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Novelty and Impact Statements 

We report the identification of the mutation at the thyroid cancer predisposing locus 

on chromosome 19p13.2, in the gene MYO1F. Cell models carrying mutant MYO1F 

have a significant advantage in colony formation, invasion, anchorage independent 

growth, and show an altered mitochondrial phenotype similar to the one observed in 

the patients’ tumors. Our study indicates for the first time that MYO1F has a role in 

thyroid cancer predisposition.  
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Abstract  

Familial aggregation is a significant risk factor for the development of thyroid cancer 

and Familial Non-Medullary Thyroid Cancer (FNMTC) accounts for 5-7% of 

all NMTC. Whole Exome Sequencing analysis in the family affected by FNMTC 

with oncocytic features where our group previously identified a predisposing 

locus on chromosome 19p13.2, revealed a novel heterozygous mutation 

(c.400G>A, NM_012335; p.134G >S) in exon 5 of MYO1F, mapping to the linkage 

locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F 

p.134G>S protein we observed an altered mitochondrial network, with increased

mitochondrial mass and a significant increase of both intracellular and 

extracellular Reactive Oxygen Species, compared to cells expressing the wild-type 

protein or carrying the empty vector. The mutation conferred a significant 

advantage in colony formation, invasion and anchorage independent growth. These 

data were corroborated by in vivo studies in zebrafish, since we demonstrated 

that the mutant MYO1F p.134G>S, when overexpressed, can induce proliferation 

in whole vertebrate embryos, compared to the wild-type one. MYO1F screening in 

additional 192 FNMTC families identified another variant in exon 7, which leads 

to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. 

Our study identified for the first time a role for MYO1F in NMTC.  
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Introduction 

Familial aggregation is a significant risk factor for the development of thyroid cancer 

derived from follicular epithelial cells (Non-Medullary Thyroid Carcinoma, NMTC). 

When the primary cancer site is considered, the thyroid gland shows the highest 

estimate of familial relative risk among all organs (5-10 fold compared to 1.8 and 2.7 

for breast and colon cancer, respectively) [1]. Familial NMTC (FNMTC) accounts for 

5-7% of all NMTC, although some cases occur in the context of familial syndromes

such as Cowden disease (CS). CS syndrome is caused by germline mutations in PTEN 

[2] and in genes encoding the different subunits of succinate dehydrogenase (SDHB- 

D) [3]. However, the genetic alterations underlying the vast majority of non 

syndromic cases are unknown. The recognition of familiarity is critical for early 

diagnosis and treatment of the disease, since these patients present more aggressive 

tumors that are less likely to respond to current therapies and have a worse outcome 

[4]. A search for susceptibility genes, undertaken using linkage-based approaches, led 

to the identification of several predisposing loci on chromosomes 14q31, 19p13.2, 

2q21, and 1q21 [5, 6]. Causative mutations were identified at the 14q31 locus in the 

DICER1 gene, which encodes for an enzyme required for miRNA maturation [7]. A 

predisposing locus for FNMTC was previously identified on chromosome 19p13.2 in 

a multigenerational family with multiple individuals affected by thyroid carcinoma 

with oncocytic features (oxyphilia; TCO), with autosomal dominant inheritance [8]. 

In the present study, we report Whole Exome Sequencing (WES) data, mutation 

screening and functional studies providing evidence that germline mutations in 

MYO1F, including the one found in the TCO pedigree on chromosome 19p13.2, lead 

to NMTC. 

Materials and Methods 
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The study was approved by the committee for protection of persons in biomedical 

research of Lyon (CCPRB A-96.18) and by the IARC Ethical Review Board (Project 

95-050, amendment 01-013). Informed consent was obtained by clinicians, in each 

collaborating center. 

Subjects 

The TCO family has been previously reported [8] and the main clinical characteristics are 

reported in the Supporting Data file. PTCs were diagnosed in individuals II-5, III- 3, and 

III-7 at the ages of 41, 27, and 11 years, respectively. 192 FNMTC patients included 

in the mutation screening came from the families collected between 1996 and 2012 

through the International Consortium for the Genetics of Non-Medullary Thyroid 

Carcinoma. 149 female patients and 43 males were included (age of onset: 11-84 yrs, 

mean age=42), thyroid cancer diagnosis as reported in Table S1.

WES analysis 

WES was performed on three individuals from the TCO family, two affected by 

thyroid carcinoma with oncocytic features (individuals II-3; III-7, Figure 1A) and one 

affected by adenoma (II-4), according to the pipeline reported in the Supporting Data 

file. Variants were confirmed by PCR and direct sequencing. 

Cell lines 

The FRTL-5 cell line is a stable thyroid cell line derived from normal thyroid glands 

from 5 to 6-week-old Fisher rats [9]. All cells were cultured in 6H5 medium 

consisting of Coon's modified Ham's F12 medium (Sigma-Aldrich, St. Louis, MO, 

USA) supplemented with 5% newborn calf serum (NCS) (Sigma-Aldrich), 1 µg/ml 

insulin, 10 nM hydrocortisone, 5 µg/ml apo-transferrin, 10 ng/ml gly-his-lys, 10 ng/

ml somatostatin, 1 mU/ml TSH (Sigma-Aldrich, St. Louis, MO, USA) and 
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penicillin/streptomycin (EuroClone, Milan, Italy). Cells were propagated in a fully 

humidified atmosphere of 5% CO2 at 37°C.  

