, or. increaing n m d tin) fiat. Experiments also
show that Astart uchiews good fttirnrss rind fricndlincss toward
T C P NewReno. Lab measuremrnts using a FrreBSD Astart
implementation are also reported in this paper, providing futrhcr
evidence of the gains nchirvahlr via Astart.

Kqw-orr%r-congesrionn control; .sIow-.start; rate estimution. large
bundwidth d d q nehvorks

I. INTRODUCTION

TCP is a reliable data transfer protocol [I51 used widely
over the Internet for numerous applications, from FTP to
HTTP. The cument implementation of TCP RenoMewReno
mainly includes two phases: Slowstart and Congestion-
avoidance. In the Slow-start phase, a sender opens the
congestion window (~~114 exponentially; doubling cu.rid every
Round-Trip Time (RTT) until it reaches the Slom-stalt
Threshold (srrliiesh). The connection switches then ' to
Congestion-a\.oidance~ where cwid grows more conser-
.vatively, by only I packet every RTT (or linearly). The initial
ssrliiesh is set to an arbitrav default value: ranging from JK to
6JK Bytes, depending on the operating ?stem implementation.

This research was supportsd by NSF under grant ANI-0221528.

By setting the initial ssrliresli to an arhitray value, TCP
performance may suffer from two potential problems: (a) if
ssrhlrsh is set too high relative to the network Bandwidth
Delay Product (BDP), the exponential increase of cwid
generates too many packets too fast, causing multiple losses at
the bottleneck router and coarse timeouts; with significant
reduction of the connection throughput: (b) if the initial
ssrhiesh is set low relative to BDP; the connection exits Slow-
start and switches to linear cwnd increase prematurely,
resulting in poor startup utilization especially when BDP is
large.

Recent studies [IO] reveal that a majority of thc TCP
connections are short-lived (mice), while a smaller number of
long-lived connections c a m most Internet traffic (elephants).
A short-lived connection usually terminates even before it
reaches "steady state". That is; before cwid g o w s to make
good utilization of the path bandwidth. Thus, the startup stage
can significantly affect the performance of the mice. In a larye
BDP network; with the c m e n t Slowstart scheme; it t kes
many RTTs for a TCP connection to reach the ideal window
(equal to BDP). For example, in current RenoNewReno
implementation with initial ssrhresli set to 32 Khytes, a TCP
connection takes about 100 sec to reach the ideal window over
a path with a bottleneck bandwidth of 100 Mhps and RTT of
IOOms. The utilization in the first 10 sec is a meager 5.97%.
With the rapid developmenl of the Internet and ever-gowine
BDP: a more efficient Slowstart mechanism is required to
achieve good lik-utilization.

In this paper; we evaluate the performance in large
bandwidth delay networks of three current TCP Slow-start
implementations: (I) ReuoNewReno, (2) NewReno with
Hoe's modification [l?] and (3) Vegas [3] . We then propose a
sender-side only modification, called Adaptive Start (Astart), to
improve TCP startup pelformance. Astart takes advantage of
the Eligihle Rate Estimation (ERE) mechanism proposed in
TCP Westwood (TCPW) [?0], adaptively and repeatedly
resetting ssrlwesh during the slowstart phase. When ERE
indicates that there is more available capacih, the connection
opens its cwiid faster, enduring better utilization. On the other
hand; when ERE indicates that the connection is close to steady

0-7803-8355-9/04~20.00 02004 EEE., 796

mailto:cs.ucla.edu

state. it switches tu Congestion-avoidance; limiting the risk of
buffer overtlow and multiple losses. Ns-2 simulation
experiments show that Astart significantly enhances
performance of TCP connections, and show that the
enhancement increases as BDP increases. When BDP reaches
around 750 packets, the throughput improvement is an order of
maplitude higher than that of TCP RenoMewReno for short-
lived connections. We also conduct experiments tu compare
Astart with the method using a large initial window of 64
Khytes IS] in commercial satellite wotks; and evaluate Astart
fairness. friendliness and performance under dynamic loading.
Lab measurements are also carried out using a FreeBSD
implementation.

The rest of the paper is organized as follo\vs. In Section I1
we review background work, and give a brief overview of
TCPW and the eligihle rate estimation. In Section I11 we
evaluate startup performance of several TCP variants, including
RenoMemReno; Hoe's modification and Vegas. Section IV
presents Adaptive Start, our pioposed modification of TCP
slow-stalt, and illustrates its hasic behavior. In Section V; we
conduct simulation experimcnt to evaluate Astart throughput
performance, adaptivity against congestion and multiple
congestion, fairness and friendliness; performance under
dynamic load. We also compare Astart with the use of large
initial window method in this section. Lab experiments using
FreeBSD implcmentation are provided in Section VI. Finally;
Section VI1 discusses future w r k and concludes the paper.

11. BACKGROUND

.4. Relured 1 l b r . X on TCP Slow-srarr Mec/iaiiisiii
TCP congestion control consists mainly of two phases:

Slow Start and Congestion avoidance [l j] . A new connection
begins in Slowstart, setting its initial ovnd to 1 packet, and
increasing it hv 1 for e v e p received Achowledgment (ACK).
After cuwd reaches ssrhresh. the connection switches to
congestion-avoidance where cwid g~ows linearly.

