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Abstract. We consider the existence and uniqueness of solutions of an initial boundary value
problem for a coupled system of PDEs arising in a model for Alzheimer’s disease. Apart from
reaction diffusion equations, the system contains a transport equation in a bounded interval for a
probability measure which is related to the malfunctioning of neurons. The main ingredients to
prove existence are the method of characteristics for the transport equation, a priori estimates for
solutions of the reaction diffusion equations, a variant of the classical contraction theorem, and the
Wiasserstein metric for the part concerning the probability measure. We stress that all hypotheses
on the data are not suggested by mathematical artifacts, but are naturally imposed by modeling
considerations. In particular the use of a probability measure is natural from a modeling point of
view. The nontrivial part of the analysis is the suitable combination of the various mathematical
tools, which is not quite routine and requires various technical adjustments.
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1. Introduction. In [3, 4] a macroscopic mathematical model was proposed
which describes the onset and evolution of Alzheimer’s disease (AD). This model is
meant to mirror the so-called amyloid cascade hypothesis [11, 15, 21], coupled with
the spreading of the disease through neuron-to-neuron transmission (prionoid hypoth-
esis [5, 23]). AD is the prevalent form of late life dementia. Its global prevalence,
about 24 millions in 2011, is expected to double in 20 years [19].

In order to clarify the structure of our equations and the choice of our assump-
tions, let us sketch a gist of their biological background. We refer to [3, 4] for a
complete description of the model and an account of the most recent biomedical lit-
erature. The model focuses on the role of the polymer beta-amyloid, in particular
its toxic soluble isoform AS,s. Monomers of Af4o are regularly produced by neurons
and successively cleared—among others—by the microglia. In the last decades, re-
searchers have observed that an imbalance between production and clearance of AB4o
(Ap from now on) is a very early, often initiating factor in AD. Soluble AS diffuses
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through the microscopic tortuosity of the brain tissue and undergoes an agglomeration
process. Eventually this leads to the formation of long, insoluble fibrils, accumulating
in spherical deposits known as senile plaques that are solid deposits of even larger
aggregates of AfS; nowadays, plaques are not considered neurotoxic, but are usually
abundantly present in the brain of AD patients (though they can be present in old
brains without any symptom of dementia). Plaques are clinically observable through
medical imaging using a special type of PET (positron emission tomography) scan.

Below we briefly describe the model. The main purpose of the present paper
is to establish its mathematical well-posedness. Mathematically, our model consists
of a transport equation coupled with a system of nonlinear diffusion equations (a
Smoluchowski-type system with diffusion). Due to the very nature of the biological
phenomena we are studying, the main feature of such a system is that the transport
velocity depends on the solution of the Smoluchowski equation, which, in turn, con-
tains a source term that depends on the solution of the transport equation, so that
the two groups of equations cannot be uncoupled. For an introduction to the use of
transport equations in mathematical models of life sciences, we refer the reader to [18].

Let us give a less cursory description of the system which we consider, from both
a mathematical and biomedical point of view. We do not enter the biological details
and merely mention those which are related to the structure of our equations. We
would like to stress that the equations of our model involve only functions that have a
precise qualitative clinical counterpart in routinely observable phenomena: the health
state of the different brain regions (by means of a PET measuring the cerebral glucose
metabolism), the amount of AS in the cerebral spinal fluid, and the AS plaques (by
means of amyloid-PET scans).

Let 2 C R™ be a portion of cerebral tissue. The molar concentration of soluble A
polymers of length m at z € Q and time ¢ > 0 is denoted by um,(z,t) (1 < m < N),
that of clusters of oligomers of length greater than or equal to N (the plaques) by
un(z,t). We use a parameter a, ranging from 0 to 1, to describe the degree of
malfunctioning of a neuron; a close to 0 stands for “the neuron is healthy” and a
close to 1 for “the neuron is dead.” Given z € Q and t > 0, f = f, + is a probability
measure and dfy +(a) denotes the fraction of neurons at = and time t with degree of
malfunctioning between a and a + da. The progression of AD is mainly determined
by the deterioration rate of the health state of the neurons, v = v, (a,t) > 0. We use
the notation v[f] to stress its dependence on f:

Ol Dalat) = |

Q

( K(z,a,y,b) df%t(b)) dy
(0,1]

+ S(z,a,ur(x,t),...,un—_1(z,1)).

(1)

The term & > 0 in (1) models the action of toxic A oligomers. For example,
assuming that the toxicity of soluble AS-polymers is proportional to their total mass
and introducing a threshold value U > 0 for the amount of toxic A needed to damage
neurons, a possible choice for § is

N-1

+
(2) S=0Cs(l—a) <Z My, (2, t) — U) , where p* := max{p,0};

m=1

see also [3] for a more detailed discussion.
The integral term in (1) describes the possible propagation of AD through the
neural pathway. Malfunctioning neighbors are harmful for a neuron’s health state,
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while healthy ones are not: K(z,a,y,b) >0 for all z,y € Q and a,b € [0, 1] and
K(z,a,y,b) =0 ifa>0b.

For the sake of simplicity we choose K(x,a,y,b) = G.(a,b)h(|x — y|), where h(r) is
a nonnegative and decreasing function which vanishes at some r = 7y and satisfies
ﬁme h(ly|) dy = 1. For instance, in [3] the following form of G, is used: G,(a, b) =
Cg(b — a)*, which does not depend explicitly on 2. In the limit rq — 0, (1) reduces
to

(3) (W[fDz(a,t) = o Gz(a,b)df +(b) + S(z,a,u1(z,t), ..., un—_1(z,1)).

We shall henceforth use (3) for the deterioration rate v[f].
In view of the meaning of the rate v, the equation for f is given by

(4) O f + Ba(folf]) = JIS]-

The term J[f] represents the onset of AD: we assume that in small (randomly cho-
sen) parts of the cerebral tissue, concentrated for instance in the hippocampus and
described by a characteristic function x(z,t), the degree of malfunctioning of neurons
randomly jumps to higher values due to external agents or genetic factors. More
precisely, (J[f])z+ denotes the measure

®)  dJ[fDe.rla) = n(t)x(z,t) K/[

P(t,b,a) dfz,t(b)> da — dfmyt(a)] ,

0,1]

where the function P(t,b,a) is the probability to jump from state b to state a (which
vanishes if a < b) and 7 > 0 is the jump frequency. A possible choice is

P(t,b,a) = P(b a):{ﬁ ifb<a<3(1+b),

0 otherwise.

It is worth stressing that the choice of looking for a measure f,: comes from the
model itself. In fact, a “healthy brain” would correspond to f:(a) = d(a), where &
is the Dirac measure centered at the origin.

Now we are ready to write the system of equations for f, uy,...,un:

(6)
O0f + Ba (folf)) = JIf] in % [0,1] x (0,7,
N
ehur —diAu; = Ry := —uq E a1,;uj + ]:[f] —oqu; in Qr = QX (O,T],
j=1
m—1

— 1
aatum — dmAum = Rm =3 Z Ajm—jUjUm—j
j=1

N
—Um Y A jUj — Oy, 0 Qr (2 <m < N),
i=1
edrun = % Yo ajpuug in Qr.
JHREN
k,j<N

Here ¢ > 0 is a small parameter which expresses the existence of two time scales:
processes which determine the dynamics of AS (production, aggregation, diffusion,
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deposition) occur on a much smaller time scale (hours) than the evolution of the
disease (years). The diffusion coefficients d,,, depend on the length of the polymer
(longer polymers diffuse less); plaques do not diffuse. The quadratic terms (in w;)
model the aggregation of A5 polymers, according to the Smoluchowski equations.
We refer to [1, 10] for an extensive discussion of the aggregation mechanism and the
choice of the coagulation rates a; ;. The linear terms —o,,u,, model the phagocytic
activity of the microglia and other bulk clearance processes [14].