COS7 cells derived from monkey kidney tissue were grown in DMEM, 10% fetal 

bovine serum, 2 mM L-glutamine, 100 U/ ml penicillin and 100 µg/ml streptomycin, 

in a humidified incubator at 37°C with 5% CO2. 

pCMV6-MYO1F p.134 G>S plasmid generation via site-directed mutagenesis  

The construct pCMV6 encoding wild-type MYO1F (RC207069) was purchased from 

OriGene (OriGene Technologies, Rockville, MD, USA) in frame with the tag DDK 

and containing neomycin resistance (G418) for stable selection. The mutation 

c.400G>A was inserted using the Q5 Site-direct Mutagenesis kit, according to the

manufacturer’s instruction (New England Biolabs, Ipswich, MA, USA) using the 

oligonucleotides forward 5′-AGGTGTCTGGCGGAAGCGAGAAGGTCCAG-3′ and 

reverse 5′-TGGAGATGTAGCCCATGATTATTTGGCT-3′. The site-directed 

mutagenesis was verified by plasmid direct sequencing. 

Generation of FRTL-5-stably transfected cell lines 

7.5 µg of pCMV6 empty, pCMV6-MYO1F-wt and pCMV6-MYO1F-G134S plasmids 

were transfected using liposomes according to the manufacturer’s instructions 

(Lipofectamine 2000, ThermoFisher Scientific, Grand Island, NY, USA). 48 hours 

after transfection, selection was obtained by supplementing complete medium with 

500 µg/ml G418 (ThermoFisher Scientific) for 2 weeks. Isolated clones were grown 

with 200 µg/ml G418.  

Western blot  

A detailed protocol is reported in the Supporting Information, including the list of 

primary antibodies used.  

Plate colony formation assay 
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2.5x10
4
 cells were seeded in duplicate and incubated for 20 days at 37°C. Cells were 

washed in PBS and fixed with cold Trichloroacetic acid (TCA) 50% at 4°C for 1h, 

then TCA was eliminated and cells were dried at room temperature for 16 hours. Cells 

were stained with SRB 0.4% in 1% acetic acid for 30 min, washed with 1% acetic 

acid 4 times and photographed with ChemiDoc™ XRS+ (Biorad). Area and number 

of colonies were quantified with the ImageJ software (National Institute of Health, 

Bethesda, MD, USA) discarding colonies <1 pixel. 

Soft agar colony assay 

Stable cell lines were seeded in triplicate in a 0.48% top agar in growth medium over 

a layer of 0.8% agar in a 6-well plate at a density of 1x10
5 

cells/ml. Plates were 

incubated at 37°C and 5% CO2 for 12 days, monitoring for colony formation. Medium 

was replaced every 5 days. After 12 days, colonies were photographed and analyzed 

with ImageJ software. 

Wound healing assay 

Stable cell lines were plated onto six-well plates and allowed to form a confluent 

monolayer. The cell monolayer was then scratched in a straight line to make a 

‘scratch wound’ with a 10-µl tip and the cell debris was removed by washing the cells 

with phosphate-buffered saline. 6H5 medium supplemented with 10% NCS and 200 

µg/ml of neomycin was added, and images of the closure of the scratch were captured 

at 0 and 7 days. Images were analyzed with the TScratch software [10]. 

Iodide transport 

Iodide uptake by FRTL-5 cells was measured by live cell imaging with the 

fluorescent halide biosensor YFP-H148Q/I15L, as previously described [11, 12].  

Mitochondrial morphology and mass assessment via live cell imaging  
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Mitochondrial morphology was assessed by live imaging, using a Nikon Eclipse 80 

microscope (Nikon, Tokio, Japan) according to [13]. Circularity measurements were 

collected using ImageJ standard tools. 

Mitochondrial mass measurements 

1x10
4 

FRTL-5-stable cell lines were seeded in quadruplicate in 96-well culture plates.

The next day, cells were loaded with 50 nM MTG for 30 minutes at 37°C in complete 

medium. After washing twice with medium, MTG fluorescence was recorded in a 

plate reader (EnSpire, PerkinElmer). MTG fluorescence values were expressed as 

RFU/viable cells. Cell viability was assessed with a resazurin-based method. 

Mitochondrial potential measurement via JC-1 

The fluorescent probe JC-1 (5, 5 ′ ,6, 6 ′ -tetrachloro-1, 1 ′ , 3, 3 ′ - 

tetraethylbenzimidazol carbocyanine iodide) was used to measure the mitochondrial 

membrane potential (∆φ), as described in the Supporting Data.  

Cellular respiration  

Oxygen consumption in intact cells 

∼1.5x10
6
 FRL5-stable cell lines were harvested at 70-80% confluence, washed in

PBS, re-suspended in complete medium and assayed for oxygen consumption at 30°C 

using a thermostatically controlled oxygraph chamber (Instech Mod. 203, Plymouth 

Meeting, PA, USA). Basal respiration was measured in their respective media and 

compared with the one obtained after injection of oligomycin (1 µM) and FCCP (1–6 

µM). Antimycin A (5 µM) was added at the end of experiments to completely block 

the mitochondrial respiration. Data were normalized to protein content determined by 

the Lowry method. 