A variety of methods have been suggested in the literature
recently aiming to avoid multiple losses and achieve higher
utilization during the startup phase. A larger initial c w d :
roughly JK bytes, is proposed in [I] . This could greatly speed
up transfers with only a few packets. However. the
improvement is still inadequate when BDP is v e ~ large; and
the file to transfer is bigger than just a few packets [22]. Fast
start [I91 uses cached cwid and sstliresh in recent connections
to reduce the transfer latency. The cachcd parameters may be
too aggressive or too con.wrvative when network conditions
change.

Smooth start [21] has hecn proposed to slow down cwnd
incrcase when it is close to ssrlilesk. The assumption here is
that default value of ssrlzmli is often larger than the BDP;
which is no longer true in large bandwidth delay networks. [121
proposes to set the initial ssrhresh to the BDP estimated using
packet pair measurements. This method can he too agpessive;
as we will shorn in Section 111. In [22] , SPAND (Shared

Passive Network Discovery) has been proposed to derive
optimal TCP initial parameters. SPAND needs leaky bucket
pacing for outgoing packets; which can be costly and
problematic in practice [2] .

TCP Vegas [3] detects congestion by comparing the
achieved throughput over a cycle of length equal to RTT; to the
expected throughput implied by cuwd and haseRTT (minimum
RTT) at the beginning of a cycle. This method is applied in
both Slow-start and Congestion-avoidance phases. During
Slow-start phase, a Vegas sender doubles its cwid only

RTT; in contrast with Reno's doubling e v e p RTT. A
Vzgas connection exits slowstart when the difference between
achieved and expected throughput exceeds a certain threshold.
However, Vegas is nut able tu achieve high utilization in large
bandwidth delay networks as we will show in Section 3% due to
its over-estimation of RTT.

We believe that estimating the eligible sending rate and
properly using such estimate are critical to improving
handwidth utilization during Slowstart.

B. TCP rveshvood and Eligilbe Rare Estinurioii Oveiview
In TCP Westwood (TCPW) [J]; the sender continuouslv

monitors ACKs from the receiver and computes its current
Eligible Rate Estimate (ERE) [20]. ERE relies on an adaptive
estimation technique applied to ACK stream. The goal of ERE
is tu estimate the connection eligible sending rate with the goal
of achieving high utilization, without starving other
connections. We emphasize that what a connection is eligible
for is nut the residual handwidth on the path. The connection is
often eligible more than that. For example; if a connection joins
t\v<> similar connections, alreadv in progress and fully utilizing
the path capacity: then the new connection is eligible for a third
of the capacity.

Research on active network estimation [5] reveals that
samples obtained by -'packet pair" is more likely to reflect link
capacity, while samples obtained hy "packet train" give short-
time throughput. In TCPW, the sender adaptively computes T,;
an interval over which the ERE sample is calculated. An ERE
sample is computed by the amount of data in bytes that were
successfully delivered in T,. T, depends on the congestion level,
the latter measured by the difference between 'expected rate'
and 'achieved rate' as in TCP Vegas. That is T, depends on the
network congestion level as follows:

where RTT,,,, is the minimum RTT value of all acknowledged
packets in a connection; and RTT is the smoothed RTT
measurement. The expected rate of the connection when there
is no congestion is given by cnvidiRTT,,, while RE is the
achieved rate computed based on the amount of data
acknowledged during the latest RTT, and exponentially
averaged over time using a low-pass filter. When there is no
congestion, and therefore no queuing time, cuvidRTT,, is
almost the same as RE; producing small T,. In this case: ERE

0-7803-8355-9/04/$20.W 02004 IEEE. 797

becomes close to a packet peir measurement. On the other hand.
under congestion conditions, RE will be much smaller than
ruvidiRTT,,due to longer queuing delays. As a result, Tk will
he larger and ERE closer to a packet train measurement. After
computing the ERE samples. a discrete version of a continuous
first order low-pass filter using the Tustin approximation [23]
is applied to obtain smoothed ERE.

In current TCPW implementation; upon packet loss
(indicated by 3 DWACKs or a timeout) the sender sets civiid
and rsrliresh based on the current' E R E TCPW uses the
following algorithm to set cu.iid and ssrhresh. (We will
descrilx our proposed Adaptive Start in Section IV; which
applies to both initial start-up phase and Slowstart after coarse
Limeouts.)

g(3 DLIP.4ChS ai'e received)
ssrhresli = /ERE *RTTiii iiijheg~size;
iJ(cwiid >ssrhreslij /*coiigesrioii avoid*/

endif
cw~ld=ssr/l~esh:

eiidif

if(coavse r;iiieoiir erpires)
. .

cwrid = I :
ssrhresh =(ERE *R TTiniiii/seg-size:
f(.isrliresli < 2j.

ssrhresli = 2;
eiiiiif

. ~ eiidif

111. TCP SLOW STARTPERFOR~LANCE
In this section' we state hnefly the current TCP Slowwart

mechanisms, and evaluate their startup peiiormance in large
bandwidth delay networks by simulation. We illustrate the
inadequacy of the current schemes when facing networks with
large BDP, and reveal the.reason behind it.

