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Abstract. We present a single-field string inflationary model which allows for the generation
of primordial black holes in the low mass region where they can account for a significant
fraction of the dark matter abundance. The potential is typical of type IIB fibre inflation
models and features a plateau at CMB scales and a near inflection point at small distance
scales where the power spectrum is enhanced due to a period of ultra slow-roll. The tunability
of the underlying parameters may be guaranteed by scanning through the string landscape
and their stability against quantum corrections ensured by an effective shift symmetry.
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1 Introduction

The origin of dark matter remains one of the biggest mysteries in fundamental physics. One
of the simplest explanations, which would rely neither on the presence of new particles nor
on modifications of the gravitational interaction, is black holes. An interesting region in
parameter space where the contribution of black holes to the total dark matter abundance
could be between 10% and 100% depending on astrophysical uncertainties is 10−17M� .
MBH . 10−13M� [1–3], where the lower bound comes from extra-galatic γ rays produced due
to Hawking evaporation [4]. This region, even if it is far from the one probed by LIGO, is
very interesting since there is no known astrophysical explanation for black hole formation in
this small mass window.1 On the other hand, these tiny black holes could be seeded by the
dynamics of the early universe [8, 9]. A tantalizing idea for the formation of these primordial
black holes (PBHs) relies on an amplification of the density perturbations during inflation of
order δρ ∼ 0.1 ρ which then collapse to form PBHs at horizon re-entry.

This enhancement of the scalar power spectrum has to take place at momentum scales
which are much larger than the ones associated with CMB observations where δρ ∼ 10−5ρ.
From the theoretical point of view, it is therefore important to identify mechanisms to gen-
erate the necessary enhancement at the right scales. Guided again by simplicity, we focus
on single-field inflationary models which also reproduce the Planck data rather well [10].2

It has already been pointed out that the required inflationary potentials feature a slow-roll
behaviour followed by a near inflection point region where the power spectrum is amplified
since the system enters an ultra slow-roll regime [2, 13–16].

Despite the fact that dark matter as PBHs formed during single-field inflation might
seem a very appealing idea, its explicit realisation in concrete models has turned out to be
rather complicated since the inflationary potential has to possess enough tuning freedom to
allow for such dynamics [17]. Examples based on a radiative plateau have been recently
studied in [2, 15, 16]. This is a bottom up perspective which tries to single out the simplest
potential which allows for PBH formation via an inflationary plateau followed by a near

1Depending on the interpretation of astrophysical and cosmological data, X-ray and CMB observations
seem to rule out the case where black holes in the LIGO mass region can constitute a fraction of the dark
matter abundance above 10% [5–7]. Moreover the single-field inflationary dynamics seems to be very unlikely
to generate black holes with masses as large as a few solar masses when the scalar spectral index is required
to be compatible with CMB data [2].

2For PBH formation in multi-field inflationary models see [1, 11, 12].

– 1 –



inflection point. However this approach ignores the fundamental issue of deriving the model
from a UV consistent theory.

In this paper we shall instead take a more top down approach and search for concrete
examples of inflationary models in string theory whose structure is rich enough to allow for
PBH formation. One of the main advantages of embedding inflation in string theory is the
possibility to motivate the presence of a symmetry which can protect the inflaton potential
against quantum corrections which can spoil its flatness [18, 19]. Particularly interesting
cases include inflaton candidates which are pseudo Nambu-Goldstone bosons associated with
slightly broken shift symmetries. Abelian symmetries involves both axions [20], which are
associated to compact U(1) factors, and Kähler moduli [21], which are associated with non-
compact rescaling symmetries [22].3

This global rescaling symmetry is explicitly realised at tree-level in type IIB no-scale
models since the Kähler moduli τ remain exact flat directions but needs to be slightly broken
to generate the inflationary potential. This can be done either by non-perturbative effects or
by perturbative power-law corrections which become exponential in terms of the canonically
normalised inflaton: V0/τ

n ∼ V0 e
−nφ/f . Notice that the shape of the inflationary potential

is determined by both the effective ‘decay constant’ f , i.e. the geometry of the moduli space
(determined by the topology of the divisor whose volume is parameterised by the inflaton)
and n, i.e. the exact moduli-dependence of the symmetry-breaking effects which develop the
inflationary potential [23]. Once a proper uplifting to dS has been achieved via the addition
of a constant contribution (which can have several dynamical origins [24–30]), these models
tend to give rise to an inflationary potential of the schematic form [23]:

Vinf = V0

(
1− e−nφ/f

)
. (1.1)

