CONTRIBUTION OF GEOSTATISTICS IN MAPPING SUBSOIL TEMPERATURE EVOLUTION IN URBAN AREAS

KASMAEE S., TINTI F., BRUNO R.

Francesco Tinti
Department of Civil, Chemical, Environmental and Materials Engineering
University of Bologna, via Terracini 28, 40131 Bologna Italy

Belfast, 5th july 2018
Index

1. The context: ground temperature evolution and its importance for recovery of ambient heat.
2. Deterministic methods and the influence of urbanization.
3. Uncertainty issues and the use of geostatistical simulation.
4. An application of geostatistical simulation on a case study area.
5. Conclusions and next steps.
Recovery of ambient heat:
Recovery of heat energy at a useful temperature level by means of heat pumps, and which can be stored in the ambient air, *beneath the surface of solid earth (geothermal energy)* or in surface water.
Key points:

- Temperature variations in space and time at very shallow depth depend on many different factors, such as ground thermal properties, groundwater presence, but also heat losses from single buildings and impact of urban heat island on the ground;

- Ground is a renewable reservoir of ambient heat, with many applications.

Objective → Improvement of design of ambient heat recovery systems through a more accurate estimation of ground temperature evolution.
Underground thermal properties

\[\tilde{\lambda}_g(\tilde{x}) = \text{ground thermal conductivity} \left[\frac{W}{mK} \right] \]

\[c_g(\tilde{x}) = \text{ground volumetric heat capacity} \left[\frac{J}{m^3K} \right] \]

\[\tilde{\alpha}_g(\tilde{x}) = \frac{\tilde{\lambda}_g}{c_g} = \text{ground thermal diffusivity} \left[\frac{m^2}{s} \right] \]

Ground thermal diffusivity determines the dampening of climatic wave into the ground. It varies for different layers.

Ground thermal conductivity influences the impact of geothermal heat flow density on the ground temperature. It varies for different layers.
2. Deterministic methods and the influence of urbanization

Underground temperature distribution assessment

\[T_g(d,t) = T_m - A \cdot \exp \left[-d \cdot \sqrt{\frac{\pi}{T \cdot \alpha_g}} \right] \cdot \cos \left[\frac{2\pi}{T} \left(t - t_{t_0} - \frac{d}{2} \cdot \sqrt{\frac{T}{\pi \cdot \alpha_g}} \right) \right] + \nabla T_{geo}(h, \lambda_g) \cdot d \]

- \(T_g \rightarrow \) Underground temperature (°C)
- \(T_m \rightarrow \) Annual average temperature (°C)
- \(A \rightarrow \) Wave amplitude (°C)
- \(T \rightarrow \) Wave period (d)
- \(t_{t_0} \rightarrow \) Day of minimum temperature (days)
- \(\alpha_g \rightarrow \) Ground thermal diffusivity (m²/days)
- \(\lambda_g \rightarrow \) Ground thermal conductivity (W/(mK))
- \(C_g \rightarrow \) Ground heat capacity (J/(kgK))
- \(\rho_g \rightarrow \) Ground density (kg/m³)
- \(d \rightarrow \) Depth (m)
- \(\nabla T_{geo} \rightarrow \) Geothermal gradient (°C/m)
- \(h \rightarrow \) Geothermal heat flow (W/m²)

Neutral zone

- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December
2. Deterministic methods and the influence of urbanization
2. Deterministic methods and the influence of urbanization