.4. Sirr~~llolio~l SCOrtlqJ

@ - \ ,@

Figuw I Network topology for siniulations

All results in this paper are obtained using ns-2 [l3]. The
network topoloF is shown in Figure I ; where S, represents a
TCP sender and H, a TCP receiver. RI and R 2 are two routers
with finite buffer capacity, each set equal to the Bandwidth
Delay Product (BDP) unlcss.othenvise specified. Results are
obtained for vaving propagation time and bottleneck

bandwidth. FTP is the simulated application. The receiver
issues an ACK for even; data packet received. We assume the
receiver's advertiszd window is always large so that the actual
sending window is always equal to cwiid. For the convenience,
the window sire is measured in number of packets, and the
packet size is 1000 bytes. The initial ssrhresh for
RenoNewreno is set to he 32 packets, equal to 32 Khytes.

B. TCP Reiio/!Veii~Reiio

In TCP RenoNewReno; a sender starts in Slowstart, c i w d
< sstliivsli; and even; ACK received results in an increase of
cwnd by 1 packet. Thus, the sender exponentially increases
ciuiid. When cwid hits ssrlirrsli, the sender switches to
congestion avoidance phase, increasing c i d linearly,
considerably slower than in slow start.

In this Subsection, we evaluate RenoNemReno startup
performance in large BDP networks. If the initial ssthresh is
too low' , a connection exits Slow-start and switches to
Congestion-avoidance prematurely, resulting in poor
utilization. Figure 2 shows the Reno ciwd dynamics in the
startup stage. The results are obtained for a bottleneck
bandwidth of JOMbps; and RTT values of 40, 100 and 20Cms.
The bottleneck buffer size is set equal to BDP in each case.

cwnd(RTT=POOrns) - - -
350

Time (sec)

Figure 2. cwnd dynamic during the s m - u p phase

From Figure 2; we see that when RTT=IOhs , Reno stops
exponentially growing cwiid long before it reaches the ideal
value (BDP=jOO). After that, cwiid increases slowly; and has
not reach 500 by 20sec. As a result, the achieved throughput is
only 12.90 Mbps, much lower than the desired 40 Mbps.
Another observation concerns how RTT affects performance.
When RTT increases; the ideal window grows too. On the
other hand: because c n d increases 1 packet per RTT during
Congestion-avoidance. longer RTT means slon-er c w d
growth, resulting in even lower utilization. The results in Table
I show the drastic reduction in utilization as RTT increases.

I In a n&ork nith small BDP. the initial ~ d t r e s h ,night be set too
high. As a result: at some cycle in slow start. a Reno sender otien
overshoots the BDP, causing multiple losses and a coarse timcout.
This is also a problem resulting from an inappropiate setting of
ssthresh.

0.7803-8355-9/04/$20.D0 OZW4 IEEE. 798

TABLE 1 NE\% REYO U T U l Z h ~ G N DURUiG FlRTST 20 SEC (BAND\VDTH
40SlBPS)

Utilization(%) 95.6 71.8 23.2 11.9 7.2

Bandnidth(Mhps) I O 20

1
40 I00 200

C. TCP Reiio4VewReiio with Hue b Slow Start .lludijcatioii
In [l?]; Hoe proposes a method for setting the initial

.ssr/ires/i to the product of delay and estimated bandwidth. The
handwidth estimation is calculated by applying the least
squares estimation on three closely-spaced ACKs (similar to
the concept of packet pair [17]). RTT is obtained by measuring
the round trip time of the first segment transmitted.

Hoe's modification enables the sender to get an estimation
of the BDP at an early stage and set the ssthresh accordingly,
thus avoiding switching to congestion avoidance prematurely.
As illustrated in Figure 3 with large buffer space (buffer
size=BDP=jOO), Reno with Hoe's modification increases c w d
exponentially and exits properly.

Ho\vxer, Hoe's modification may encounter multiple-loss
problems when the bottleneck buffer is not big enough
compared to the BDP, which could easily happen in large
handwidth delay networks. In Figure 3 when the buffer size is
I 2 5 packets (l/4 BDP), the connection encounters multiple
losses and iuns into a long recoven time (from 0.9 sec to 14.8
sec). The achicved throughput during the first 20 sec is only
3.61 Mbps; translating into 9% utilization.

The reason for the multiple losses is as foltows. Dusing
Slow-stan, for e v e n ACK received; the sender increases cuvid
hy 1 and sends out 2 new packets. If the receiver a&nowledges
e v e n packet; then after 11 RTT; civiid will be 2". Suppose the
access link capacity is at least twice as large as the hottleneck
capaciv; these 2" packets will arrive at the bottleneck back to
hack at a speed twice that of the bottleneck link. Thus; to avoid
losses at least a buffer of 2"' packets is needed to hold off the

temporarily bursting packets. Hoe's modification sets ssthresh
to the estimated BDP; thus; a buffer size of BDPI? is required
to prevent multiple losses €or single connection.

L 2 500 cwnd with large buffer (500) ~

0 cwnd wth small buffer (125) ---.--.-

300

100

_.~..
~ --

I
0 1 I

0 5 10 15 20 25 3C
Time (sec)

Figure 3. cwnd dyurnics in KicwRcno with Hoc's rndificalion

More importantly, Hoe's modification does not adjust to
changing path load. If there are multiple connections stalting
up at approximately the same time, or other large volume
traffic (for example, video transferring) joins in when a
connection is in Slo\v-start; the Hoe's modification mill have
set the initial ssthrvsh too high; resulting in multiple losses and
coarse timeout.