These models go under the name of Fibre Inflation since the underlying Calabi-Yau compact-
ification manifold has a typical fibration structure [31–33]. They are interesting since they
drive inflation successfully via a plateau-like region at large φ and also allow for a detailed
analysis of the post-inflationary evolution [34–36]. Moreover they provide string theory em-
beddings of Starobinsky inflation [37] and supergravity α-attractors [38–40] (where in our
notation α ' (f/n)2). Nevertheless the potential (1.1) is too simple to generate PHBs via
a period of ultra slow-roll dynamics towards the end of inflation. However recent global
constructions of fibre inflation models in concrete Calabi-Yau orientifolds with explicit brane
setup and closed string moduli stabilisation have revealed the existence of new string loop
corrections which look schematically like [41, 42]:

δVinf = −ε1V0
e2nφ/f

1 + ε2 e3nφ/f
, (1.2)

where ε1 � 1 and ε2 � 1 are two parameters which are tunable since they depend on back-
ground fluxes and the Calabi-Yau intersection numbers, and turn out to be naturally small
since they are suppressed by inverse powers of the compactification volume, an exponentially
large quantity [43, 44]. Thanks to the additional perturbative contribution (1.2), we will
show that fibre inflation models are rich enough to produce a near inflection point region
before the end of inflation which is perfectly suitable to generate PBHs in the mass window

3The non-Abelian case leads to a multi-field inflationary scenario which tends to be disfavoured by non-
Gaussianity observations [10].
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10−17M� .MPBH . 10−13M� where they could constitute a significant fraction of the total
dark matter abundance.

As pointed out in [2, 16, 45, 46], the slow-roll approximation ceases to be valid in
the near inflection point region. The primordial power spectrum has to be computed by
solving the Mukhanov-Sasaki equations for the curvature perturbations [47, 48]. By following
this procedure, we shall show that the primordial power spectrum can feature the required
enhancement for appropriate values of the underlying parameters. Let us stress that even if
the choice of microscopic parameters needed for successful PBH formation looks very non-
generic from the string landscape point of view, the values of these parameters are technically
natural since they are protected against large quantum corrections by the effective rescaling
shift symmetry typical of these models [22].

This paper is organised as follows. In Sec. 2 we provide a very brief review of fibre
inflation models while in Sec. 3 we describe the mechanism of PBH generation in some detail.
In Sec. 4 we then perform a careful analysis of the process of PBH formation in fibre inflation
by implementing the Mukhanov-Sasaki formalism to derive the primordial power spectrum.
We finally discuss our results and present our conclusions in Sec. 5.

2 Fibre inflation models

Fibre inflation is a class of string inflationary models built within the framework of type IIB
flux compactifications [23, 31–33]. The inflaton τK3 is a Kähler modulus controlling the size
of a K3 divisor fibred over a P1 base with volume tP1 . The simplest fibre inflation models
feature a Calabi-Yau (CY) volume which looks like:

V = tP1τK3 − τ3/2dP , (2.1)

where τdP is the volume of a diagonal del Pezzo divisor which supports non-perturbative
effects. Several effects come into play to stabilise the Kähler moduli in a typical large volume
scenario (LVS) vacuum [43, 44]. At leading order in a 1/V � 1 expansion only two directions,
V and τdP, are lifted by non-perturbative contributions to the superpotential W [24] and
perturbative α′ corrections to the Kähler potential K [49–51].4 Hence the remaining flat
direction, which can be parametrised by τK3, represents a very promising inflaton candidate
since it enjoys an effective non-compact rescaling symmetry which can be used to protect the
flatness of the inflationary potential against quantum corrections [22].5

In order to generate the inflationary potential, this effective shift symmetry has to be
slightly broken. This is realised by open string 1-loops which depend on all Kähler moduli [54–
57] but are subdominant with respect to the leading α′ effects thanks to the extended no-scale
structure typical of these models [58]. Higher loops are expected to be suppressed by positive
powers of the string coupling gs � 1 and negative powers of the exponentially large volume
V � 1 [23, 31]. Other contributions to the inflationary potential arise from higher derivative

4At this level of approximation, also the axionic partner of τdP is fixed by non-perturbative effects.
5There are actually other two flat directions corresponding to the axions associated with the base and the

fibre which turn out to be much lighter than τK3 since they acquire tiny masses only at non-perturbative level

(suppressed with respect to the mass of τK3 by e−πτK3 ∼ e−πV
2/3

∼ 10−137 � 1 for V ∼ 103 from Tab. 1).
Hence these fields are in practice massless and acquire isocurvature fluctuations during inflation. However
present strong bounds on isocurvature fluctuations do not apply to our case since these axions tend to be
too light to behave as dark matter (see eq. (B.16) of [52]). On the other hand, these ultra-light axions could
behave as extra relativistic degrees of freedom produced from the inflaton decay [53].
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α′ effects [59, 60] but these are also V-suppressed if the superspace derivative expansion is
under control [61]. Moreover, all these corrections give rise to an AdS vacuum which needs
to be uplifted to dS by the inclusion of anti-branes [24–26], hidden sector T-branes [27–29] or
non-perturbative effects at singularities [30]. It is important to stress that all these uplifting
effects are inflaton-independent since they depend just on the overall volume V. Thus they
give rise to a constant contribution to the inflationary potential which is crucial to develop
a plateau-like behaviour at large inflaton values.