We stress that system (6) is fully coupled, because the transport equation for f
contains a dependence on w1, ..., uy—_1 in the deterioration rate v[f]; cf. (3). Notice
that if S = 0 in (3), then the equation for f decouples from the rest of the system and
may be possibly studied alone by relying on the results reported in [6, 7]. Nevertheless,
the assumption & = 0 is not a minor issue in the modeling of AD spreading, because
it would imply a propagation of the disease due only to prionic diffusion, which is a
controversial topic in the medical literature. For this reason, in our model we prefer
to also take into account the toxic contribution of Af oligomers, i.e., S # 0 in (3),
which requires one to study system (6) as a whole.

AS monomers are produced by neurons. Their production increases if neurons
are damaged, and a possible choice for the source term F in the equation for u; is

(7) Flfl@,t) = Cx / (1o + a)(1 — a) df» 4(a).

The small constant po > 0 accounts for AS production by healthy neurons.

We assume that 0f) consists of smooth disjunct boundaries, 0Qy and 921, where
0 represents the disjunct union of the boundaries of the cerebral ventricles through
which AfS is removed from the cerebrospinal fluid by an outward flow through the
choroid plexus (cf. [14, 22]). In the present paper we solve system (6) with appropriate
initial boundary conditions:

fr,O = (fO)z ifz €,
(8) ui(x,0) = ug; () ifre, 1<i<N,
Onui(z,t) =0 ifzedQy, t>0,1<i<N,

Onui(z,t) = —yui(z,t) ifxed, t>0, 1<i<N,

where n is the outward pointing normal on 0f2.

In section 2 we describe the hypotheses on the data and formulate the main result
on global well-posedness. In section 3 we rewrite the system in terms of the character-
istics of the transport equation for f and show that the new system is equivalent to the
original one. We point out that under our assumptions the characteristics exist in the
classical sense. The major difficulty arises from the strong nonlinearity of the system:
the transport equation depends nonlinearly on both its solution (through an integral
operator) and the solution of the Smoluchowski system, which in turn depends on
the solution of the transport equation. In section 4 we use a contraction argument to
prove local existence and uniqueness; not surprisingly, the metric for the probability
measures f will involve Wasserstein distances. The fact that the Wasserstein distance
Wi depends on the action of the measures on Lipschitz functions yields a technical
difficulty when we try to apply an iteration argument in order to obtain the local ex-
istence of a solution. This difficulty can be bypassed thanks to an ad hoc formulation
of the standard fixed point theorem. Finally, in section 5 we prove a priori bounds
which imply global existence. In Appendix A we collect some technical facts about
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probability measures and Wasserstein distances to make this paper as self-consistent
as possible.

We conclude with some comments.

For more details on the model we refer to [3], which also contains some two-
dimensional simulations and qualitative comparison with experimental data. A deriva-
tion of the transport equation for f from a Boltzmann-type kinetic approach is con-
tained in [4].

The macroscopic model which we have briefly described and, in particular, the
use of the Smoluchowski equations to model the aggregation of Af, is based on an
earlier microscopical model described in [1, 10]. The passage from that microscopic
aggregation-diffusion model to Smoluchowski equations with a source term as in (6)
is obtained by a two-scale homogenization technique in [8, 9].

For the moment the model deliberately neglects some important aspects of the
disease such as the role of the tau protein, but in a future paper we shall extend
the model and make it more realistic. Nevertheless, the term G in the deterioration
rate for the equation of f can already be thought of as taking into account a “pri-
onic” model of the spread of the disease, and associated with the diffusion of the
intraneural tau protein (see, e,g., [13, 23]). Despite the extreme complexity of AD,
mathematically such an extension is doable due to the high degree of flexibility of the
modeling approach. The major difficulty is the lack of both experimental data and de-
tailed knowledge about the relevant biomedical processes, but fortunately biomedical
research on AD evolves rapidly.

In this context we also mention a recent paper by Hao and Friedman [12], which
does take into account a higher degree of AD’s complexity and contains simulations of
medical therapies; the authors, however, do not consider AD’s initial stage. A major
challenge is how to diagnose AD’s early stage and develop therapies to slow down its
further development.

2. Problem statement and main results. Throughout the paper we set T' >
0, N € N, while  C R” is an open and bounded set with a smooth boundary 92,
which is the disjunct union of 02y and 0.

To treat the measures f,; we introduce a metric space Xg 1

DEFINITION 2.1. The space P([0,1]) of probability measures on [0, 1] endowed with
the Wasserstein distance Wi is denoted by Xo 1)-

We refer to [2] for the definition of the Wasserstein distances W,. By Proposition
A.3, Xjp,1) is a complete separable metric space. By Proposition A.7, a sequence
(Mn)nen converges in X|g q) if and only if it converges narrowly or weakly™.

We denote by C([0,T7; X[o,1)) the space of continuous functions from the interval
[0,T] to X|o,1). Endowed with the distance

ogl{agXT Wi (1), (2)e),

C([0,T7; X[o,1)) is also a complete metric space.

2.1. Hypotheses on the data. Throughout the paper we shall use the follow-
ing assumptions on the data (below 9., V,, etc., denote distributional derivatives; C
denotes a generic constant):
(H1) €,Cr, po,d;, 04,7, a; j are positive constants (1 <i < N, 1< j < N);
(Hz) ugi € C(Q) is nonnegative (i = 1,...,N), and (fo)z € X[o,1) for a.e. z € Q;
(H3) x is the characteristic function of a measurable set Qo C Qr = Q2 x [0,T7]; the
function n € C([0,T]) is nonnegative;
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(Hy) forae.z€Q, G, eC ([O, 1]2), G.(1,b) =0 for b € [0,1], and
(9) —C <04G: <0, 0G| <C in [0,1)%

(Hs) S € L™ (2;C ([0,1] x [0,00)Y 1)), S(z, 1, u1, ..., un—1) = 0 for u; > 0 and
a.e. x € €2, and for all compact sets K C [0,00)V~! there exists a constant
C(K) such that for a.e. x € Q
(10)

— C(K) < 0,8(z,a,u) <0, |[V,S(z,a,u)] <C(K) forac|0,1],ue K;

(Hg) P € C([0,T] x [0,1]?), P is nonnegative for all ¢ € [0, T
1
(11) / P(t,b,a)da=1 forbel0,1], P(t,b,a) =0 ifa <,
0

and there exists L > 0 such that, for all a’,a”,b',6"” € [0,1] and ¢ € [0, T]
(12) |P(t,b',a") — P(t,b",a")| < L (|t —b"|+ |a —a"]).