ROS quantification  

Intracellular ROS 
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FRTL-5-stable cell lines were seeded at 5x10
4
 cells/well and incubated 16 hours.

Cells were treated with 10 µM DCFDA dissolved in medium for 1 hour. Then, cells 

were washed twice with PBS and incubated for 12 hours in complete medium. 

Finally, cells were washed with PBS and the fluorescence emission from each well 

was measured (λexc = 485 nm; λem = 535 nm) with a multi-plate reader (Enspire, 

Perkin Elmer). Data are reported as the mean ± standard deviation of at least three 

independent experiments. 

Extracellular ROS 

FRTL-5-stable cell lines were seeded at 5x10
4
 cells/well and incubated 16 hours.

Cells were treated with 10 µM Amplex red (N-acetyl-3,7-dihydroxyphenoxazine), 

0.025 U/ml HRP (horseradish peroxidase) dissolved in complete medium for 16 

hours. The medium was collected and measured (λexc 530, λem 590) with a 

multiplate reader (Enspire, Perkin Elmer). Data were normalized for cell number 

using resazuring assay. Data are reported as the mean ± standard deviation of at least 

three independent experiments.  

In vivo study of mutant MYO1F 

Zebrafish embryos and adults were maintained and mated according to standard 

procedures. Mutant and wild-type capped MYO1F mRNAs were synthesized with the 

SP6 mMESSAGE mMACHINE kit (Ambion, ThermoFisher Scientific) using as 

template the PCS2+MYO1F-G134S and PCS2+MYO1F-wt plasmids respectively. 

Wild-type zebrafish embryos were injected at one-cell stage with 150 pg of MYO1F-

wt or MYO1F-G134S mRNA and then fixed at 48 hpf. To determine the cell 

proliferation patterns, a whole-mount immunostaining with the anti-phospho-Histone 

H3 (pH3) antibody (Millipore, Darmstadt, Germany) was performed. We counted the 

mitotic cells along the trunk of each fish (from the yolk extension to the tip of the tail) 

International Journal of Cancer
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and calculated the average number of pH3 positive cells per embryos to compare the 

difference among groups. Statistical analysis was performed using Student’s unpaired 

t-test. Differences were considered significant for p < 0.05.

MYO1F mutation screening in FNMTC pedigrees 

PCR primers for human MYO1F (NM_012335) were designed with Primer3 v4.0 

(http://primer3.ut.ee) and are available on request. Genomic DNA extracted from 

peripheral blood was amplified according to standard PCR conditions and PCR 

products were analyzed by direct sequencing, as reported in the Supporting Data file.  

P1 pAltermax MYO1F exon 7-minigene generation  

PCR of MYO1F genomic region encompassing exons 7 and 8 was performed using 

primer forward 5’ GGGGAATTCAGAAGGGAAGAGAGGCAAGG-3’, inserting an 

EcoRI restriction site, and primer reverse 5’-

CCCTCTAGAAACTCAGGAGGGTTTCTGGG-3’, inserting an XbaI restriction site 

from a heterozygous carrier. We generated the mini-gene reporter as previously 

described [5]. The PCR products were cloned into the digested P1 pAltermax and 

plasmids sequenced in order to identify the plasmids with the wt or the variant alleles 

and the splicing alteration analysis was described as reported in [5] and in the 

Supporting Data.

Structural modelling 

Modelling of the protein structure was performed adopting a building obtained by 

comparison procedures based on MODELLER (https://salilab.org/modeller/). The 

template was MYO1C_HUMAN (PDB code: 4BYF_A), and the final structural 

superimposition indicated a 45% sequence identity among the computed and 

experimental structures. Given the coverage of the template to the target, modelling 

Page 11 of 37 International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

was possible in the protein region spanning amino acids 16-714. From structural 

superimposition, it was also possible to locate the ATP-binding domain. 

Statistical analysis 

Statistical analyses were performed using the one-way analysis of variance (ANOVA) 

with Tukey’s Multiple Comparison test. All tests were completed using Prism 

(GraphPad, San Diego, CA, USA). A p < 0.05 was considered statistically significant. 

All experiments were carried out at least in triplicates. 

Results 

Identification of a novel missense mutation in MYO1F conferring tumor-like 

properties to thyroid cells 

WES was performed in three members of the original TCO family where the linkage 

locus was identified [8] (II-3, II-4, III-7; Figure 1A), in two individuals affected by 

thyroid carcinoma and one affected by thyroid adenoma, all with oncocytic features. 

All variants were queried with ANNOVAR and filtered based on dbSNP database 

annotation. Potentially deleterious mutations were selected according to their 

functional class, and prioritization was given to those lying in the chr19p13.2 linkage 

region and present in all three cases. A unique novel heterozygous variant in the 

linkage interval shared by all 3 individuals fulfilled the criteria for pathogenicity: the 

mutation c.400G>A in MYO1F cDNA (NM_012335), leading to a missense 

p.134G>S substitution, predicted to be damaging by PolyPhen-2 and Provean (Table

S2), not present in the NHLBI Exome Sequencing Project (ESP) or in Exome 

Aggregation (ExAc) databases, and absent from 1000 in-house control chromosomes. 