After canonical normalisation of the inflaton field, the resulting potential is qualitatively
very similar to the one of Starobinsky inflation [37] and α-attractor supergravity models [38–
40]. In fact, fibre inflation models require a trans-Planckian field range to obtain enough e-
foldings of inflationary expansion, and so they can predict a tensor-to-scalar ratio as large as
r ∼ 0.005−0.01. These models are particularly interesting also because they can be embedded
into globally consistent CY orientifold compactifications with an explicit brane setup and
chiral matter [41, 42]. In the study of concrete CY realisations of string models where the
inflaton is a Kähler modulus, it has been recently realised that the underlying Kähler cone
conditions set strong geometrical constraints on the allowed inflaton range [62]. Interestingly,
it has been found that the distance travelled by inflaton in field space can generically be trans-
Planckian only for K3-fibred CY threefolds which are exactly the necessary ingredients to
construct fibre inflation models.

The two moduli which are stabilised at leading order in 1/V are heavier than the Hubble
constant whose size is set by the uplifting contribution. Hence V and τdP do not play a
significant rôle during inflation which is instead driven mainly by the light field τK3. Fibre
inflation models are therefore, to a very good level of approximation, single-field inflationary
models whose potential looks like [31–33]:

Vinf =

(
Cup

V4/3
+ g2s

CKK

τ2K3

+
W 2

0√
gs

εF4

V τK3

− CW

V√τK3

+ g2s DKK

τK3

V2
+ δF4

W 2
0√
gs

√
τK3

V2

)
W 2

0

V2
, (2.2)

where gs � 1 is the string coupling and W0 ∼ O(1 − 10) is the superpotential generated
by background fluxes which is constant after the dilaton and the complex structure moduli
are stabilised at tree-level. Cup controls the uplifting contribution and, depending on the
particular mechanism employed it can have a different dependence on the internal volume
V, background or gauge fluxes. CKK > 0, DKK > 0 and CW are the coefficients of 1-loop
open string corrections which have been conjectured to come respectively from the tree-
level exchange of closed Kaluza-Klein strings between non-intersecting stacks of branes, and
winding closed strings between intersecting branes [54–57]. These constants are also functions
of the vacuum expectation values of the complex structure moduli and are expected to be of
order unity: CKK ∼ DKK ∼ CW ∼ O(1). On the other hand, εF4 and δF4 are the coefficients
of higher derivative α′ F 4 effects which depend just on the topological properties of the
underlying geometry and are expected to be positive but relatively small: εF4 ∼ δF4 ∼
O(10−3) [59, 60].

The potential (2.2) is rich enough to generate a minimum for small τK3, an inflationary
plateau-like behaviour at large τK3 and finally a steepening region at very large τK3 where
the system is in a fast-roll regime.6 In order to perform a proper study of the inflationary
dynamics, the field τK3 has to be written in terms of its canonically normalised counterpart

6Pre-inflationary fast to slow-roll transitions in fibre inflation models can give rise to a power loss at large
angular scales [63–65].
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φ as [31]:

τK3 = e
2√
3
φ

= 〈τK3〉 e
2√
3
φ̂
, (2.3)

where we have expanded φ around its minimum as φ =
√
3
2 ln〈τK3〉+ φ̂. Substituting (2.3) in

(2.2), we end up with:

Vinf = V0

(
C1 + C2 e

− 4√
3
φ̂

+ C3 e
− 2√

3
φ̂ − e

− 1√
3
φ̂

+ C4 e
2√
3
φ̂

+ C5 e
1√
3
φ̂
)
, (2.4)

where, parameterising the inflaton minimum as 〈τK3〉3/2 ≡ γ V, we have:

V0 =
CWW 2

0

γ1/3V10/3
, C1 = γ1/3

Cup

CW

, C2 = g2s
CKK

γ CW

,

C3 =
W 2

0

γ1/3CW

√
gs

εF4

V1/3
, C4 = γ g2s

DKK

CW

, C5 = γ C3
δF4

εF4

. (2.5)

The potential (2.4) can have a plateau-like region which can support enough efoldings of
inflation only if the coefficients of the positive exponentials are suppressed, i.e. C4 � 1 and
C5 � 1, which, in turn, requires γ � 1. This is naturally achieved if the three negative
exponentials compete to give a minimum since this can happen when γ ∼ g2s � 1. The
inflationary plateau is then generated mainly by the fourth term in (2.4). Notice that the
Hubble constant during inflation is set by V0 and scales as H2 ∼M2

p /V10/3.7 The mass of the
inflaton around the minimum is of order H but then quickly becomes exponentially smaller
than H for φ̂ > 0.