D. TCP I'egus
Unlike 'TCP RenoNcwrcno that uscs packet loss as

congestion indication, TCP Vegas [3] detects incipient
congestion by comparing the achieved throughput to the
expected throughput at the beginning of a cycle (RTT). The
difference he twen these two values reflects the queue length
of the connection in the bottleneck router.

This Vegas method is applied to both Slow-start and
Congestion-avoidance phases. In congestion-a\,oidance; cwnd
increases by I per RTT if the difference is small, meaning that
there is mough network capacity Vegas reduces cwnd in the
same fashion (by 1 packet) when the achieved throughput is
considerably lower than the expected throughput.

During Slow-start, Vegas doubles its congestion window
only even. other RTT (compared to Reno's even. RTT). When
the difference between actual and expected throughput exceeds
a threshold, Vegas stops its window doubling and switches to
Congestion-avoidance (See Figure 4).

By pawing cavd slower and monitoring even. RTT for
incipient congestion. Vegas avoids multiplc losses and the
coarse timeout that would result [I I] . However, when the BDP
is large, Vegas may under-utilize the available handwidth by
switching to congestion avoidance too early [IS]. The
premature slowstart termination is caused by RTT over-
estimation in the Vegas algorithm. In Vegas, the sender checks
the difference between expected and actual throughput:

0-7803-8355-9/04/s20.00 82004 IEEE. 799

c,snd c ~ d only at the heginning of the RTT where d2ff =---
bareRTT RTT,

Bandmidth(Mbps) I O 20 30 80

cwrid is doubled'

I50

' ,..,- _..- 140 Vegas cwnd ..--.-!

120
Instant Queue Length ~ _.I.. _....'

Ratio ~0.384 0.192 0.192 0.096

1
o i 2 3 4 5 6 7 e

Time (sec)

Figure 4. Vcgss cwnd dynamic aid quem length during startup phase
(Bottleneck bm~dnidth =JO hlbpr. bnscRTI =100mr)

At this point, -RTTn is over-estimated because of the
temporan, queue buildup at the router during the previous cycle
(the last two RTTs). Figure 4 sho\vs the instantaneous queue
length pattem. As a result of RTT over-estimation. dflis orer-
estimated too; and Vegas exits Slowstart prematurely. A more
detailed analysis of this problem can he found in [IS]. Figure 4
also sholrs Vegas cwriddynamic over a path with BDP equal to
500 Packets. Vegas exits slow start at cw1&96, while the ideal
window is 500 packets

The stanup under-utilization of Vegas is aggravated as
BDP gmws. Table 3 shows the ratio of the slow start
termination c k d to the ideal window value for different
bottleneck handwidth. The ratio is reduced to about 0: I with a
bottleneck of 100 Mbps.

0.101

IV. MODIFIED TCP SLOW ST-\RT FOR L.ARGE BANDWIDTH ..
DELA\- NETWORKS

In this Section; we propose a simple sender-side only
modification; which we call Adaptive Start (Astart), to the
traditional RenofNewReno sloiv start algorithm. We take
advantage of the TCPW eligible rate estimate. using it to
adaptively and repeatedlv reset s s ~ h , r s h during the startup
phase, hoth connection startup. and after evei? coarse timeout.
The pseudo code of the algorithm is as follows. When an ACK
anives:

' Provided that .the difference indicates no congestion

i f / 3 DLE4CKS are rrceiwd)

</se M ' K is received)
s w i d i IO conges~ion ovoidonce phose:

if /ssilzreslz < (E R E * R ~ n , i , i) i i ~ e)

utdg
tf(ovrrd >=sstlrresld /*mini linear $,creme pIme*/

else f o w d <ssrlreslzj /*mini e.vpommtioI irrcreae plrnse */

rrtdq

ssrltrrslt = (ERE*RTTnri,i)/seg_Fi=~:

imrense ovrid hv I/cwnd:

increrise cinid bj' I :

r rd f

In TCPW, an eligible rate estimate is d e t m i n e d after
even, ACK reception. In Astart, when the current ssthrash is
much lower than ERE*RTT,, the sender resets ssrliresli
higher accordingly, and increases cwnd in slow-start fashion.
Othenvise, cw~id increases linearly to avoid overflow In this
\Tay; Astart probes the available network bandwidth for this
connection, and allows the connection to eventually exit Slow
start close to the ideal window (See Figure 5). Compared to
Vegas; TCPW avoids premature exit,of slow stalt since it relies
on hoth RTT and ACK intervals, while Vegas only relies on
RTT estimates.

Time (sec)

(a) Buffsr = 500 packas

- y) q ///---j 1" 500 ~~

cwnd __
Slow Start Threshold --...--. f 200

0 100

i.400 1 /
cwnd __

Slow Start Threshold --...--.