The variant co-segregated with the carcinoma/adenoma phenotype in the family and 

appeared to be a likely candidate for the NMTC gene residing at 19p13.2 (Figure 1A). 
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MYO1F consists of 28 exons encoding a 1098-amino-acid protein of the class of 

unconventional myosins [14]. The p.134G>S amino acid change resides in a very well 

conserved position in the ATP-binding domain of the protein. Since thyroid tumor 

tissue from patients was not available for additional studies, we generated cell models 

stably expressing the wild-type (wt) or mutant MYO1F (mut) after transfection with 

the corresponding episomal plasmids, and a control cell line stably expressing the 

corresponding empty vector, pCMV6, via G418 selection. We used highly 

differentiated and functional FRTL-5 rat thyroid cell line [9] in order to reveal 

dominant-negative effects of the MYO1F variant. The p.134G>S mutation was 

inserted by site-directed mutagenesis in the construct encoding wt MYO1F in frame 

with the DDK tag. Western blotting with anti-DDK antibody in stably transfected 

cells showed that both wt and mut proteins were expressed in similar amounts (Figure 

1B). Stable cell lines expressing either the wt or the mut MYO1F protein were tested 

for their tumorigenic potential in comparison with cells transfected with the empty 

vector. A significant increase in the number of colonies in anchorage-dependent and 

independent growth was observed in mut cells, compared to cells expressing either 

the empty vector or the wt recombinant protein (one-way ANOVA p < 0.0001, 

Figures 1C and 1D). Anchorage-independent growth was monitored as colony 

formation in soft agar. Mutant MYO1F-expressing cells showed a significant increase 

in colony formation in soft agar, compared to cells stably transfected with the wt 

protein or the empty vector (ordinary one-way ANOVA p=0.0005; Figure 1D, lower 

panel).  

The wound-healing assay showed that mutant cells had a significantly greater 

invasive potential after 7 days in culture, compared to cells stably transfected with the 
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empty vector or the wt protein, as quantified with TScratch software [10], (ordinary 

one-way ANOVA p=0.0024; Figure 1E).  

In order to relate the observed changes in growth to the activation of specific cellular 

pathways, we investigated different kinases with key roles in cell proliferation and 

migration, including Akt and ERK1/2. We found a specific increase in the 

phosphorylation of ERK1/2 kinases in cells expressing the mutant protein, in 

particular for the p42 isoforms (Figures 1F, G; p=0.0042, empty vs pCMV6 MYO1F 

G134S). Taken together, these findings support a role for the MYO1F mutation in the 

modulation of tumorigenic potential in vitro (i.e. in the modulation of proliferation 

and invasivity). 

Mutant MYO1F p.134G>S stimulates proliferation in zebrafish embryos 

In order to analyze the pro-proliferative function of MYO1F in-vivo, we evaluated the 

effects of the human p.134G>S MYO1F protein in zebrafish (Danio rerio) embryos. 

The zebrafish genome encodes a single myo1f orthologue (GenBank ref seq. 

NM_001256671.2; NP_001243600.1), with 85% similarity and 76% identity at amino 

acidic level to human MYO1F. Notably, the position corresponding to human Glycine 

134 is conserved in the zebrafish Myo1f protein, indicating a putative functional role 

of this aminoacidic residue (Figure S2). 

To test whether the mutant MYO1F variant can induce cell proliferation in vivo, one- 

cell stage embryos were injected with either wild type or p.134G>S MYO1F mutated 

mRNA. At 48 hours post fertilizations (hpf) the injected embryos were fixed and 

stained with antibodies against phospho-histone H3 (pH3), a widely used marker to 

reveal cell mitosis in zebrafish [15-17]. Embryos injected with the mutant mRNA 

showed a significant increase in the number of pH3-positive cells, compared to their 

siblings injected with the MYO1F wild-type allele (Figures 2A, B). In particular we 
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observed an increased number of mitotic cells, especially in the caudal region (p- 

value < 0.0001, Figure 2C) indicating that, when ubiquitously expressed, the MYO1F 

mutant protein can induce proliferation also in zebrafish embryos. 

Iodide influx is not altered by the mutation MYO1F p.134G>S 

FRTL-5 cells are highly differentiated thyroid cells and a suitable model to measure 

iodide transport in vitro. We measured iodide uptake by live cell imaging after 

transient transfection with a vector encoding YFP-H148Q/I152L, a modified yellow 

Fluorescent Protein (YFP) whose fluorescence is quenched by I
-
 in a concentration- 

dependent manner [11, 12].
 
We did not detect any differences in I

-
 uptake between the 

different cell lines (one-way ANOVA p=0.4816; Figures S1A, B). 