Even if (2.4) is a very promising potential to drive inflation, it is not rich enough to
generate primordial black holes due to the requirement of a significant enhancement of the
power spectrum at large momentum scales. However recent explicit constructions of fibre
inflation models in concrete type IIB CY compactifications with D3/D7-branes and O3/O7-
planes have reproduced the potential (2.2) in a slightly generalised form since [41, 42]:

• In general the coefficient CW is not a constant but a function of the fibre modulus τK3

of the form:

CW → CW(τK3) = CW −
AW

√
τK3√

τK3 −BW

, (2.6)

where the parameters CW ∼ O(1) and AW ∼ O(1) depend on the vacuum expectation
values of the complex structure moduli, while BW ∼ O(1) depends on topological
properties of the underlying CY threefold like the intersection numbers and the Euler
number.

• The effective action features additional winding 1-loop corrections to the inflationary
potential which will turn out to be crucial for the formation of primordial black holes
and look like:

δVW = W 2
0

τK3

V4

DW −
GW

1 +RW

τ
3/2
K3
V

 , (2.7)

where again DW ∼ O(1) and GW ∼ O(1) become constants only after complex structure
moduli stabilisation, while RW ∼ O(1) depends on the topological features of the extra
dimensions.

7Mp denotes the reduced Planck mass Mp = 1/
√

8πG ' 2.4 · 1018 GeV.
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Depending on the details of a given brane setup (in particular the presence of intersections
between D-branes and O-planes and the topological properties of two-cycles where different
stacks can intersect), several contributions to the generic scalar potential (2.2), supplemented
with (2.6) and (2.7), can be absent by construction. In what follows, we shall therefore focus
just on winding 1-loop corrections that represent the simplest situation which can lead to a
successful generation of primordial black holes. This is justified for example by the fact that
the global chiral embedding of fibre inflation presented in [42] does not feature any Kaluza-
Klein loop correction, i.e. CKK = DKK = 0.8 Moreover higher derivative F 4 terms tend also
to be negligible since, as can be seen from (2.5), they should be suppressed by both inverse
volume powers and by εF4 � 1 and δF4 � 1. Hence in Sec. 4 we shall study primordial black
hole formation for the following simplified inflationary potential:

Vinf =
W 2

0

V3

 Cup

V1/3
− CW√

τK3

+
AW√

τK3 −BW

+
τK3

V

DW −
GW

1 +RW

τ
3/2
K3
V

 , (2.8)

which, when expressed in terms of the canonically normalised inflaton shifted from its mini-
mum, takes the form:

Vinf = V0

[
C1 − e

− 1√
3
φ̂

(
1− C6

1− C7 e
− 1√

3
φ̂

)
+ C8 e

2√
3
φ̂
(

1− C9

1 + C10 e
√
3φ̂

)]
, (2.9)

with:

C1 = γ1/3
Cup

CW

∼ O(1) , C6 =
AW

CW

∼ O(1) , C7 =
BW

γ1/3V1/3
∼ O(1) ,

C8 = γ
DW

CW

� 1 , C9 =
GW

DW

∼ O(1) , C10 = γ RW � 1 . (2.10)

Notice that the potential (2.9) scales as V0 ∼ H2M2
p ∼ M4

p /V10/3 while the leading order

potential which gives mass to V and τdP scales as Vlead ∼ M4
p /(g

3/2
s V3) [43, 44]. Hence for

gs � 1 and V � 1, the dynamics which generates PBHs is effectively single-field.

3 PBH formation

Primordial black holes form when large and relatively rare density perturbations re-enter the
Hubble horizon and undergo gravitational collapse. The fraction of the total energy density
in PBHs with mass M at PBH formation is given by:

βf(M) =
ρPBH(M)

ρtot

∣∣∣
f
. (3.1)

The curvature perturbations are assumed to follow a Gaussian distribution with width σM ≡
σ(M).9 The probability of large fluctuations leading to the formation of PBHs with mass M
is then given by:

βf(M) =

∫ ∞
ζc

1√
2π σM

e
− ζ2

2σ2
M dζ , (3.2)

8Even if both CKK and DKK are non-zero, in a vast region of the parameter space, Kaluza-Klein loops
would still be subdominant with respect to winding loops due to the extra factors of g2s � 1 in (2.5). This is
due to the fact that Kaluza-Klein loops feature an extended no-scale cancellation, and so they contribute to
the scalar potential effectively only at 2-loop order [58].

9See [66] for the case when non-Gaussianity effects cannot be neglected.
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where ζc denotes the critical value for the collapse into a PBH to take place and plays a
fundamental rôle in this discussion. It is usually taken to be close to unity, see e.g. [2, 16,
46].10 For such a Gaussian distribution σ2M ∼ 〈ζζ〉 which on CMB scales is O(10−9). As we
will show below, σM � ζc and so we can approximate (3.2) as:

βf(M) ∼ σM√
2π ζc

e
− ζ2c

2σ2
M . (3.3)

If PBHs are to be a significant fraction of dark matter, the fluctuations that give rise to them
must not be too rare, meaning that σM cannot be arbitrarily smaller than ζc. This implies
that on smaller distance scales the scalar power spectrum must be orders of magnitude larger
than on CMB scales. Let us quantify this statement and discuss how it may be achieved in
single field models of inflation.