0 " I
0 5 10 15 20 25 3C

Time (sec)

(h) buffsr= IZjpackds

Figure 5 . Astat cwnd d,namic during statup phase (Bonkneck bandwidth
=4O Xlhps. RIT=10flms. BDP =500 packets,)

Figure 5(b) illustrates the c w i d dynamic in the case of
small huffer (equal to BDPIJ). By applying Astart. the sender
does not overtlorn the bottleneck buffer and thus multiple
losses are avoided. Figure 6 gives a closer look at the c w d
dynamic. In eRect; Astart consists of multiple mini-linear-
increase and mmi-cxponential-increasa phases. Thus, cuvd
does not increase as fast as in Hoe's method, especially as
cwnd approaches BDP. This prevents the temporay queue
from building up too fast, and thus; prevents a sender from

0-7803%355-9/04/s20.00 07.004 EEE. 800

overilowing a small butTer. Comparing the c u v d evolution in
Figure 5 and Figure 6 to tho= in Figui-e 3; i t is clear that cwiid
increase in Astart folloivs a smoother c n n e when it is close to
RDP.

31" I I I I
500

430 120 1.6 U 1.7 1.6 1.9 2 2.1 2 ;

Time iseci

Figurc 6 . a closer look at -\stan cwid dynamic during stanup phase

V. SIXIUWTION RESL~LTS .&VD DISCUSSION
In this Section: we evaluate the performance of Astart,

comparing the throughput performance of the proposed Astart
algorithm to othcr mechanisms we descrihed and evaluated in
the previous section. We also compare Astart with commercial
satellite transport protocol where \:en large initial window is
used. Finally we will evaluate how well Astart co-exists with
TCP NewReno, the de facto Internet data transport protocol.

.1. -4stal.t Beliavior. wid , :\/ultiple Connectiom

We ran simulation with 5 connections stming at the same
time (the network parameter is the same as in Figure j(a)). The
results in Figure 7 show that each connection is able to estimate
its share of bandwidth and switch to Congestion-avoidance at
the appropriate time.

We drew graph with 5 connections €or the come-nience of
presentation, simulations with more connec-tions shorn that
Astart can promptly pump up its cwriil and then switch to
Congestion-avoidance properly.

B.
To evaluate the adaptivlty of Astart when the network

becomes congested, we also tested the startup hehavior when
another high-rolume UDP connection joins the TCP
connection during the slow start phase. We ran simulations
with one TCP connection starting at time 0 over a link with
capacity 40 Mbps. A UDP flom with intensity of 20 Mhps
starts at 0.5 sec. Figure 8 shows that Hoe's method nms into
multiple losses and finally times out. The reason is the setting
of the initial ssrhrPsh to 500 (BDP) at the \'e? heginning of the
connection, and the lack of adjustment to the change in
network load later. In contrast, Astan has a more appropriate
(lower) slowstan exit cuvzd~ thanks to the continuous
estimation mechanism; which reacts to the new traffic and
determines an eligible sending rate that is no longer the entire
hottleneck link capacity.

Sia~rzrp in a Congesred ~Vetwork

600 1 I ;O Mdps CBR starts at O.5sdc * - I
v) 500
W 1

a
g 400

.E 300
n
ji 200
0

100

n "
0 2 4 6 8 IC

Time (sec)

Figure 8. uwnd mnamic with UDP tra& joins in during srartop(Bottlcncck
cupacily=.lO blbps. R7T=10Gms. BDP =500 packrts)

C. T/iroziglzp~rt Coinparison
The summa? of this sub-section is that Astart sipilicantly

improves TCP startup performance with regards to various
bottleneck handwidth, buffer sire and round-trip time. To focus
on the start-up performance of different schemes, we only
calculate the throughput during the first 20 seconds.