2.2. Main result. We introduce some additional notation. Let M(0, 1) be the
space of signed Radon measures on the interval (0,1). Then M(0,1) is the dual of
C([0,1]), and p : Q x (0,T) — M(0,1) is said to be weakly* measurable if for any
p € C([0,1]) the map

(13) (@)~ [ pla)disit)
is measurable in Q x (0,7). We say that
fe L& C(00,T]; Xpo,17)

if f e C([0,T]; X[o,17)) for a.e. # € Q and f is weakly” measurable as a function
from Q x (0,7) in M(0,1). In particular, if f € L(Q;C([0,T]; X[9,1])), then, by the
Fubini-Tonelli theorem, for all ¢ € C([0,1] x Q x [0,77)

T
x |—>/ </w(a,a:,t) dfz,t(a)> dt belongs to L*(Q).
0

DEFINITION 2.2. An (N + 1)-ple (f,u1,...,un) is called a solution of problem
(6)(8) in [0, T] if

(i) f e L& C(0,T]; Xpo,);
(ii) u; € C(Qp) and u; > 0 in Qr for 1 <i < N;
(iii) the first equation in (6) is satisfied in a weak sense: for a.e. x € §)

/OT (/(Bﬂbﬂmaaaﬁ) df 1 +/¢de¢) dt = /¢(.,T) dfw)T—/qs(.’O) d(fo)s

for all T € [0,T] and ¢ € C*([0,1] x [0,T]), where the function v is defined
by (3) and the signed measure J by (5);
(iv) if 1 <i< N, u; € L*([0,T); HY(Q)) and

“ | ' [t Vot s+ [ e $)doa)| as

:5//QTuiwt—i—a/ﬂuol»w(x,O)dx—i—/QTRW

(14)
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for all € HY([0,7]; HY (), ¥(z,7) = 0, where R; is defined as in (6) and
F (which is part of Ry) by (7);

(v) dwun € C(Qr), un(-,0) = uon in Q, and the equation for uy in (6) is
satisfied in Q.

Remark 2.3. (a) It follows from (5) and (Hg) that, for a.e. z € Q, [dJ,; = 0
for t € [0,T]. (b) The concept of weak solution of the first order transport equation,
defined in Definition 2.2(iii), needs some explanation. It follows from (9)—(10) that,
for a.e. € Q, v is uniformly Lipschitz continuous with respect to a:

(15)  Ouvg(a,t) = 0.G(x,a,b) df 5 1 (b) + 0,8(z, a, uq(z,t),. .., un_1(z,t)) <O0.
[0,1]

In particular it follows from (Hs—Hj) that, for a.e. x € Q, v, (1,¢) = 0 for t € [0, T
and vy (a,t) > 0 for a € [0,1] and ¢ € [0,7]. This implies that formally the “flux”
fv vanishes at @ = 1, a condition which is made precise by the choice of continuous
test functions ¢(zx,a,t) without any restriction at @ = 1. Since v > 0 at a = 0,
characteristics (see the next section) “enter the domain [0,1]” at a = 0; so we need
a boundary condition at @ = 0 which, according to Definition 2.2(iii), is again the
no-flux condition. Actually this is imposed by the condition that f,  is a probability
measure in [0, 1]: choosing ¢ = 1 it follows from Definition 2.2(iii) and Remark 2.3(a)
that for a.e. x € Q)

[t = [t =1 wrre .

The main result of the paper is the following well-posedness result.

THEOREM 2.4. Let Q C R™ be an open and bounded set with a smooth boundary
09, which is the disjunct union of 0Qy and 0. Let T > 0 and N € N, and let
hypotheses (H1—Hg) be satisfied. Then problem (6)—(8) has a unique solution in [0,T)]
in the sense of Definition 2.2.

3. The characteristics. Let f € £(Q; C([0,T]; X[o,11)) and u; € C(Qr), and let
v[f] be defined by (3). By the Lipschitz continuity of a — v, (a,t) (see Remark 2.3(b)),
for a.e. © € Q the problem for the characteristic issued from y € [0, 1],

(16) Az (y,t) = v (Ax(y,t),t) for0<t <T,
Aa(y,0) =,

has a unique solution which satisfies

(17) 0< Aw(yl,t) < Aw(yg,t) < Aw(l,t) =1 ifo< 1 <Yz < 1,0<t< T,
Ax(y,t1) < Ae(y,t2) ifye0,1,0<t; <ty <T.

Observe that, for a.e. x € , the function y — A, (y,t) is continuous and

t
(18) Oy Az (y,t) = exp </ O0avz(Ag(y, 5), 5) ds) >0 foralltel0T].
0

In particular for a.e. x € © the function y — A, (y,t) is injective for all ¢ € [0, T].
Below we shall reformulate problem (6)—(8) in terms of the characteristics, but
before doing so we prove the following result.
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PROPOSITION 3.1. Let f € L(;C([0,T]; X(0,1)) and u; € C(Qp). Let v[f] and
J[f] be defined by (3) and (5). Let, for a.e. x € Q, Ay(y,t) be the solution of (16) for
anyy € [0,1]. If f satisfies (4) in the sense of Definition 2.2 (iii), then, for a.e. x € Q,
(19) supp fut, supp Jy C [44(0,1),1]  for ¢ € (0,T).

Proof. Ay is well defined for a.e. z € . We fix such z and also 7 € (0,7]. Let
h € CY(R) be nondecreasing and satisfy h = 0 in (—o00,0] and h = 1 in [1,00). Let
d > 0 and set for a.e. z €

hs(s) = h(s/d) for s € R, 5(a,t) = hs(Ax(0,t) — a) for a € [0,1], ¢t € [0,T].

Then 5 is of class C! and
outs =3t (2 =0) o = ot om (202,

We use 15 as a test function in Definition 2.2 (iii). Since A;(0,0) =0, s(a,0) =0
if a>0and [45(-,0)d(fo)s = 0. Therefore the test function relation implies that

(20) /wa(-,T)dfw—/OT (/w[;dJm> dt—0 asd—0

if we prove that

(21) /OT </(3t¢6 + v;0%5) dfm,t> dt =0 as d — 0.

To prove (21) we observe that

03 (A2 (0,¢),t)—vy(a, t) Y (Aw(O,t)—a)

|8t’l/15 + Um&ﬂ/’ﬂ = 5 5

< C'sup |sh(s)]
seR

for some constant C' which does not depend on §, whence

/OT (/ (Dutts + vaDats) dfm) dt‘

< C/OT (/ dfs :L(Az(0,t) — 0, Az (0,¢)) N [O,Aw(O,t))> dt.

(22)

Here and in the following, the symbol L. denotes the restriction of a measure to
a measurable subset; see [16, Definition 1.8]. Since (5. (A2(0,t) — J, A,(0,%)) N
[0, A,(0,%)) = 0 and

‘/dfm L(Az(0,t) — 6, Ax(0,2)) N [O,Aw(O,t))‘ <1 fortel0,7],

(21) follows from (22) and the dominated convergence theorem.
By (20) and the dominated convergence theorem,

(23) / dfor [0, A,(0,7)) = /O ’ ( / sz,tI_[O,AI(O,t))> dt
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It follows from (5), the Fubini-Tonelli theorem, and (11) that
/dJm(a)I_[O,Am(O,t))

Az(0,t)
/(/0 P(t,b,a) da) dfz(b) —/dfw)t(a) L [0, A.(0,1))

Az(0,t)
—nx l / ( /b P(t,b,a) da) dfs 1 (D)L[0, A, (0, ) — / det(a)L[o,Am(o,t»]

=n(t)x(z,t)

<o [ar0)L0.4,0.0) - [ a1, @Li0. 400,00 =0,

Combined with (23), this implies (19). 0

We now reformulate the original problem in terms of the characteristics. Specif-
ically, we shall see below that the measure f can be obtained by transporting along
the characteristics a suitable measure ¢ (i.e., f is the push forward of g through A;
cf. Definition A.1), which satisfies
(24)

O Ay, t) = /@(Am(y,t), Ap(E,1)) dgot (€) + S(ws Au(yst)tuns s un1),

Drga(y) = 1 [ayAz@,t) Pt A6, A0, dga(€) — g0l0)|.
E@tul — dlAul = Rl

N
= w12 an gy = oy + O (i + A (€ 1)1 = A (6)) dgna(©)
~
! - 1 m—1 N
€0¢Um — A AU, = Ry i= 5 > Gjm—jUjlm—j — Um D G jUj — O,
=1 j=1
eOrun = % > ajrujug,
j+E>N
k,j<N

where z € 2, y € [0,1], t € (0,T], and 2 < m < N, with initial boundary conditions

9z.0y) = (fo)2(y), Az(y,0) =y fxecQ, 0<y<1,

(25) u;(x,0) = ug;(x) ifze, 1<i<N,
Onui(z,t) =0 ifx €0, t€(0,T], 1<i<N,
Onui(z,t) = —vyiui(z,t) ifxe o, te(0,T], 1<i<N.