The mass of a PBH forming when a large density perturbation re-enters the horizon is
assumed to be proportional to the horizon mass:

M = γG

4π

3

ρtot
H3

∣∣∣
f

= 4πγG

M2
p

Hf
, (3.4)

where γG is a correction factor which depends on the details of the gravitational collapse
and Hf denotes the Hubble parameter at the moment the perturbation re-enters the horizon.
Noting that PBHs behave as matter, the fraction of the total energy density in PBHs at
formation time (3.1) can be related to the present PBH energy density as:

βf(M) =

(
H0

Hf

)2 ΩDM

a3f
fPBH(M) , (3.5)

where af denotes the scale factor at PBH formation time, H0 is the Hubble scale today,
ΩDM = 0.26 is the present fraction of the total energy density in dark matter and fPBH(M)
is the fraction of the total dark matter energy density in PBHs with mass M today. PBHs
in the low mass region, which can be interesting dark matter candidates, get formed before
matter-radiation equality in an epoch of radiation dominance. Hence the Hubble scale at
PBH formation redshifts as:

H2
f = Ωr

H2
0

a4f

(
g∗f
g∗0

)−1/3
, (3.6)

where Ωr = 8 × 10−5 is the present fraction of the total energy density in radiation, while
g∗0 and g∗f are respectively the number of relativistic degrees of freedom today and at PBH
formation time. Combining (3.4) with (3.6), (3.5) can be rewritten in terms of present day
observables and in units of the solar mass M� as [67, 68]:

βf(M) ' 4
√
γG

× 10−9
(
g∗f
g∗0

)1/4
√

M

M�
fPBH(M) . (3.7)

We can now get an estimate of the level of enhancement of the power spectrum required
to have PBHs which constitute a significant fraction of dark matter. Setting γG = 1 to be

10We note that some authors [14, 15] take it to be of the order 10−1 or 10−2. Given the exponential
dependence of β on ζc this significantly decreases the level of tuning required of the inflationary potential in
models where PBHs are created within single field inflation.
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conservative and assuming that only SM degrees of freedom are present so that g∗0 = 3.36
and g∗ = 106.75, if PBHs with mass M constitute all of dark matter, i.e. fPBH(M) = 1 ,
(3.7) reduces to:

βf(M) ' 10−8

√
M

M�
. (3.8)

If we now focus on a mass distribution sharply peaked at M = 10−15M�, we find βf(M) '
3× 10−16. Comparing (3.8) with (3.3) for ζc = 1, we finally obtain σM = 0.12. This implies
that the scalar power spectrum must be enhanced to O(10−2), a value 7 orders of magnitude
larger that its value on CMB scales.11 This large enhancement can in principle be achieved
within single field inflationary models by inducing an extremely flat and sufficiently long
region in the scalar potential. Therefore the problem of PBHs in single field inflation is one
of having a sufficiently rich structure in the scalar potential and the freedom to tune in a flat
plateau in the later part of inflation.

Let us finally make two important observations:

• In the estimate above of the enhancement of the power spectrum, we considered PBHs
with a given mass M . However, more generically, the PBH mass function is broadly
peaked, and so the fraction of the total dark matter density in PBHs looks like [3, 69]:

fPBH =

∫
dfPBH(M) =

∫
dfPBH(M)

d lnM
d lnM , (3.9)

where dfPBH(M) is the fraction of PBHs with mass between M and M + d lnM , and
the integration domain is bounded below by Hawking evaporation of very light PBHs
and above by the mass corresponding to PBHs which re-enter the horizon after matter-
radiation equality, see e.g. [46].

• Assuming that the Hubble scale during inflation Hinf is approximately constant, (3.4)
and (3.6) can be used to write the number of efoldings between CMB and PBH horizon
exit as [46]:

∆NPBH
CMB = ln

(
aPBHHinf

aCMBHinf

)
= ln

(
afHf

0.05 Mpc−1

)
= 18.4− 1

12
ln

(
g∗
g∗0

)
+

1

2
ln γG −

1

2
ln

(
M

M�

)
. (3.10)

Setting again γG = 1, g∗0 = 3.36 and g∗ = 106.75 as in the SM case, the formation
of PBHs with masses in the [10−16, 10−14]M� range implies that PBH scales leave the
horizon approximately 34.2 to 36.5 efoldings after the CMB scales.