Aslad
Vegas

5 80 a

c
..... ~~... .

~~~~ . ~ ~ ~

20 40 60 80 100 120 140

bottleneck Capacity (Mbps)

Figure 9. Throqhput vs. bonlcncck capacity (fin1 20 seconds)

0-7803-8355-9M4~20.00 02004 IEEB. 801

The throughput of Astart, NewReno; NewReno with H x ' s
modification and Vegas are examined under bottleneck
bandwidth varying from I O to IS0 Mbps (while fixing the
round-trip time at 100ms). The results in Figure 9 show that
Astart and Hoe's modification achieve higher throughput, and
scale with bandwidth. NewReno and Vegas pertbmiance lags
in this scenario. Another ohserifation is that Nemreno with
Hoe's modification slightly outpertbrms Astart. .In Hoe's
method, the initial ssrhresh is immediately set to the bandwidth
after -3 closely spaced ACKs returned, so nviid increases by
one for e v e n ACK received. On the other hand: Astart
gradually prohes for bandwidth and slow down when the
estimate is closer to the connection bandwidth share. We
helieve that the slightly lower throughput achieved hv Astart
abovc is more than compensated for hy its avoidance of buffer
overflow and multiple losses in other cases.

To assess the rohustness of the differcnt schemes to huffer
size; we ran simulations with hottlcneck huffer size v q i n g
from 100 (BDPIS) to 250 (BDPI2) packets. The bandwidth is
40 Mhps and RTT is 100 msec. The results in Figure 10 show
that Astart is robust to buffer size reductions; while NewReno
with Hoe's modification suffers when the buffer size is smaller
than BDP12. The reduction in huffer size has no meaningful
impact on NewReno and Vegas. They still exit Slowstart
prematurely as explained in Section 111.

40

35

45
40 - -

..................................... - 3 a 35 :\-.,
s 30 - >.:

; 20 -

......
NewReno with Hoe's change 7 - ,&tart

NewReno -

\'*:%.

- Vegas
*.

................ 25 - '..
'..
'.\\~ $ 1 5 -

5 -
0

-
ir 1 0 - -

----.- _F .___: Ll....-

NewReno with Hoe's change ~

Asart
VegaS

NewReno

30

25

5 10

0
100 120 140- 160 180 200 220 240 260

RTT can considerahly affect the startup performance.
Figure I I s h o w the throughpat of Astart, NewReno, Hoe's
modification and Vegas with RTT wrying from 20 to 200
msec. The Bottleneck bandwidth is fixed here at 40 Mbps and
hutkr size is set equal to BDP. Figure I 1 shows that Astart and
Hoe's method both scale well with RTT with Hoe's
modification slightly better for the same reason previous stated
(Hoe's method set the ssrhresh immediately to the BDP where
Astalt prohes and slows down when c w d is close to the BDP).
The pertormance of NewReno and Vegas deteriorate s i p i -
ficantly as RTT increases.

The studies in the last two Sections focused on the
performance a TCP connection during its initial startup phase.
But Asart can also be used after any coarse timeout. This is of
particular value to TCPW since after a timeout; ERE is small
relative to the connection actual bandwidth share. This is
because duing a coarse timeout, the sender transmits so few
packets, and therefore the share estimate is veg low Astart
helps in this case by gradually probing for bandwidth share and
switching to congestion avoidance at a more appropriate time.

D. Coni~~arinp .-lsrnrr ro the Use oflarge Initial ll;Indoo,s
(Llll;) over satellite l i i i b

In a connection that incorporates a satellite l ink the main
bottleneck in 'TCP performance is due to the large delay-
bandwidth product nature ofthe satellite link As me mentioned
in Section 11; a larger ciwid; roughly 4K bytes, is
proposed in [I] . This could greatly speed up transfers with only
a few packets. However; the improvement is still inadequate
when BDP is v e n large; and the file to transfer is bigger than
just a few packets.

More aggressively, commercial satellite data communi-
cation providers ppically use a ven large initial window
(LIW) over satellite links, e.g.; 64 Kbytes. and thus bypass the
slow start stage of the normal TCP evolution [SI. This method
effectively increases the utilization during the startup.
However. it cannot single-handedly solve the problem of poor
startup utilization over satellite links. Below we mill show the
reason and also compare the performance of Astart with LIW
method.

A commercial satellite tem using a geo-stations?
(GEO) could have bandwidth up to 24 Mhps. Which results in
a BDP of ahout 3000 with one-way propagation dela!- of 500
ms. Under this situation, even with an initial window of 64
Khytes, it ivould take a veri. long time for TCP to fully utilize
the l i t k

Figure I2 compares the startup hehavior of Astart and LIW
method. The bottleneck capacity is I O Mbps and one-way
propagation delay is 250 ms. The graph s h o w that although
LIW method comes up strong at the v e n beginning; it fades
quickly comparing to Astart due to bypassing the slowstart
stage. As a result; the throughput of LIW method during this
period is only 2.80 Mhps comparing to Astart's 9.33 Mbps.

~7803-8355-9/W/S20.~02004 IEEE. 802

,000 t Astari.cwnd
LIW cwnd - - - - - - - - . i

0 20 40 60 80 100
Time (sec)

Figws 12. Conpcetion window dywamics of . ban and LIW method.
(honlenduk=lOllhps. RTT=jOOrnn. HDP =600)

Another challenge LIW method faces is caused b!, its
inability to adapt to different network conditions. By setting the