The mutation MYO1F p.134G>S alters the mitochondrial network  

Since the oncocytic phenotype is characterized by mitochondrial hyperplasia in the 

tumors of affected individuals of the TCO family [8], we analyzed the mitochondrial 

network of stably-transfected FRTL-5 cells by live-cell microscopy using the 

MitoTracker Green probe. Mitochondria in the mutant cell lines appeared more 

fragmented compared to mitochondria in wt and empty cell lines (Figure 3A), as 

shown by the significant increase in circularity value of mutant cells mitochondria 

when compared to wt and empty cell mitochondria (Figure 3B). The total 

mitochondrial mass was significantly greater in mutant cell lines, as determined by 

MitoTracker fluorescence quantification, normalized for cell viability using a 

resazurin-based assay (ordinary one-way ANOVA p<0.0001; Figure 3C). Since an 

impaired mitochondrial network may alter mitochondrial function, we measured the 

mitochondrial membrane potential and oxidative phosphorylation (OXPHOS) activity of 

the different cell lines. The mitochondrial membrane potential was measured with the 

probe JC-1 [18, 19], and normalized for cell viability using a resazurin-based 
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assay. No differences were found between empty vector-expressing cells, wt and 

mutant cells (one-way ANOVA p=0.0720; Figure 3D). Concurrently, there were no 

differences in respiratory activity between the different cell lines under basal 

conditions (one-way ANOVA p=0.5014, Figure 3E) and in the ratio of 

FCCP/oligomycin-treated cells (one-way ANOVA p=0.3900; Figure 3F). 

Extracellular lactate measurement
 
also showed no changes between the different cell 

lines (ordinary one-way ANOVA p=0.4069; Figure S3A). 

Reactive Oxygen Species (ROS) are elevated in FRTL-5 cells expressing MYO1F 

p.134G>S

Since differentiated thyroid cells produce a great amount of H2O2 necessary for 

thyroid hormone synthesis [20], we investigated whether ROS production in 

transfected FRTL-5 cell lines was deranged by the MYO1F mutation.  

Intracellular ROS levels, measured with the fluorescent probe DCF-DA, were 

significantly increased in the mutant cells (one-way ANOVA p= 0.0015, Figure 4A). 

To understand whether this phenomenon was due to alterations/decreases of 

intracellular ROS detoxifying enzymes, we performed western blotting analysis of 

catalase, SOD2 (mitochondrial Manganese Superoxide Dismutase) and Peredoxin-3 

(Prx3), using GAPDH as endogenous reference. The steady state levels of the 

analyzed proteins were not significantly different between all cell lines (Figure 4B 

and Figures S4A-C; one-way ANOVA p=0.1328 for catalase, p=0.8592 for SOD2, 

p=0.6837 for Prx3). 

In order to measure extracellular ROS, we used the fluorescent probe Amplex Red, 

which is unable to cross the plasma-membrane. In this case we observed a 

significantly higher amount of extracellular ROS in mutant cell lines, compared to the 

empty vector-transfected cells and the wt ones. Moreover, we detected, a significant 
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decrease in extracellular ROS in the cells expressing MYO1F wt, when compared to 

the empty vector (one-way ANOVA p=0.0004; pCMV6-empty vs pCMV6-MYO1F 

wt p<0.05; pCMV6-MYO1F wt vs pCMV6-MYO1F G134S p<0.001; Figure 4C). 

Mutation screening of human MYO1F in FNMTC patients 

In order to identify additional patients carrying predisposing germline mutations in 

MYO1F, we performed a mutation screening via Sanger sequencing of genomic DNA 

from peripheral blood of 192 independent FNMTC cases. These patients represented a 

heterogeneous group of cases affected by PTC/FTC, but oncocytic features were not 

always investigated and these data were available only for a small subgroup of 

patients (Table S1). Nevertheless, we identified several rare/novel coding variants in 

MYO1F (Table 1), including a rare silent change in exon 7, that was present in both 

the affected individuals of the corresponding family, from whom DNA was available 

(Figure S5A). This change potentially removed an exonic sequence enhancer (ESE) in 

exon 7, as predicted by the ESE Finder v3.0 program (Figure S5B). The change, 

corresponding to the genomic coordinates chr19:g.8616995C>T (rs184748543), has a 

M.A.F. (Minor Allele Frequency) of 0.003064 in the whole Exome Aggregation

database (ExAC), and a M.A.F. of 0.004166 in individuals of European ancestry. 

rs184748543 alters the inclusion of exon 7 in MYO1F transcript  

In order to study whether the exon 7 variant hampers the inclusion of this exon in the 

final MYO1F transcript, we generated a minigene plasmid carrying either the wt or 

mutant sequence, and transfected simian COS7 cells in order to study transcription 

(Figures 5A, B). RT-PCR with minigene-specific synthetic primers and direct 

sequencing revealed that the wt exon was correctly spliced, whereas the mutant 

transcript lacked exon 7 (Figure 5C). This altered transcript is predicted to produce a 

shorter MYO1F protein, with an in-frame deletion of 43 amino acids (G169-Q212) in 
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the motor domain of MYO1F, that may alter the structure of the ATP-binding domain 

in the molecular motor of MYO1F (residues 110-117 and 162-166; Figure 5D). 

Discussion 

The etiology of differentiated thyroid cancer is still poorly understood, but this type of 

cancer is influenced by both genetic and environmental factors. Large genome-wide 

case-control association studies have identified genetic variants conferring NMTC 

susceptibility in the general population [21-23]. A number of common SNPs have 

been reported to be associated with NMTC risk, but few studies have been conducted 

in high-risk NMTC families to examine the transmission of the risk allele to the 

affected members.  