4 PBHs from Fibre inflation

In order to produce a significant fraction of PBHs from inflationary density perturbations,
we shall use the rich structure of the fibre inflation potential (2.8) to induce a near inflection
point close to the minimum as depicted in Fig. 1 .

11Had we assumed ζc = 0.1, we would have found σ = 0.012, in agreement with the estimates of [14, 15].
This corresponds to an enhancement of the power spectrum by 5 orders of magnitude between PBH and CMB
scales and requires less tuning of the inflationary potential.
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Figure 1: Scalar potential for the parameter set P2 of Tab. 1.

Based on the scaling of each term in eq. (2.8) with the fibre modulus τK3 one can see
that the second and third terms dominate at small field values and induce a minimum for
the modulus around:

〈τK3〉 ∼
CWB

2
W

(
√
CW −

√
AW)2

. (4.1)

The forth term, being proportional to τK3, dominates V at large field values, while

the fifth term has a maximum at 22/3

(RW/V)2/3 and scales as −τK3 at small and as −τ−1/2K3 at

large field values respectively. It is this last term that will be instrumental in generating
the enhancement in the scalar power spectrum that will ultimately lead to the formation
of primordial black holes in this setup. This can be achieved for certain values of GW and
RW such that the potential has a very flat region close to the post-inflationary minimum as
illustrated in Fig. 1.

Since in slow-roll Pk ∝ H2/εV , an enhancement of the scalar power spectrum is in

principle possible in the limit εV ≡
V 2
φ

2V 2 → 0. Actually the situation is a little more involved
since in the plateau the dynamics of the Universe deviates significantly from slow-roll, a fact
that has been pointed out in [16] (see also [46, 70]), and that calls for a more careful analysis
of the observational signatures of such models, see e.g. [2]. Observables must therefore
be computed from solutions to the Mukhanov-Sasaki equation for the rescaled curvature
perturbations:

u′′k(η) +
(
k2 − z′′/z

)
uk(η) = 0 , (4.2)

where η denotes conformal time, z ≡
√

2ε a from which we find that the effective mass of the
curvature perturbations is:

z′′

z
= (aH)2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 +

1

2
ηκ

]
, (4.3)

where:

ε = − Ḣ

H2
, η =

ε̇

εH
, κ =

η̇

ηH
, (4.4)

are the Hubble slow-roll parameters.
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One assumes that deep inside the horizon, the perturbations behave as if in flat space,
which fixes the initial conditions to be of the Bunch-Davies type [71]:

lim
kη→−∞

uk(η) =
e−ikη√

2k
. (4.5)

This determines the solution to be given by a Hankel function of the first kind:

uk(η) =

√
−πη
2

H(1)
ν (−kη) , (4.6)

with index ν determined from eq. (4.3) once a given background is chosen.
For comparison with observations one is interested in the dimensionless power spectrum,

defined as:

Pk =
k3

2π2

∣∣∣uk
z

∣∣∣2 , (4.7)

which in the superhorizon limit kη → 0 can be written as:

Pk =
H2

8π2ε

22ν−1|Γ(ν)|2

π

(
k

aH

)3−2ν
. (4.8)

On CMB scales this is bound to be Pk
∣∣
CMB

= 2 × 10−9 and as shown in Sec. 3 it must
be significantly enhanced on smaller scales if PBHs are to be significant fraction of all dark
matter.
Up to this point the discussion of the behaviour of the perturbations assumed nothing about
the type of background in which they evolve. In order to produce a significant amount of
PBH from a inflection point in single field inflation, we will see that the universe has to
evolve from a slow-roll inflation phase into a transient constant-roll background, where the
scalar field acceleration plays an important role. These backgrounds are characterised by the
parameter α defined as [72, 73]:

φ̈ ≡ −(3 + α)Hφ̇ . (4.9)

Solutions with α = 0 are called ultra slow-roll [74–76], whereas vanilla slow-roll inflation
corresponds to α = −3. The transient constant-roll period arises due the presence of an
extremely flat region in the potential that causes the scalar field to brake upon reaching
it, leading to a non negligible acceleration in the Klein-Gordon equation and consequently
a departure from the slow-roll background. This behaviour is illustrated in Fig. 2 where
we plot the evolution of the slow-roll parameters for evolution in the potential of Fig. 1,
corresponding to the parameter set P2 of Tab. 1. It is evident that the system undergoes a
transition from slow-roll (Ne > 19) to constant-roll (15 < Ne < 19) and finally to a large η
slow-roll phase (Ne < 15).