initial congestion to a large value, if the network is highly
congested os many connections simultaneously join in; it is
possible that using LIW overtlows the buffers and causes
multiple losses.

Moreover, a connection using a satellite link may also has a
terrehfrial part, thus using LIW end-to-end could affect the
peribrmance and fairness of the terrestrial part of the
connection.

E.
Fairness relates to the relative performance of a set of

connections of the same TCP variant. Friendliness relates to
how sets of connections running different TCP flavors affect
the performance of each other. The simulation topolog?.
consists of a single bottleneck linl; with a capacity of 50 Mbps?
and one-way propagation delay of 35,s. The buffer size at the
bottleneck router is equal to the pipe size. The lit& is loss Cree
except where othenvise stated

A sct of simulations with 10 simultaneous flows was run to
investigate fairness of Astart. l o provide a single numerical
measure reflecting the fair share disrihution across the various
connections we use the Jain's Fairness Index defined as [16]:

Fuimess mid Friem//iiirss IO TCP :VeaRr,zo

where h, is the throughput of the ih flom and 11 is the total
number of flows. The faimess index always lies between 0 and
I . A value of I indicates that all flo\vs got exactly the Ydme
throu&put.

We calculate the fairness index for both Reno and TCPW.
The Jain's fairness index of Astart reached 0.9949; and that of
NewReno is 0.9944. Therefore; fairness of Astart is
comparable to that of NewRcno.

Since Aslart invokes faster prohing during startup, the
evaluation of Astart friendliness tovard NewReno is important.
Thanlis to good friendliness characteristics of TCPW, Astart
connections can effectively coexist with NewReno connections
over the same path. Figure 13 shows cwiiddynamics for Astart
and NewReno connections.

The bottleneck link handwidth is 5OMbps and a two way
propagation delay is 70msec. In Figure l3(a), one Atart and
one NewReno connection start running at the same time. The
Astan wnnection benefits initially.by quickly reaching cruising
speed. Astart and NewReno connections both reach the same
cwid after a few congestion episodes. In Figure 13 (h), five
Astart and five NewReno connections start simultaneously.
The firs started Atart connection gets more bandwidth initially,
hut again a11 connections, regardless of Astarl or NewReno,
reach fair share rate after a few congestion episodes.

800
Astart ~

700 NewReno - ~ ~ ~ - ~ ~ -

I
0 50 100 150 20c

Time (sec)
(a) One .Astdrt uid one XcwReno cumectiuu

Astart ~

Astart ~

Astart ~

Astart -
Astart ~

NewReno --.--.--
150 NewReno -----.--

NewReno --.--.--
NewReno - - ~ - - - - ~

I
0 20 40 60 80 1oc

Time (sec)
(h) Fivs -\itan and firs XewReno connections

Fiqure 13. cnnddvnurnicn hemeen .Astart and NewReno

We evaluated thc pelfomance of Astart under highly
dynamic load conditions. In 20 minutes simulation time, we ran
I00 connections. Connections staiting times are uniformly
distributed over the simulation time. 'The lifetime of a
connection is fixed at 3 0 seconds. We compare the results
among NewReno with Astart.

Figure I4 shows Total throughput vs bottleneck bandwidth.
The total throughput is computed as the sum of throughputs of
all connections. Propagation delays are 70ms, and the
bottleneck buffer size is set cqual to the pipe size (BDP). In

&7803-8355-9/04/$20.lN 02004 IEEE. 803

IOMbps, Astai does not get much benefit, because NewReno
does not have any difficulty filling the smaller pipe. As the
bottleneck link capacity increases, the difference between
Astan and NewReno becomes more obvious. At 200 Mhps,
Astart achieves about 60% more throughput than NemReno.

140 - Astart f-
NewReno ---*(---

.

20 40 60 80 100 120 140 160 180 200
Bottleneck capacity (Mbps)

Figure 14. Throughput ss. bottlsncckcapuci? of :\start and Nai-Reno under
d3namic load (R T T = 7 h n e c)

50 loo 150 zoo 250 300
Two-way Propagation Delay (msec)

Fisure 15. 'Ihrougliput vs. RTT of Astart and NswReno unddidynamic load
(Bottleneck capacity'= 100 hlbps)

To assess the relation of the efficiency to the E2E
propagation time under dynamic load; we ran simulations with
a bottleneck capacity of 100 Mbps -and two-way .propagation
ranging .from 20 to 300 msec. The'results in Figure I5 show a
significant gain for Astart up to 1016% over NewReno. When
the RTT increases: the performance of NewReno degrades
severely. while Astart is able ' to maintain respectable
utilization.

VI. FREEBSD ISIPLESIENT.~TION
To ixduate Astart pelformance in actual ?:stems, we have

implemented Astan algorithms, on FreeBSD systems. Lab
measurements confirmed our simulation results, showing that
Astart hehaves quite well in actual systems.

07803-8355-9/04/$20.00 02004 IEEE. 804

A. d1easwenieiir serrrp
Figure I G s h o w the measurement configuration in our

espenments. All PCs are running on FreeBSD [9] Release 4.5.
CPU clock tick is l0nisec (default). We use Dumm!.net [6][7]
to emulate the hottleneck router. The bottleneck link (from PC
router to .TCP receiver) speed is xt to 10Mbps. The
propagation time is 400msec; and the router buEer is set equal
to BDP (500Khytes). Active Queue Management is not used;
that is tail-drop is adopted to simplie the espenments. Further.