In the present study, we report the identification of MYO1F as the gene mutated at the 

TCO locus. We provide functional evidence that the MYO1F p.134 G>S mutation 

leads to an increased oncogenic potential in vitro, in terms of cell growth and 

invasion. FRTL-5 cells, a cell model resembling a functional thyrocyte [9], stably 

transfected with the plasmid encoding mutant MYO1F p.134G>S generated 

significantly more colonies in soft agar and showed a significantly greater invasive 

potential compared to cells stably transfected with the empty vector or with wt 

MYO1F.  

These in vitro data were supported by in vivo findings in zebrafish, showing that the 

mutant MYO1F p.134G>S, when overexpressed, can induce proliferation in whole 

vertebrate embryos, supporting the idea that the novel missense change identified in 

exon 5 of MYO1F is the causative mutation at the TCO locus.  

The TCO locus in the original pedigree was associated with an oncocytic phenotype, 

i.e. enriched in mitochondria [8]. Previous work by our group uncovered a tight 

correlation between the co-occurrence of mitochondrial DNA (mtDNA) alterations in 
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oncocytic thyroid cancer, and a marked dysfunction of OXPHOS complexes, in 

particular complex I [24-26]. Since thyroid follicular cells generate H2O2 by 

membrane-bound dual oxidases for the synthesis of thyroid hormones, these cells are 

at increased risk of oxidative stress and ROS-mediated DNA damage. Indeed, an 

imbalance between pro- and anti-oxidative factors has been suggested as an important 

mechanism in thyroid tumorigenesis [20,27]. Oxidative stress generated by 

mitochondrial dysfunction can also promote migration and stimulate MAPK-mediated 

cell death. We therefore sought to evaluate: i) the functionality of the mitochondrial 

respiratory chain as a whole; ii) the response to oxidative stress of FRTL-5 cells 

stably expressing the wt or mutant recombinant MYO1F protein, compared to cells 

expressing the empty-vector. We found that the mitochondrial membrane potential 

and OXPHOS activities were similar in all cell lines, suggesting that mitochondria 

were still functional. However, analysis of the mitochondrial network by live-cell 

visualization revealed that in the mutant cell lines, mitochondria appeared as 

separated rod-shaped organelles. The mitochondrial features of mutant MYO1F cells 

were therefore reminiscent of the oncocytic features described previously in the tumor 

tissues of the patients carrying the p.134G>S change [8]. 

In our experimental setting, we found that cells with the MYO1F p.134 G>S 

mutation, in addition to having an altered mitochondrial network, produced 

significantly more intracellular and extracellular ROS. It has been reported that the 

establishment and maintenance of a transformed state is related to the presence of 

extracellular ROS, in particular superoxide anion generated by a specific membrane- 

associated NADPH-oxidase, NOX1 [28]. In fact, oncogenic activation of 

proliferative/mitogenic pathways has been associated with increased ROS production 

due to activation of the membrane-bound NADPH oxidases [29]. Extensive analysis 
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of tumor cell lines derived from different tissues, including thyroid carcinomas, has 

shown that they were all characterized by extracellular ROS generation, not found in 

cells derived from normal tissues [30]. This is paralleled by our findings, since 

extracellular ROS production was increased only in FRTL-5 cells expressing the 

mutant MYO1F p.134G>S protein, suggesting that the mutation is sufficient to 

generate a transformed phenotype.  

Since the “mitochondria-rich” phenotype may be under-reported by histologic 

analysis [25], we screened additional FNMTC patients in order to identify other 

MYO1F germline variants that could predispose to thyroid tumor development. 

However, the available samples represented a heterogeneous group of familial cases 

affected by NMTC, and the high genetic heterogeneity of thyroid cancer could have 

hampered the discovery of a number of additional predisposing variants. Indeed, only 

a rare variant identified in two affected sibs in exon 7 may have a damaging role, 

since it promotes the skipping of the exon from mature mRNA. Although the allele 

frequency of this variant was not significantly different from the one present in ExAc 

public database, it may act as a predisposing risk allele with variable penetrance, as 

recently shown for in-frame USF3 variants in differentiated thyroid cancer [31].  

Since no RNA from fresh or formalin-embedded tissues from these patients were 

available, to evaluate the in vivo expression of the transcript we performed in vitro 

analysis using a splicing minigene [5], confirming the exon 7 skipping. The altered 

transcript generated an in-frame deletion of 43 amino acids in the ATP-binding 

domain of MYO1F, while retaining the F (filamentous) actin-binding module. F-actin 

is one of the few known interactors of MYO1F [14] and has been recently implicated 

in mitochondrial fission control [32]. Blockade of F-actin polymerization / 

depolymerization altered the mitochondrial network [33]. Structural modeling 
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predicts that MYO1F exon 7 skipping would modify the structure of the ATP binding 

site. Similarly to what has been observed in other autosomal dominant disorders due 

to mutations in myosin genes, such as MYH9 [34,35], the modified conformation of 

MYO1F may block actin filament recycling, therefore concurrently altering the 

mitochondrial network organization, as observed for the G134S mutation. 