In slow-roll ε, η, κ � 1, and consequently the effective mass takes the form z′′/z ≈
2
η2

(2 + 3ε+ 3η), or equivalently ν = 3/2 + ε + η/2. One can then see that the curvature

perturbations ζ = u/z remain constant on super-horizon scales and the two point function
can therefore be evaluated at horizon crossing, yielding the familiar slow-roll result:

Pk =
H2

8π2ε

∣∣∣
k=aH

. (4.10)

Eq. (4.8) also captures the momentum dependence of the two point function, which can be
written in terms of the spectral index ns and its running α, given by:

ns ≡
d lnPk
d ln k

= 1− 2ε− η , (4.11)
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Figure 2: Slow-roll parameters as functions of the number of efoldings Ne from the end of inflation
for parameter set P2. It is clear that the background evolves from slow-roll (Ne > 19) to constant-roll
(15 < Ne < 19) and back to slow-roll again (Ne < 15). Dashed lines represent 10, 6 and 1.

and:
dns
d ln k

= −2εη − ηκ . (4.12)

Both these quantities are subject of tight observational constraints [10]. For this work we
take:

ns = 0.9650± 0.0050 and
dns
d ln k

= −0.009± 0.008 (4.13)

at 68%CL and at a scale k∗ = 0.05 Mpc−1.
In the transient constant-roll regime one has η ≈ −2(3 + α − ε) which implies ε ∝

a−2(3+α). In the cases we consider α ∈ [0, 1]. In such a background the super-horizon
behaviour of the power spectrum is determined by:

Pk ∝ H |2α+3|−1a3+2α+|3+2α| . (4.14)

Note that since ε is small and decreasing rapidly with the expansion (for α > −3), one can
take H to be constant. We therefore see that for −3 ≤ α < −3/2 the curvature perturbations
are frozen beyond the horizon (this includes the previously discussed case of slow-roll inflation,
α = −3), whereas for α > −3/2, Pk ∝ a2(3+2α), signaling the presence of a growing solution
to the MS equation, and the breakdown of the approximation of (4.10). In order to determine
the two-point function in such backgrounds one must therefore solve the MS equation and
evaluate Pk at the end of inflation.

In Fig. 3 we plot the power spectrum for scalar perturbations for the potential of Fig. 1
(parameter set P2) calculated from the solutions of (4.2) (continuous line) and the slow-roll
estimate of (4.10) (dashed line). As expected the slow-roll approximation breaks down for
modes that cross the horizon close to the onset of the constant-roll phase. Crucially for the
production of PBH, the slow-roll result underestimates the power spectrum by several orders
of magnitude in this range of momentum modes. This is to be expected given the existence
of a growing mode solution in constant-roll backgrounds with α ∈ [0, 1]. The presence of
the growing mode also implies that the actual position of the peak in the power spectrum is
shifted towards larger scales/PBH masses with respect to the slow-roll estimate.12 In Fig. 4

12These results are qualitatively similar to the findings of [2] since both models feature the same dynamics.
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Figure 3: Power spectrum (4.7) for the potential of Fig. 1 with parameter set P2. The dashed line
represents the slow-roll estimate of (4.10) while the continuous line is obtained from the solutions to
the MS equation. The circle correspond to the CMB scales if the peak is to be associated with PBH
of mass M = 10−14M�.

we plot the evolution of the power spectrum for modes leaving the horizon 53 and 22 efoldings
before the end of inflation, corresponding to CMB and PBH scales respectively. While both
scales are affected by the growing mode during the constant roll phase, their superhorizon
growth is determined by k

aH at the onset of the constant roll period. This quantity is minute
for modes on CMB scales but not for those on the PBH region. As a result the CMB mode
essentially follow the slow-roll estimate of (4.10) after crossing the horizon, while on small
scales we see that there is a large amplification of Pk leading to a breakdown of the slow-roll
approximation. Finally let us note that the O(1) deviation from the slow-roll estimate for
modes on the smallest scales (Ne . 15) can be attributed to the fact that in the final phase
of expansion before the end of inflation, η = O(1).

In Tables 1 and 2 we present three numerical examples corresponding to cases where
all DM is composed of 10−14M� PBHs, assuming ζc = 1. We stress that the choices of the
underlying parameters are in line with their microscopic origin as explained in Sec. 2.and
that the desire to have PBH DM does not constrain the compactification volume, which
varies by several orders of magnitude in between the three examples. All the digits presented
in Tab. 1 are required in order to fully reproduce our results. In particular, GW and RW

control the position of the near inflection point and the velocity with which the field goes
through that region. Changing any of these two quantities will change the amplitude and
position of the peak of Fig. 3, and therefore the mass and abundance of PBHs.

All examples lead to a spectral index that is slightly more than 3 sigma redder than the
current best fit, while giving rise to a spectral index running and a tensor fraction that are
in line with current bounds. Notice that, for sake of simplicity, we did not analyse the full
potential (2.2) but we just considered the simplest form which gives rise to PBH formation.
However, if we had included terms which behave as 1/τK3, we would have obtained larger
values of ns which would alleviate the tension with present observational constraints.
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Figure 4: Evolution of the curvature perturbations on different scales for example P2. On the left
panel a mode that corresponds to CMB scales, leaving the horizon 53 efoldings before the end of
inflation, and keeping a constant value thereafter. On the right panel a mode that corresponds to
PBH scales, leaving the horizon 22 efoldings before the end of inflation and undergoing super-horizon
growth during the constant-roll phase (the same evolution was found in Fig. 2 of [77]). In both plots
the dashed line corresponds to the slow-roll estimate of (4.10).