DEFINITION 3.2. The (N+2)-ple (A, g,u1,...,un) is called a solution of problem
(24)~(25) in [0,T] if
(i) g € L(C([0, T7T; X[O,l]));
(ii) A,0:A € L>°(Q;C([0,1] x [0,T];[0,1]));
(iii) u; € C(Qp) and u; >0 in Qr for 1 <i < N;
(iv) for a.e. x € Q, Ay satisfies (24)1 and Ay(y,0) =y for y € [0,1];
(v) (24)2 for g is satisfied in a weak sense for a.e. x € Q: for all T € (0,T] and
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6 € C((0,1] x 0.7]) with 9y € C((0,1] x 0,7
Jotwrrdan ) [otw.0 a0~ [ [ 0roto0)dansto)
20 =[] [ o000, 40000 o6 nte. 0 A0 d0ns(6))
- [otot) daat

(vi) if 1 <i< N, u; € L*([0,T); HX(Q)), and

. | ' | [Futa s Vitasytel o [ e spotespiota)] s

= 5//QTui8tw —|—5/Qu0iw(x,0) dx —|—/QT R

for allp € HY([0,7); HY(Q)), ¥(x,7) = 0, where R; is defined as in (24);
(vil) duun € C(Qr), un(-,0) = uon in Q, and the equation for uxn in (24) is
satisfied in Q.

(27)

In the remainder of this section we prove the equivalence of problems (6)—(8) and
(24)—(25). The following result is a first step in this direction.

THEOREM 3.3. Let hypotheses (H1-Hg) be satisfied. Let (A, g,ui,...,un) be a
solution of (24)—(25) in [0,T) and set, for a.e. © € Q,

fot = As(-,t)pgs  for allt € 0,T).

Then (f,u1,...,un) s a solution of problem (6)—(8) in [0,T].

Proof. Since, for a.e. x € Q, g, is a Borel regular probability measure in [0, 1]
for t € [0,T], so is fy+. By (18), for a.e. z € Q the function y — A, (y,t) is injective
for t € [0,T], so that, by [16, Theorem 1.18],

(28) Supp fm,t = Aw(suppgw,tat) Cc Am([oa 1]7 t) = [Aw(O,t), ]-]
In particular f; ; € Xjo 1) for a.e. € 2. In addition, by Remark 2.3 (b) and Corollary
A.10, the map ¢ — f,; belongs to C([0,T]; X[g,1]) for a.e. x € Q.

Let, for a.e. © € Q, v be defined by (3) and J by (5). By (28) and (11),
J P(t,b,a)dfz+(b) =0 if a < A;(0,¢), whence
(29) supp Jy ¢ C [Az(0,1),1].

To avoid cumbersome notations, we set By (-, t) := A 1(-,t). Since
By (-,t) is well-defined in [A;(0,t),1], By(Az(y,t),t) y for y € [0,1], and

Az (Bg(a,t),t) = a for a € [A;(0,t),1]. Since supp fz+ C [Az(0,1),1], integrals of
functions of B(-,t) with respect to f,: are well-defined.
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By Definition 3.2 (iv), 0;A.(y,t) = v(A(y,t),t) for a.e. x € Q. By (18), B
is Lipschitz continuous with respect to y for a.e. x € €. Differentiating the identity
Az (Bz(y,t),t) = y with respect to ¢ and y, we obtain that
(30)
Oy Az (Bg(a,t),t)0:By(a,t) = —0:Az(Bz(a,t),t) = —vz(Az(Bz(a,t)),t) = —vz(a,t),
Oy Ay (By(y,t),1)0yBx(y,t) = 1,

so that 0, By (y,t)0yAz(Bz(y,t),t)0y Bz (y,t) = 0:Bs(y,t) and, by (30),

(31) ath(yvt) = —Uw(y,t)ﬁwa(y,t).

Let ¢ € C'([0,1] x [0,T7]). Let a be fixed such that A,, A, € C([0,T]; X[o,1)),
and set

By, t) = Y(As(y,t),t) fory € [0,1]

= [olo.m)dgar ) + [900.0)d(ho)ot)
/¢ (a,7),7) dfo.r(a /mo (fo)a (a).

Since ¢ satisfies the conditions in Definition 3.2(v), it follows that
(32)

- /oT (/ u(y,1) dgz,t(y)) dt
:/OTnx [/01¢(y,t)6yAm(y,t) (/P(t’Aw(g’t)7Aw(y7t))dgw)t(§)> iy

[ o006 daat)] -

-/ Tnx: / 1¢<31<A1<y,t>,t>ayAw<y,t>( [Pt 4,00 a1 0)

- /d)(Bz(Az(yat)vt) dgz,t(y)} dt +Cy

T [ rAL(1,t)
:/O nx_/A,(O,t) ¢(Bm(a,t),t)</P(t7b,a) dfm,t(b)) da

[0, dg%t(y)] 0t +Cy,

and

where we have used [16, Theorem 1.19] and the relation da = 9,A(x,y,t) dy.
On the other hand, the left-hand side of (32) can be written as

(33) /(/m, )dga) ) dt = /(/«m (@.0,0) (@) .

Let a € [A;(0,t),1]. Then ¢(a,t) = ¢(By(a,t),t) and
(34) O(a,t) = Oyd(By(a,t),t)0:By(a,t) + ¢¢(By(a,t),t).
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Since, by (28), supp fz,: C [A:(0,1), 1], it follows from (32)—(34) that
(35)
T T
( Ouib(a, ) df s ) < / 0,6(B (a, ), )9 Ba(a,1) dfz,t(a)) dt
0

@)ar=— [
+zanL/Auw¢ﬂ%@¢%ﬂ</f@haﬁ%m@0da
- [otpatanodbw) dc,
= [ ([ osoito.0.01.00B0.0.0) )
- Cix [ / j::::)wm, o [eie.b.0 dtee o - [o(et) onta
_ /0 T( / 0y6(B(a,1), 1), By (a, ) dfr,t(a)) dt + /0 ' < / (a,t) dJm,t(a)) dt+ Cy.

By (31),

dt+C¢

/8y¢ (a,1), )0 By(a,t) dfu.s(a /&lqﬁ (a,t),t)0q By (a, t)vy(a, t) dfy i (a)
:/8aw(a,t)vw(a,t) dfz ¢ (a),

whence, by (35), the first equation in (6) is satisfied in the sense of distributions:

- /OT</ dp(a,t) dfm(a))dt
:/ T( / Oatp(a, t)vx(a,t) dfm,t(a)) dt
/(/wathm )dt—/waTdf“ /¢a0 o)ula).