 Our study shows that defective MYO1F promotes the development of an oncocytic 

phenotype, i.e. mitochondrial proliferation, indicating that this cellular characteristic 

can develop not only from mitochondrial DNA defects [24-26], but also from nuclear 

defects in specific genes, i.e. MYO1F. Mitochondrial dysfunction and stress has been 

widely related to cancer, in particular in thyroid cancer predisposition [36, 37]. More 

broadly, an altered mitochondrial function is a hallmark of many cancers, although the 

nature of functional modification depends on the type of cancer [38]. Recent data 

have shown the contribution of mitochondrial dynamics towards tumor initiation and 

progression, although the exact mechanism is not known. Excessive fission and 

reduced fusion is a feature of many tumors [39-41]. For example, in human pancreatic 

cancer, expression of oncogenic Ras / activation of MAPK pathway induces ERK2- 

mediated Drp1 phosphorylation leading to increased mitochondrial fragmentation 

[42]. Moreover, inhibition of this phosphorylation in xenografts is sufficient to block 

tumor growth [42]. It is becoming increasingly clear that mitochondrial fission and 

fusion play a critical role in quality control and mitochondrial damage/repair in 

cancer. Therefore, our data showing a fragmented mitochondrial network due to 

MYO1F p.134G>S mutation highlight a potential novel pathway that may be 

deranged in thyroid cancer, i.e. an altered myosin/F-actin regulated interaction [14].  
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To date, no other mutations have been reported in myosin-encoding genes in thyroid 

cancer, however it is interesting that MYH9, a non-muscle myosin involved in 

sensorineural deafness and thrombocytopenia [35], has recently been found to 

regulate the ncRNA genes PTCSC2 and FOXE1 at the 9q22 thyroid cancer 

susceptibility locus [43]. In the TCGA database, somatic mutations in MYO1F are 

reported in 352 cases from various cancer types (Supplementary Figure S6A). The 

mutation identified at the TCO locus p.134G>S was not reported. In the COSMIC 

database several mutations are present in MYO1F in different types of cancer 

(Supplementary Figure S6B), but only a somatic variant is reported in thyroid 

carcinoma (COSM4132813). However, MYO1F overexpression was reported in 

24/513 (4.68%) cases (Supplementary Figure S6C). These and our data suggest that 

MYO1F dysregulation may predispose to cancer in a subgroup of cases. Indeed, the 

oncocytic phenotype, observed in the family with the p.134G>S mutation, represents 

a specific, though rare, group of thyroid neoplasms, in which MYO1F mutation 

screening may be more relevant than in other NMTC cancer cases. The identification 

of the molecular cause(s) of specific thyroid cancer subtypes will help tailor patients’ 

treatment for a more personalized therapy.  
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Table 1: Rare coding variants identified in MYO1F-targeted mutation screening 

Chr19 

genomic 

position 

(hg19) 

Amino acid change 

(NP_036467) 

M.A.F in

famNMTC

(N=192) 

M.A.F. in ExAc

g.8616995

C>T

rs184748543

p.186K=
a

0.0026
b

0.003064 

g.8615552C>T

rs201962739
p.266P= 0.0026 0.0012 

g.8615513C>G p.368G=
a

0.0026
c

0 

g.8610599G>T p.430I= 0.0026 0 

g.8587411C>T

rs201982814
p.1024V>M 0.0026

d
0.007326 

a) SNV not changing the corresponding amino acid, but with an altered ESE

(Exonic Sequence Enhancer) profile compared to wild-type cDNA, and

removing SR-binding domains.

b) SNV co-segregating with the NMTC phenotype in the available members of

the corresponding family.

c) SNV not segregating with the NMTC phenotype in the corresponding

families.

d) Missense variant predicted to be “benign” (PolyPhen-2) and “tolerated”

(SIFT).

Figure Legends 

Figure 1. Study of MYO1F p.134G>S variant. (A) Pedigree of the TCO family: 

electropherograms of the sequences of available family members, showing the co-

segregation of the change (in red) with the oncocytic carcinoma (black)/adenoma 

(grey) phenotype. (B-F) Functional analysis of the MYO1F p.134G>S variant. All 

experiments were repeated at least three times. (B) Western blot analysis showing the 

recombinant MYO1F protein in stably expressing FRTL-5 cells, using a specific anti-

DDK antibody. (C) SRB assay showed a significant increase in the number of 

colonies formed by FRTL-5 expressing the mutant MYO1F protein, compared to cells 
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expressing either the empty vector or the wt protein (D) Growth in soft agar: FRTL-5 

cells expressing the MYO1F mutant protein p.134G>S significantly generated more 

colonies, compared to the empty and the cells expressing the wt protein. (E) Wound 

healing assay: FRTL-5 cells expressing the MYO1F mutant protein p.134G>S filled 

the gap significantly faster compare to the other two cell lines. (F, G) Western blotting 

analysis of ERK1/2 phosphorylation in the three cell lines and densitometric 

quantification. 

Figure 2. Proliferation analysis in zebrafish overexpressing either wild-type or 

mutant MYO1F p.134G>S: (A-B) Immunostaining of Phospho-histone H3 (pH3) 

performed in 48 hpf  zebrafish larvae. An increase of cell proliferation can be observed 

in embryos injected with mutant MYO1F mRNA compared with embryos injected with 

the wild-type transcript of MYO1F. C) Quantification of pH3 -positive cells in injected 

embryos (48 hpf) was performed counting the number of mitotic cells along the trunk of 

each fish.  For each group, 22 embryos were analyzed 

(MYO1F_MUT: 25.45 ± 2.584; MYO1F_WT: 8.727 ± 1.445 ).  ***P < 0.001, Student’s 

unpaired t-test. 