CW AW BW GW RW 〈τK3〉 〈V〉
P1 1/10 2/100 1 0.1398533 0.706811 3.89 107.3
P2 4/100 2/100 1 3.080548× 10−2 0.7071067 14.30 1000
P3 1.978/100 1.65/100 1.01 4.628858× 10−3 0.7070 168.03 5× 104

Table 1: Examples of parameters leading to the production of PBHs with a mass peaked at 10−14M�,
together with geometrical compactification data. All examples exhibit DW = 0 which can be guar-
anteed by construction via a proper choice of intersections between stacks of D7-branes [41, 42].
Otherwise DW has be tuned to values of O(10−6) via an appropriate choice of background fluxes.

ns r dns
d ln k ∆NPBH

CMB Pk|peak
P1 0.9457 0.015 −0.0017 34.5 0.01365
P2 0.9437 0.015 −0.0017 34.5 0.03998
P3 0.9457 0.015 −0.0019 34.5 0.013341

Table 2: Inflationary observables on CMB and PBH scales for the examples of Tab. 1. CMB scales
correspond to 53 efoldings before the end of inflation.

5 Conclusions

In this paper we have presented the first explicit example of a string inflationary model which
can potentially be consistent with cosmological observations at CMB scales and, at the same
time, can generate PBHs at small distance scales via an efficient enhancement of the power
spectrum due to a period of ultra slow-roll. Our model leads to PBHs in the low-mass region
where they constitute a significant fraction of the total dark matter abundance.

Three interesting features of fibre inflation models relevant for PBH formation are the
following: (i) the coefficients of the different contributions to the inflationary potential de-
pend on microscopic parameters like background fluxes and Calabi-Yau intersection numbers
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which take different values in the string landscape, and so give a very large tuning freedom
that can be used to generate a near inflection point; (ii) the potential enjoys an approxi-
mate Abelian rescaling symmetry inherited from the underlying extended no-scale structure
which suppresses quantum corrections to the inflationary dynamics; (iii) the contribution
to the inflationary potential responsible for the emergence of a near inflection point at large
momentum scales has been derived in global embeddings of fibre inflation models in explicit
Calabi-Yau compactifications with chiral brane setup compatible with moduli stabilisation.

Moreover our model is characterised by a trans-Planckian field range during inflation,
and so it predicts a large tensor-to-scalar ratio of order r ∼ 0.01 which might be detected
by the next generation of cosmological measurements. Similarly to previous works on PBH
formation in single-field inflation [2, 15], the scalar spectral index turns out to be a bit too
red since it is more than 3σ away from the Planck reference value. This tension might be
resolved by the inclusion of non-zero neutrino masses which might make our result compatible
with CMB data within just 2σ [2, 78]. The tension in the values of ns can also decrease
in compactifications where the approach to the inflationary plateau occurs faster than the
1/
√
τK3 considered here, a possibility in potentials of the form (2.2). Another interesting

cosmological observable in our model is the running of the spectral index which turns out to
be sizable.

Notice that the tension with the observed value of the scalar spectral index is the main
reason why our mechanism cannot produce PBHs in the large mass region probed by LIGO
since they would correspond to scales which are too close to CMB scales. Hence the large
enhancement required for PBHs to be a significant fraction of DM, would make ns in strong
conflict with present data. Given that the results of previous works focused on PHB formation
in similar setups are qualitatively equivalent [2], the generation of PBHs in the small mass
window seems to be a generic property of single-field models with an inflationary plateau
followed by a near inflection point.

In this paper we investigated the possibility to generate PBHs from string inflation by
taking the most conservative point of view since we focused on models which are effectively
single-field and, above all, we considered PBH formation with horizon re-entry in a radiation
dominated era. However, two generic features of string compactifications are the presence of
several scalar fields which might play an important rôle during inflation [79–86], and light
moduli with only gravitational couplings to ordinary matter which are long-lived and tend
to give rise to early periods of matter domination [87–94]. Hence in the future it would be
very interesting to study the impact on PBH formation in string models of additional light
fields, like for example the axionic partner of the inflaton of fibre inflation models.

We finally mention the fact that PBHs can be generated with the required efficiency
only if δρ ∼ 0.1 ρ at small distance scales. It would therefore be important to perform a
more careful analysis of stochastic effects since the perturbative expansion might not be fully
justified [95]. Finally we stress that non-gaussianities in large momentum fluctuations might
alter significantly the PBH production mechanism and, in turn, their present abundance [66].
We leave a deeper study of both stochastic and non-gaussianity effects for future investigation.
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