Concerning the Smoluchowski system in (6), ii is enough to observe that the third
equation in (24) and the second equation in (6) coincide, since

/WﬁAﬁﬁm—&@m@m@=ﬂm+Mbm#mw

Here we have again used [16, Theorem 1.19]. 0

The proof that problems (6)—(8) and (24)—(25) are equivalent is completed by the
following result.

THEOREM 3.4. Let (f,u1,...,un) be a solution of (6)—(8) in [0,T] and let A (y,t)
be defined by (16). Then there exists a probability measure g+ such that

fz,t = Az(a t)#gr,ta
and (A, g,u1,...,un) is a solution of problem (24)—(25) in [0,T].
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Proof. As before we reason for a.e. x € Q. Fixing such z € 2, and also an
arbitrary t € [0,T], we consider the map

Ap( 1) £ [0,1] = [A4(0,8), 1.

By Proposition 3.1, fy: = fz,:L[Az(0,t),1]. Hence, by [16, Theorem 1.20], there
exists a Radon measure g, on [0,1] such that

fz,t = fz,t I—[Ar(oa t)v 1] = Az(v t)#gfvt'

Obviously g, is a probability measure and belongs to Xjo 1. By Corollary A.10,
the map ¢ — g, is continuous with respect to the Wasserstein metric. In addition,
9zt — (fo)z as t — 0 since A,(y,0) = y. Therefore g satisfies the qualitative
assumptions in order to be a solution of (24) and (25).

To complete the proof of the theorem, it is enough to check the identities in the
proof of Theorem 3.3 in the opposite direction. 0

4. Local existence and uniqueness. By Theorems 3.3 and 3.4, problems (6)—
(8) and (24)—(25) are equivalent. In this section we prove local (w.r.t. t) existence
and uniqueness of a solution of problem (24)—(25). In section 5 we shall show that
this solution can be continued in [0, 7], which completes the proof of the main result,
Theorem 2.4.

So in this section we have to prove the following.

THEOREM 4.1. Let Q C R™ be an open and bounded set with a smooth boundary
0R), which is the disjunct union of smooth manifolds 0Qy and 0. Let T > 0 and
N € N, and let hypotheses (Hy1—Hg) be satisfied. Then there exists 7 € (0,T] such
that problem (24)—(25) has a unique solution in [0, T].

The proof is based on a contraction argument. To this purpose we introduce a
suitable metric space.

DEFINITION 4.2. Let 7 € (0,T] be given. We denote by (X-,d) the complete
metric space

Xy = L=(Q;C([0,1] x [0, 7] [0, 1)) x C(Q x [0, 7]; RY),
where L>(Q; C([0,1] x [0,7];[0,1])), and C(Q x [0, 7]; RY) are endowed with their nat-

ural metrics as normed spaces, and L(Q; C([0,T]; X(9,1))) is endowed with the metric

[0
W T,ly JxT
5P By Wi 9

(notice that condition (13) passes to the limit with respect to the Wi-convergence, by
Proposition A.7).
We denote by X, , the closed ball in X, of radius p > 0 centered at (y, fo,uo).

Observe that, for the moment, we have given up the nonnegativity of w;, which
will be recovered during the proof of Theorem 4.1. For this reason we define S also
for negative values of u;, by requiring that S is even with respect to u; for each
i=1,...,N—1.

We must construct the map to which we can apply the contraction argument. We
shall do this step by step.

LEMMA 4.3. Let (A,g,u) € X1 and set, for a.e. x € €,

36)  on(art) = /gm(a, A(6,1)) dgos(€) + S(x,a s ... uy—1) > 0.
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Then, for a.e. x € Q), the Cauchy problem

(37) {@41(%0 = 02(A,(y, 1),t)  fort >0,

Aw(y,()) =yc [07 1]7

has a unique solution defined for all t € (0,T], and the function y — A, (y,t) is con-
tinuous, strictly increasing (and thus open) on [0, 1], and maps [0,1] onto [A,(0,1),1]
for all t € [0,T]. Finally, the map (z,y,t) — A, (y,t) belongs to L>=(2;C([0,1] x
[0,77;[0,1])).

Proof. We claim that, for a.e. z € €2, the map (a,t) — 9;(a,t) is continuous and
Lipschitz continuous with respect to a € [0, 1], uniformly in ¢t € [0, T.

By (10) this is trivial for the map (a,t) — S(z,a,u1(x,t),...,un—1(z,t)), since
(z,t) + (u1,...,un—_1) is continuous on Q x [0, 7] and (uy,...,un—_1) belongs to a
compact set of RV~ It remains to show that (a,t) fgw(a,flw(f,t)) dge+ (&) is
continuous and uniformly Lipschitz continuous with respect to a € [0, 1].

Let ag,a € [0,1] and to,t € (0,7] be given. Then

‘ [0, Ante ) dacl ) ~ [ Guan, Aates o)) do (5)}
< ‘ [0, An(e. ) dgnnl€) — [Gu(a0, Auls, ) dgz,t@,t)\
¥ \ [0, a6, 0)) dgacl®) ~ [Gutan, A1) dgz,m(&)\ —hth

Since (a,&,t) — Ge(a, Ay(£,t)) is uniformly continuous in [0,1]2 x [0,7], I; — 0 as
(a,t) — (ag,to). Since & — G, (ao, A.(£, 1)) is continuous in [0,1]) and t > g, ; is
narrowly continuous (see Proposition A.7), then I — 0 as t — .

Similarly, by (9), for a.e. z € Q and all £ € [0,1] and ¢ € [0,T],

Gu(a, Ax(€:1) = Ga(@, Aul(E1))| < Cla—a/| for a,a’ € [0,1]

This completes the proof of the claim, which implies, for a.e. € Q, the existence
and uniqueness of the solution problem (37) for all y € [0, 1]. By a standard argument,

(39) 0.0t x| [ a1 5), is] >0

so 0 < Cp < 0yA,(y,t) < Cy for some constants C; and Cy which depend on the
compact set K C RV~1 which contains (uj(z,t),...,un—1(z,t)). O

Remark 4.4. Tt follows from the proof of Lemma 4.3 (in particular from (38)) that
A (&, s) is Lipschitz continuous in &, uniformly with respect to x and s.

LEMMA 4.5. Let (A, g,u) € Xp. Let, for a.e. z € Q, A be defined as in Lemma 4.3
and (F[g])z,e be the signed measure on [0,1] defined by

d(F'[g])a.e = n(t)x(z,t) [@;Aw(y, t)/P(t,Aw(& t), A, (y:1))dge,+(§) dy — dga 1 (y)

for 0 <t <T. Then, for a.e. x € (2,
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(i) the integral equation

(39) 8.0 = (0ot [ (Pl

has a unique solution t — g which belongs to c([o, 1], X[071]);1
(ii) the measure g, , is a weak solution of the system

00t ) = 1|0 0:) [Pl ALE.0). Al ), ) = 0,0
QI)O = (fO)w

in the sense of (26).