Figure 3. Mitochondrial defects in FRTL-5- MYO1F p.134G>S cells.  

(A) Representative fluorescence images of pCMV6-empty, pCMV6-MYOF wild type 

and pCMV6-MYOF G134-S treated with Mitotracker Green to evaluate 

mitochondrial network. The cells expressing the mutant protein show more circular 

(B) and more abundant (C) mitochondria and more fragmented mitochondrial network in 

comparison with wild type and cells bearing empty vector. MitoTracker signal 

quantification was normalized on viable cell number assessed by resazurin-based 

assay. (D) To evaluate the mitochondrial membrane potential cells were treated with 

JC-1 fluorescent probe. In (D) the quantification of aggregate/monomer signal of JC-1 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31 

International Journal of Cancer

normalized on viable cell number is shown. Cell viability was assessed by resazurin- 

based method. (E) Basal rate of oxygen consumption in pCMV6-empty, pCMV6- 

MYOF wild type and pCMV6-MYOF G134>S cells. (F) shows the ratio between 

oxygen consumption  in the presence of oligomycin and in the presence of FCCP 

(uncoupled respiration). 

Figure 4. ROS production. (A) Intracellular ROS production measured by DCFDA 

fluorescent probe. Data show a significant ROS production increase in the FRTL-5 

cells expressing MYO1F p.134G>S in comparison to wild type and cells bearing the 

empty pCMV6 vector. Data are expressed as arbitrary fluorescence units ± standard 

deviation, normalized on viable cell number. (B) Representative western blot analysis 

showing the expression of detoxifying enzymes (catalase, SOD2 and Prx3) in the 

three cell lines. GAPDH was used as endogenous loading control. (C) Extracellular 

ROS production measured by Amplex red fluorescent probe. Data show that FRTL-5 

cells expressing MYO1F p.134G>S presented the highest levels of extracellular ROS, 

whereas the cells expressing the wt protein presented a reduced amount of 

extracellular ROS. Data are expressed as arbitrary fluorescence units ± standard 

deviation normalized on viable cell number. Cell viability was assessed by resazurin- 

based method. 

Figure 5. MYO1F rs184748543. (A) Map of the minigene plasmid, showing the 

genomic insert of the wt and mutant alleles (red arrows). (Blue arrows= position of 

the primers used for the specific RT-PCR). (B) RT-PCR of COS7-transfected with the 

MYO1F allele-specific mini-genes. Upper panel: predicted final transcripts generated 

by the correct splicing of mini-gene-specific exons (blue) and MYO1F-specific exons 

(grey). Lower panel: 2% agarose gel image (left) of the RT-PCR products, showing 

the different sizes of the transcripts and corresponding electropherograms (right): the 
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wild-type MYO1F allele promoted the inclusion of the exon 7 in the final transcript, 

whereas the mutant allele induced an exon skipping in the final transcript, as predicted 

by the removal of the ESE in the exon 7. (D) Structure prediction of the MYO1F 

molecular motor region, with the ATP-binding region highlighted in green. In pink 

the residues corresponding to exon 7, in red the ion of magnesium.  
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Proliferation analysis in zebrafish overexpressing either wild-type or mutant MYO1F p.134G>S: (A-B) 
Immunostaining of Phospho-histone H3 (pH3) performed in 48 hpf  zebrafish larvae. An increase of cell 
proliferation can be observed in embryos injected with mutant MYO1F mRNA compared with embryos 

injected with the wild-type transcript of MYO1F. C) Quantification of pH3 -positive cells in injected embryos 
(48 hpf) was performed counting the number of mitotic cells along the trunk of each fish.  For each group, 
22 embryos were analyzed (MYO1F_MUT: 25.45 ± 2.584; MYO1F_WT: 8.727 ± 1.445 ).  ***P < 0.001, 

Student’s unpaired t-test. 
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Mitochondrial defects in FRTL-5- MYO1F p.134G>S cells. 
(A) Representative fluorescence images of pCMV6-empty, pCMV6-MYOF wild type and pCMV6-MYOF G134-S
treated with Mitotracker Green to evaluate mitochondrial network. The cells expressing the mutant protein

show more circular (B) and more abundant (C) mitochondria and more fragmented mitochondrial network in 
comparison with wild type and cells bearing empty vector. MitoTracker signal quantification was normalized

on viable cell number assessed by resazurin-based assay. (D) To evaluate the mitochondrial membrane 
potential cells were treated with JC-1 fluorescent probe. In (D) the quantification of aggregate/monomer 
signal of JC-1 normalized on viable cell number is shown. Cell viability was assessed by resazurin-based 

method. (E) Basal rate of oxygen consumption in pCMV6-empty, pCMV6-MYOF wild type and pCMV6-MYOF 
G134>S cells. (F) shows the ratio between oxygen consumption  in the presence of oligomycin and in the 

presence of FCCP (uncoupled respiration). 
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