no random packet loss was induced at this time. We use Iperf
[Id] as a traffic generator. The receiver's advertised window is
set large enough at 4 Mbytes. We fised the initial ssrhrcsl7 for
NewReno equal to 32 Khytes in our measurements.

TCP sender PC muter
(dummy net) TCP receivet

Figire 16. hlcasuemmt topology atid contiguration

B. .4srar.r Behavior
Figure 17 shows measured cwiid dynamics in Astart and

NewReno connections at Slow Start. NewReno enters
Congestion Avoidance phase after cwrid reaches the initial
ssthresli (3%); and cw7d increases linearly by one packet p a
RTT. owd reaches only ?Mbps, 20 '3'0 of the link capacity, for
the first 25 seconds. On the other hand, in the Astart connection,
C M ~ I Z ~ quickly converges to the link capacity due to the adaptive
ssthrvsh resetting. We can also confirm that civrid @oo\\th is not
esponential throughout startup. Initially oiwd increases rapidly
for the first 3 seconds; and then increases more slowly as the
connection approaches the link capacity

Astart -
400

3 350 350
B 300 300

250 250

2 150
100
50 50 ._..._--. ..-

0 5 10 15. . 20 25
time [sec]

Figure 17. ciundd>namics, in Atan and NrwRcna at Start-up
-. . (Lab hlsasaremotts Rrsults)

http://Dumm!.net

VII. COKCLIJSIONS -\hD FUTJRE WORK

In this paper; \\-e evaluated the startup petionnance of TCP
RenoNewreno, Vegas and Hoe's modification in large
bandwidth delay networks. We proposed a modified Slowstart
mechanism, called Adaptive Start (Astart), to improve the
startup performance in such networks. Astart adaptivelp and
repeatedly resets the Slow-start threshold (ssrhlus/7); based on
the eligible rate estimation mechanism proposed in TCP
Westwood. By adapting to network conditions in the startup
phase; a sender is able to grow the congestion window (citwn)
efficiently without overtlowing the bottleneck buffer.
Simulations and lab measurement experiments have shown that
Astart can significantly improve the link utilization especially
for large BDP. Compared to previous proposals, Astart is more
rohust to small buffer sizes: avoiding both premature
termination of Slow-start, as well as multiple losses and the
resultant coarse timeout. Experiments also have shown that
Astart achieves good fairness and friendliness toward
NewReno.

Work in progress includes considering environments where
random loss is also possible in the veri. initial phase of a
connection (when using wireless links) or when the round trip
time is extremely large (beyond 0.5 sec). Extensive
measurement experiments on ivircdiwireless and satellite
networks are also planned.

ACKSO\VLEDG\IENT
We \rould like to thank h d e r s Pcrsson for conducting

the lab measurement experiments, and Hideytki Shimonishi
for helpful dixussions.

REFERENCES
bl. .Allman. S . Floyd and C. Paridgc. '%creasing TCP'r initial
\\'indom". INTERNET DRAFT. :\pd 1998.
.A Aggarwd. S. S~MSC. T.E. .Andersal. "Lhdmtmding the Pcrfor-
~mmcr of TCP Pacing," h Proceedings IEEE INFOCO\I 2000. Tsl
.Avk I s r d March 20011.
L.S. B r a h o aid L.L. Pmemon. TCP V c g w End-to-End Congerxion
.Avoidancc on a Global htcrnct. IEEE Journal "11 Sslsctcd ;\rsss in
Contmtmication. Vol. 13. Sor. U. October 1995.
C. Casetti. 11. Gcrln. S. ~Inscolo. hl. j-. Sanadidi. and R.,\Vang. "TCP
\Vaslrwod: bandwidth cstinratioii for mhancsd transpon mer wireless
li nlo... h Proo,dings of\lobicom 2001. Roms. 11aIy. Jul. 2001.
C. Dowolis. P.Rnmmathnn and D. \loore. - ' R l a r Do Packet Dirnmion

805

G. Henpartner. 1. Bolliseer. and T. Gross. "TCP Vcgas revisited." In
Pmc. of IEEE hfocom 2000. \I;lrch 2000. pp. 1546.1555
1. C. Hoe. hiproving the Stun-up Behavior of .A Congestion Control
Scheme f i r TCP. Proc. .AC!d SIGCO\III '96. pp 270-280.
YS-2 Nctwxk Simularor (rcr.2.) LBL U R L
l~np:li\\ww.rnssh.csbcrMe~.zduins/.

Iperf Version 1.7.0. URL: http:lldast.nlimmrtiProlectsiIprrf/
\:. Jacobson. "Congestion avoidancc m d control." . X b l Cornpuler
Communications Rrview; 18(4) : 314 - 329. .Aug. 1988.
R. lain. ' . n e art of comprtlcr systems performance adysis." John
&"ilcy 2nd sons. QA76.9.E94J32. 1991.
S. Kcshav .A Control-llicorctic .Approach lo Flow Contml. In
Fmcdcdinp of.AChl SItiCOhlhl- 1991. Pagrn 3-15. Sept. 1991.
Sou-hyeong k2. B?ung G. him. and Ymghrc Choi. "Improving thc
Fainsss and the Response Time of TCP-Vcgas." In Lccturc Notes in
Computer Scicnce. Springer \ ' d a g

V.N. Padmmuhhun a id R.H. Katz. "TCP Fast Start: A Techniqos for
Speeding Up Wrb Transfen.'. Proceedings of IEEE globccom'98.
Sydney. Australis. Nov. 1998.
R. \\'ang, 31. Valla. kl.1.. Svnadidi and h l . tierla. "Using Adaptive
Bandwidth Eaimatian 10 provide mhanud md robust transport over
hrtcrogcncoiis networks". lGlh IEEE hiternational Confmencc on
Network Protocols (ICNP 2002). Pais. Francs. Nov. 2002.
IT. Way,. H. S i n D.S. Reeves and K.G. Shin ".A Simplc Rcfinemml of
Slow Start of TCP Congestion Control". In proceedings of ISCC'OO.
.htihzs. Fr.~ncc. 2000
T. Zhmg. L. Qiu m d S. Kzshsv. "Optimizing TCP Stan-up
Performance". Comall CSD Technical Rrpon. Febniary. 1999.
K. J. Astrom. and B. Wincnmark. "Computer controlled systcnis."
Prwlicc Hall. Engleuocd Cliffs. N. J.. 1997.

http:lldast.nlimmrtiProlectsiIprrf

	Copertina_postprint_IRIS_UNIBO
	01356968_TCP_startup_2004