Proof. First of all, we observe that for a.e. z € Q and s € [0,7] and for all
9 € X[0,1;

(40) [ i) =o

The assertion is obvious if x(x,s) = 0. If x(z,s) = 1, by Tonelli’s theorem,

Lt = [ fPo A6 5) 400,09 ) g (@) [ de)

n
:/(/P(S,Az(&S),b)db) dgz,s(g)_/dgrys(y)zol

We set, for a.e. z € Q (from now on we fix such z),
q; = elo ”(S)X(I’S)dsgw,t for t € [0, 7).

Let Y be the set of such ¢, i.e., ¢ € Y if the map ¢t — e~ Is n(s)x(@.9)ds ¢, belongs to
C([0,T7, X[0,17)- Then Y naturally inherits a metric from C([0,T], X9 11),

dY(Ql, q2) = sup Wl (67 jot n(S)X($7S)dS(ql)t’ e~ jot n(S)X($7S)dS(q2)t) )
t€(0,T)

so Y is a complete metric space.
The equation for g translates into

Ovai(y) = Lai(y) :=nx(w,t)3yém(y,t)/P(t,Aw(é,t),Aw(y,t))dqt(ﬁ) >0,

and the corresponding integral equation is
t
(41) gt = (fo)x +/ Lgsds fort e€0,T].
0

f ¢ — u(t) is a continuous map from [0,7] to Xio,1], for any Borel set B C [0, 1], we set

(Jo 1(s) ds)(B) := [ u(s)(B) ds.
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We consider the map

t
(42) qa— (fo)s + /0 Lgq, ds.

One easily checks that, by (40), for all ¢ € Y

t
(43) /qut =0 fortel0,T], (fo)z —|—/ Lgsds €Y.
0

If we show that for all ¢;,q2 € Y

44 Jolqna)= dY<(fo)m+ [ pae o + | L<q2>s)scdy<ql,q2>,

it follows from a standard contraction argument that the map (42) has a unique fixed
point in a sufficiently small interval [0, 7] and that (41) has a unique local solution ¢
which can be continued in [0, T7]. -

To prove (44) we use the characterization of the W;-distance given in Proposi-
tion A.4:

(45)
dy (q1,q2) = sup [efo‘ (x(@9)ds gy, { / od(q1 — q2)¢ 5 ¢ € Lip ([0, ”’R)H :
te(0,T)
Hence
Jolar,az) = sup e BN gup (1,(1) 5 6 € Lip, (10,1, R)}
t€(0,T)
where

1(t)i= [ 0 / (Lar)s — L(go)s) ds
and L(q1)s — L(g2)s is given by
n(s)x(a, ) ( [P, Al 9) A2, 4, )l — q2>s<s>) dy.

By Tonelli’s theorem, I4(t) is equal to

Jow /0 t@x ( [Pl Acle.9). Aty 50,4, 0. )0 - qz)s(f)) dy) ds

- /Otﬁx</41(o7s)¢(3m(b, 8))(/P(S,Am(§, s),b)d(q1 — q2)8(5)> db) ds
- /Otnx</ </Ai(0)s§l5(3r(b7 8))P(s, A (€, 5), b)db) d(qr — qz)s(@) ds.

By (43), Is(t) = 0 if ¢ is constant, so we may assume that ¢(0) = 0. Hence |¢| < 1
and, by (12),

1
/ 6(Ba(b,5)) (P(s, A, (€', 5),b) — Ps, A, (", 5),b)) db

A, (0,5)

1
S/ |P(57Am(§/as)ab) _P(Saéw(fﬁas)?b”dbg L|£/_£N|'

A(z,0,s)
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Now (44) follows from (45):

Jo(q1,q2) <TL tgax]ﬂ( )dy (q1,q2)-

Setting
g =e b ”(S)X(m’s)dsgt for ¢ € [0, T7,

Zx,t

we have completed the proof of part (i) of the lemma.
Fix an z € Q for which (39) and (41) (for ¢) are valid. Since P and A, are
continuous functions and the map ¢t — g, , is continuous in the weak* topology (and

S0 is t — gt), the map

(18 = [ Pl A1), A, (001, (€

is continuous in [0, 1] x [0, T]. Hence L(g,-) € L>((0,1) x (0,T)).
We set ¢ =g — (fo)2- By (41)

q: = /0 L(Gs + (fo)z)ds for t €[0,T).

Since, by the boundedness of L(qs + (fo)z)(y), t — G:(y) is absolutely continuous in
[0,T] for a.e. y € (0,1), this means that

1
@0 [ wnrirdy=[[ [l 00+ 0L ~ (o)) )] dyde
0 (0,1)x(0,7)
for all 7 € (0,T] and ¥ € L*°([0,1] x [0,T]) with ¢, € L*([0,1] x [0,T]).
Finally let ¢(y,t) be as in the first part of the proof (we recall that x is fixed).
We substitute the function ¢(y, t) = e~ Jo 1x(@9)ds 4y 1) into (46). Since

B (y, t) = e o TOXESAS (v (. 1) + By, y, 1),

1 and Oy are continuous with respect to y and, by a straightforward calculation,
(46) transforms into

[ otwriag, @)~ [ 6.0 )
(47) [ ot ratsor, )] a
# [ o0ttt + [ o0t 0)dg, ) a

for all 7 € (0,77. Since ¢(y,0) = #(y,0), this implies that g (y) satisfies the equation
of the system in the sense of (26):

ot 1dg, ) /¢y, d(fo)aly)
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defines a function 4 € L>=(£; C([0,1] x [0, 7]; [0, 1]), and, by Lemma 4.5, A uniquely
defines a measure g € L(Q;C([0,T]; X[9,17))- Let u = (U,...,uy) be the weak

Let (A,g,u) :== (A, g,ui....,uy) € er By Lemma 4.3, (A, g,u) uniquely
[0,
9 (o,
solution of the problem

_ = <
(48) €0y, — dmAu, = Frn(4,g,u) (1 <m<N), in Q= Q% (0,7]
ediuy = Fn (A, 9, u)

with initial boundary conditions

u;(x,0) = ugi(z) if x € Q,
(49) Onu;(z,t) =0 if 2 € 900, t > 0, (1<i<N).
O (z,t) = =y (z,t) if 2 € 90y x (0,7],

Here we have set

N 1
Fi(A, g,u) = —oyus—w 5" a1 ju;+Cr / (o+ A, (€, 1) (1— A, (€, )dg_(6),
=1 0 ’
! m—1 N
Fn(A, g, u)=—0mUm + 3 > GjmejUjUm—j — Um > G, jUj,
i=1 i=1
FN(Avgvu)::% Z a5 kU;UE-
jHk>N
k,j<N

Observe that F; € L>®°(Q x [0,7]) (i = 1,...,N) and its norm only depends on the
compact set K C R” containing (ui,...,un). We also observe that system (48)-
(49) consists of N — 1 (uncoupled) scalar linear heat equations with linear boundary
conditions and an ordinary differential equation. Therefore it has a unique weak
solution u. More precisely, following [17] and recalling that X, , denotes the closed
ball of radius p > 0 centered at (y, fo,uo) in X, we have the following.