<table>
<thead>
<tr>
<th>City</th>
<th>Area (km²)</th>
<th>Population density (inhab./km²)</th>
<th>Aquifer geology</th>
<th>Aquifer Thickness (m)</th>
<th>Porosity (-)</th>
<th>Potential heat content (kJ/m²)</th>
<th>Heating demand (kJ/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cologne</td>
<td>405</td>
<td>2528</td>
<td>gravel, sand</td>
<td>15-30</td>
<td>0.15-0.25</td>
<td>4.8×10¹⁰ - 4.8×10¹¹</td>
<td>1.9×10¹⁰</td>
</tr>
<tr>
<td>Winnipeg</td>
<td>5302</td>
<td>1429</td>
<td>carbonate</td>
<td>5-15</td>
<td>0.05-0.10</td>
<td>2.2×10¹⁰ - 2.1×10¹¹</td>
<td>4.1×10¹⁰</td>
</tr>
<tr>
<td>Shanghai</td>
<td>6200</td>
<td>2646</td>
<td>sand, clay</td>
<td>10-20</td>
<td>0.20-0.30</td>
<td>5.0×10¹⁰ - 3.5×10¹¹</td>
<td>2.3×10⁹</td>
</tr>
<tr>
<td>Tokyo</td>
<td>2187</td>
<td>5874</td>
<td>sand, clay</td>
<td>30-70</td>
<td>0.20-0.30</td>
<td>5.0×10¹⁰ - 7.0×10¹¹</td>
<td>2.5×10¹⁰</td>
</tr>
<tr>
<td>London</td>
<td>1707</td>
<td>4761</td>
<td>chalk</td>
<td>30-40</td>
<td>0.05-0.20</td>
<td>1.1×10¹¹ - 5.6×10¹¹</td>
<td>9.5×10¹⁰</td>
</tr>
<tr>
<td>Istanbul</td>
<td>1830</td>
<td>6211</td>
<td>limestone</td>
<td>10-30</td>
<td>0.05-0.25</td>
<td>4.4×10¹⁰ - 5.0×10¹¹</td>
<td>5.5×10⁹</td>
</tr>
<tr>
<td>Prague</td>
<td>496</td>
<td>2504</td>
<td>sandstone</td>
<td>10-30</td>
<td>0.10-0.30</td>
<td>4.6×10¹⁰ - 5.3×10¹¹</td>
<td>9.6×10⁹r</td>
</tr>
</tbody>
</table>

- Deterministic calculation based on climate data and ground properties
- Statistical correlations between population density and temperature increase
3. Uncertainty issues and the use of geostatistical simulation

Geostatistics applied to the topic

Flowchart of the method

- Borehole data
- Surface temperature data
- (Collocated variable) Temperature in 3D grid (without SUHI)

- Calculate the residuals
- Normal score transform
 \[y(x) = G^{-1}(F(Z(x))) \]
- Direct and Cross-Variogram calculation and modeling
- Conditional simulation of residuals by Turning Bands method
- Back transform conditional simulated values
 \[Z(x) = F^{-1}(G(y(x))) \]

Adding trend to data and calculating the final results of temperature
3. Uncertainty issues and the use of geostatistical simulation

Choice of an area of intervention

Data to get

Temperature direct measurements – Direct variable
- Borehole temperature data (measured)
- Surface temperature data (measured)

3D temperature calculation – Collocated variable

Deterministic calculation of ground temperature in 3D from estimated parameters and indicators at macro scale (geological layers, thermal conductivity, thermal diffusivity, climate data, heat flow density)

Values affected by the presence of urbanization
3. Uncertainty issues and the use of geostatistical simulation

Procedure for geostatistical analysis of data (1/2)

- Removal of the trend in the vertical direction and work on the residuals as fluctuation of the variables: target variable (T meas) and collocated variable

\[y(x) = G^{-1}\left(F(Z(x)) \right) \]

- Normal score transform of residuals

- Variograms on the residual of the target variable

- Variograms on the residual of the collocated variable (T det. calculation)

- Cross-variograms between the residual of the target variable and the residual collocated variable
3. Uncertainty issues and the use of geostatistical simulation

Procedure for geostatistical analysis of data (2/2)

- Conditional simulation of residuals of direct variable by Turning Bands method
- Back transform of conditional simulation results: \[Z(x) = F^{-1}\left(G\left(y(x)\right)\right) \]
- Addition of trend to results
- Calculation of final 3D temperature in the area of interest, after considering the effective temperature measurements, affected by presence of urbanization
3. An application of geostatistical simulation on a case study area

Area of interest: Zurich City Area

Information from:
Bayer et al., 2016

Extracting past atmospheric warming and urban heating effects from borehole temperature profiles,
GEOTHERMICS, 64, 289-299
3. An application of geostatistical simulation on a case study area

Area of interest: Zurich City Area

Reasons of area selection:

- No presence of groundwater bodies;
- High geological variability: presence of valleys and mountains;
- High population density variability: presence of urban (villages) and rural areas.
3. An application of geostatistical simulation on a case study area

Location of 9 artificial boreholes in the study area, with CRS: ED50 / UTM Zone 28

Histogram of temperature data and related basic statistics

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. samples</td>
<td>459</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.21</td>
</tr>
<tr>
<td>Maximum</td>
<td>12.19</td>
</tr>
<tr>
<td>Mean</td>
<td>8.70</td>
</tr>
<tr>
<td>Std. Dev</td>
<td>1.60</td>
</tr>
</tbody>
</table>
3. An application of geostatistical simulation on a case study area

Surface temperature in the area of interest for March

The value integrates climate information with urban effect
3. An application of geostatistical simulation on a case study area

Application on data

- Removing trend \(Z(x) = m(x) + Y(x) \)

- Normal score transformation with Hermit Polynomials \(y(x) = G^{-1}\left(F(Z(x))\right) \)
3. An application of geostatistical simulation on a case study area

Direct and cross-variograms in vertical direction (sample and models)

Variogram model of ground T from:

Kasmaee et al., Use of Universal Kriging as a tool to estimate mountain temperature distribution affected by underground infrastructures: the case of the Brenner Base Tunnel, in: European Geothermal Congress 2016 Proceedings, Bruxelles
3. An application of geostatistical simulation on a case study area

Conditional simulation with turning bands

Number of turning bands: 400
Number of simulations: 1000
Implementation: ISATIS
Simulation time: 3 hours

Comparisons of input data (Gaussian distribution) with the distributions of simulation results for three realizations.
3. An application of geostatistical simulation on a case study area

Convergence of the variogram results obtained from all simulation realizations with the initial variogram model used for the simulation (red thick line)

Comparison between the variogram of simulation realisation and the variogram model of residuals of initial temperature data influenced by urban presence
3. An application of geostatistical simulation on a case study area

Ex. Realisation 1

Beside BH1
3. An application of geostatistical simulation on a case study area
3. An application of geostatistical simulation on a case study area

Contribution of geostatistics in mapping subsoil temperature evolution in urban areas

Ex. Realisation 2

In urban area
3. An application of geostatistical simulation on a case study area

CONTRIBUTION OF GEOSTATISTICS IN MAPPING SUBSOIL TEMPERATURE EVOLUTION IN URBAN AREAS
3. An application of geostatistical simulation on a case study area

Ex. Realisation 2

Out of urban area
3. An application of geostatistical simulation on a case study area

CONTRIBUTION OF GEOSTATISTICS IN MAPPING SUBSOIL TEMPERATURE EVOLUTION IN URBAN AREAS

Graph showing temperature versus depth with different lines representing simulation results, standard calculation, and inclusion of SUHI effect.
4. Conclusions and next steps

Preliminary results

- Geostatistical conditional simulation can be used to reconstruct in 3D ground temperature, including urban heat island (UHI) effect.

- Sample data are surface temperature, including UHI effect (for example aerial thermography), and temperature measurements in depth at convenient scale (measurements from existing wells, boreholes,…).

Impact for geothermal sector

- Improved characterization of geothermal resource, for its sustainable exploitation at shallow depth (< 50 m) with geothermal heat exchangers.
Next steps and future work

- Adding the fourth dimension (time) in the simulation.
- Inclusion of geology information as indicator (with transition between sediments and bedrock).
- Validation of the methodology on a real case with borehole temperature measurements in a defined future area of Bologna (IT), with aerial thermography and borehole and well samples.
- Inclusion of additional temperature measurements from city underground structures and spaces (cellars, garages, sewer system, channels).
Thank you for your attention

Sara Kasmaee Yazdi, Francesco Tinti, Roberto Bruno

DICAM - Department of Civil, Chemical, Environmental and Materials Engineering
via Terracini 28, 40131 Bologna, Italy
francesco.tinti@unibo.it
www.dicam.unibo.it

The research work presented was supported by the research project GEOTeCH (www.geotech-project.eu), co-funded by the European Community Horizon 2020 Program for European Research and Technological Development (2014–2020)—Grant Agreement 656889.