PROPOSITION 4.6 (see [17, Theorems 2.11, 3.2, and 3.3]). Let (/i,g, u) € X, ,.
For all 1 <i < N there exists a unique u; € C([0,7]; L?(2)) N L?([0, 7]; HY(Q)) such
that

/OT [/Q Vu,(z,8) - Vip(z, s) do + /391 w,(z, s)y(z, s) do(z)| ds

://Tgi8t¢+/{lu0i1/)($,0)d$+//rF(Agu)w

for all v € H'([0,7]; H(Q)), (z,7) = 0. Let uy(z,t) = uon(z) + [y Fn(A, g, u)ds
and u = (uy,...,uy). Then u € C(Q;RY), u(-,0) =y, and, for 1 <i < N,

luilloo, vy < CllluoillLe@) + | Ellr@.® ) ifr>n, ;+4 <L

In particular ||w | @ ) < Cllluwoillc@) + 1Fllc@. )}

Now we are ready to define the map to which we shall apply a contraction argu-
ment. Let p > 0 be fixed. Using the notation A (Lemma 4.3), g (Lemma 4.5), and u
(Proposition 4.6) introduced above, we set -

(50) H(Aagau) = (Aa ga ﬂ) for (Avgvu) € X‘r,p-
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Let 74 denote the metric topology of X, , and 7 the weaker topology on X, , which
is obtained by endowing L>°(£2; C([0, 1] x [0, 7]; [0,1])) with the L'-topology on € x
[0,1] x [0, 7].

PROPOSITION 4.7. Let p > 0 be fized and let ’H(fl,g,u) be defined by (50). If
7 > 0 is sufficiently small, then H : Xr, — Xy, (A,,9 ,u,) = (4,g,u) in T if

(An, gnstin) = (A, g, u) in Ty, and H is a contraction on H(X:,).

Proof. First we prove that H (X, ,) C X, if 7 is sufficiently small. By Proposition
4.6, [lu(,t) — uollozprn) — 0 as t — 07, so it remains to show that, as t — 07,

(51) sup  [A,(y,t) —y[ =0,  supllg, , — (fo)sllx,, — 0.
ze, 0<y<1 TEN ’

Since, by (37) and assumptions (9) and (10),

A0 -ul< [ ' { [ G409, Aule. ) does(® +S(w7Ax(y,8)aU(x,8))} ds
< /0 A, (s, 5) — y| ds + Car,

(51); follows from Gronwall’s lemma. On the other hand, (51); easily follows from
Lemma 4.5(i) and its proof.

To prove the (7, T)-continuity of H, let A, A € L>(Q;C(]0,1] x [0,7];][0,1]))
be such that (fln,gn,un) — (A,g,u) in X; , as n — co. We must show that 4, — A
in LY(Q x [0,1] x [0, 7]).

By the dominated convergence theorem, this follows if

(52) A, — A ae inQx][0,1]x[0,7] asn— oco.
To prove (52) we observe that

(53)
[(A)2(y, ) —A, (y, 1)

< [ (0080 (Aot ) = 64,09, Al )o@

/
0

+/ [S(@, (An)a(y, 8), un(2,8)) = S(2, (4,,)2(ys 8), ulz, )| ds
0

ds

ds

/ Gl A,y (1, 8), Ar (€, 9)d(gn — 9)an(E)

+/O S(@, (A)2 (Y, 5), u(®,s)) — Sz, A, (y, 8), ulx, s))| ds
=15 + Iz + Is + 14,

where I; = I;(z,y,t) for j = 1,2,3,4. It follows easily from (10) that

I3 <Cpt  sup  |up(z,s) —u(w,s)| < Cptd((An, gn, un), (A, g,u)),
z€Q,0<s<T

Iy < Cpt sup [(An)a(y.s) = Axly, 8)| < Cotd((An, gn,un), (A, g, ).
ze), 0<y<1, 0<s<7
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By (9)

neo t {10209 - a0} as
e /0 t { 1660 - Aste s>\d<gn>m,s(5>} ds

= Cp | |(An)e(y,s) = Auly. )| ds

+C, | t { [ 1Gnate ) - Aute s>\d<gn>m(5>} s

S Op ‘(An)f(ya S) - Aw(ya S)| dS + Opt d((/ina 9n; Un), (Aa 9, U))
0

Thus, by Gronwall’s inequality, Proposition A.7, and the dominated convergence the-
orem,

(54) (A t) = A,(0,0)] < B,9,7) + Cprd((Ans g, i), (A, 9,0) = 0

as n — oo. This proves (52).

It remains to prove that # is a contraction on H (X, ;) if 7 is small enough. Let
(A g% ub), (A2, g, u?) € X,.. Repeating verbatim the arguments leading to (54),
we obtain that

4 - 2]

/ G, (42(y,5), A2(6,5)) dlg" — 9%)u(6) | ds

+Cp7d((Al,g S U ) , (AZ,gZ,UQ)).

Since (A2, g2,u?) € H(X,,), it follows from Remark 4.4 that A2 (¢, s) and, by (9),
Go(A2%(y, s), A2(¢,s)) are Lipschitz continuous in &, uniformly with respect to z and
s. Thus, by Proposition A.4,

(55)

(56)
‘Ai(yvt) yv <O / gz sagzs dSSCPTd((Alvglvul)7(‘42792’”2))'

Consider now W; (gi y gi ). In view of the definition of g', g%, we may repeat
verbatim the arguments in the proof of Lemma 4.5 and obtain that

Wl( rt’g ) <CmaX77t sup Wl(gwsﬂgm S)

(57) T 0<s<t
< Crd ((Alag y U ) ) (Azag27u2)) .
Finally, we estimate supq (o ;] |u! —u?|. Set U =u!—v? and U = (Uy,...,Uy).

Then U is a weak solution (in_the sense of Proposition 4.6) of a system similar to
(48)-(49) with F} replaced by Fj := Fj(A', g*,u') — Fj(A% ¢*,u?), j=1,...,N, and
ug by U(x,0) = 0. By Proposition 4.6,

N

(58) U c@xonz < C DN c@xonz):
=1
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If £ > 1, F} is a polynomial in the components of u and, since u;, us are uniformly
bounded by p in £ x [0, 7],

(59) HFkHc(ﬁx[o,r];R) < CPZ i — U’?HC(QX[O,T];R) if k> 1.

The same argument applies to the polynomial terms of F, so we are left with the
estimate of

hW/w+£@ma—£@m@;@
0
<4%+£@mu—£mm@;@

C(Qx [O,T];R)'
Arguing as above,

I§J1+J2
:AKW+£@m“_£®m—wﬁA%ﬁH%Amﬁﬂ@A@

1
o[ o a2en) - 2260 ala - ) 0.

Repeating the arguments that yield the estimate (55), we have that

J1<Csup‘A (&,1)) A2§t|/dg

w) )

= C, sup [AL(€.1) — A2(6,0)] < Cpra (A g u') (4%, 0%, %) ).
z,§,t

Concerning Jo, by Remark 4.4 the map & — (o 4+ A2(£,1))(1 — A2(€,t)) is uniformly
Lipschitz continuous. Thus, by Proposition A.4 and (57),

J2 < CpWI (glagz) < CpTd ((A17glaul) ) (A2ag2au2)) .
Combining the estimates of I, Jy, Jo with (59) and (58), we obtain that

(60) s = sl @ o,z < Comd ((Aljgljul) 7 (A2jg2’u2)) .

It follows from (56), (57), and (60) that # is a contraction on H(X, ;) if 7 is
small enough. 0

To complete the proof of Theorem 4.1, we need a minor modification of the
classical Banach—Caccioppoli fixed point theorem.

PROPOSITION 4.8 (fixed point theorem). Let (X,d) be a complete metric space
and let Tq be the topology induced by d. Let T be a Hausdorff topology on X which is
weaker than Tg. If H : X — X is a contraction on H(X) which is (Tq, T)-continuous,
then H has a unique fixed point.

Proof. We start carrying out the standard iteration procedure

(61) Tnt+1 = H(ﬂ?n),
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starting from a point zg € H(X), so that x, € H(X) for all n > 0. As usual, by the
completeness of (X,d), we may assume that z, - & € X as n — oco. When H is a
contraction on all of X (and, hence, in particular is Lipschitz continuous from X to
X) we can conclude the proof taking the limit as n — oo in (61). In our case the
argument has to be slightly adapted: on one side, z,+; — & as n — oo with respect
to the topology 7T (since it is weaker that 73); on the other hand H(x,) — H(Z) as
n — oo with respect to the topology T, since H is (74, T )-continuous, Thus, by (61)
we can conclude that z = H(z) by the uniqueness of the limit in 7. O

Proof of Theorem 4.1. By Proposition 4.7 and the fixed point theorem, system
(24)—(25) has a unique solution (in the sense of Definition 3.2) in [0, 7] for sufficiently
small values of 7 if we show the nonnegativity of u;:

(62) u; >0 inQx][0,7] (t=1,...,N).

If i = N, (62) is trivially satisfied. If 1 < i < N, (62) formally follows from the
maximum principle. Below we make this precise if ¢ = 1. If ¢ > 1 the proof is even
easier.

Since f = C]-'fol (o+ Az (&,1))(1— AL (&,1)) dgp ¢ (€) is nonnegative and belongs to
L>(Qr), there exists a sequence of smooth nonnegative functions (fi)ren converging
to f in L"(Q7), where r > n and 1+ 2= < 1. We also approximate h = Zjvzl ay,ju; €
C(Qr) uniformly by smooth functions hx. Let vy be the unique smooth solution of

€0y = diAv, — vghy + fr  in Qr,

vg(2,0) = uo1(x) ifx e,
Onvg(z,t) =0 if v € 0Qg, t >0,
Onvg(z,t) = —yvp(z, 1) if x € 0Qq, t> 0.

(63)

Since v1 > 0, fr > 0in @, and ug; > 0 in , it follows from the maximum principle
that v, > 0 in Q.
On the other hand wy, := u; — v is a weak solution of

edwy = diAwy — wphy + f — fr  in Qr,

wg(z,0) =0 ifxeQ,

(64) .
Opwi(x,t) =0 if v € 0Qg, t >0,
Opwi(x,t) = —ywi(x, t) if x € 004, t >0,

and it follows from [17, Theorem 3.2], that vy — u; uniformly on Q.. Therefore also
u; > 0in Q. 0

5. Global existence. In this section we complete the proof of Theorem 2.4
by showing that the local solution of problem (24)-(25), constructed in the previous
section, can be continued to the whole interval [0,T]. We recall that problems (24)-
(25) and (6)—(8) are equivalent, as we have shown in section 3.

Arguing by contradiction we suppose that the maximal interval of existence is
[0,7*) for some 7* < T.

A priori estimate for u(x,t). Since

1
(65) O]:/O (/LO + Az(fvt))(l - Ar(&vt)) dgm,t(f) < C11 in © x [037-*)
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for some constant C1, it follows formally from the maximum principle that

up(z,t) <supugy + Cit forx € Q, 0 <t <75,
Q

Similarly, if w1, ..., um—1 are bounded in L (€ x [0,7*)) for some 1 < m < N, then

N =

m—1
E Ajm—jUjUm—j < Cm in Q x [O,T*)
Jj=1

for some constant C,,, and it follows formally from the maximum principle that

U (z,t) < supugm + Cpt forz € Q, 0 <t < 7%
Q

In both cases the use of the maximum principle is justified as in the proof of (62).

The boundedness of uy in © x [0,7*) follows from that of us,...,un_1, so we
have shown that, for some C, > 0,
(66) lu] < Cp inQx[0,77).

Existence of lim;_ . Az(y,t) =: Az(y,7T*). Arguing as in the proof of

Lemma 4.3 we obtain that A.(y,t) and v,(A;(y,t),t) are Lipschitz continuous with
respect to y, uniformly with respect to © € © and ¢t € [0,7*). By the boundedness
of vy (Ay(y,t),t), the map t — A,(y,t) is Lipschitz continuous on [0,7*). Hence
Az (y, ") = limy_.~ A, (y,t) exists and is Lipschitz continuous with respect to y,
uniformly with respect to z € Q.

Existence of lim;_,,« gz + =: gz,~~. We repeat verbatim the arguments of the
proof of Lemma 4.5 and we obtain that the map ¢ — ¢, is Lipschitz continuous from
[0,7%) to X[o,1] endowed with Wasserstein metric W;.

Existence of limy ,,~ u(x,t) =: u(z,7*). In view of (65) and (66), it fol-
lows from standard regularity theory for weak solutions of parabolic equations (see,
e.g., [20, Theorem 1, p. 111]) that u is uniformly (Holder) continuous in © x [0, 7*).
Hence u can be extended to Q x [0, 7*] as a continuous function.

Hence we can apply the local existence theorem to the “initial” functions g, .
and u(z, 7*), and obtain a solution in [7*, 7] for some 7 € [7*,T]. Therefore [0, 7*)
is not the maximal interval of existence and we have found a contradiction.

Appendix A. Probability measures and Wasserstein metrics. Through-
out this appendix, X denotes a complete separable metric space, with metric d. A
positive Borel measure p on X such that p(X) = 1 is said to be a probability measure,
and we write p € P(X). Every p € P(X) is a Radon measure (see [2]).

DEFINITION A.1 (push forward of measures). Let B(X) be the Borel o-algebra
of subsets of X and ¢ : X — X a Borel measurable function, i.e., one such that
¢~ Y(E) € B(X) for every E € B(X). Let moreover i € P(X). The push forward of
w through ¢ is the measure v € P(X), denoted by v = ¢up, such that

v(E) = p(¢ " (E)) for all E € B(X).

Equivalently, the measure v can be characterized by

/ f(@) du(x) = / £(é(a)) d(z)
X X

for every bounded Borel function f defined on X.
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DEFINITION A.2 (Wasserstein distances). Let p > 1 and p, v € P(X) be such
that

/ d(z, Z)P du(z) < +oo, / d(z, )P dv(z) < 400
X X

for some x € X. The pth Wasserstein distance between p and v is the number denoted
by Wp(u,v) and defined by

W) s=int{ [ dtw.y arie) s v e vinm},

where T'(u,v) C P(X?) is the set of all transference plans between u and v, i.e., the
set of measures v € P(X?) whose marginals are u, v, respectively.

PROPOSITION A.3 (see [2, Proposition 7.1.5]). If u € P(X) has compact support
then for any T € X andp >'1

/ d(z, z)P du(z) < +oo.
X

In particular, p has finite p-moment. We shall write p € P,(X). Endowed with the
Wasserstein p-distance W,, Pp(X) is a complete metric space.

PROPOSITION A.4 (Kantorovich-Rubinstein duality; cf. [2, equation (7.1.2)]). If
w,v € P1(X) have compact support, then

Wi, = sup{/X pd(u—v) : 6 e Lipl(X,m} ,

where Lipy (X,R) is the space of Lipschitz continuous functions ¢ : X — R with
Lipschitz constant not greater than 1.

DEFINITION A.5. Let (tin)nen be a sequence in P(X). We say that
(i) wn — p narrowly if for any bounded continuous function f

/fdun%/fdu as n — 0o;
b'e b'e

(i) pn — p weakly™ if for any compactly supported continuous function f

/fd,un—>/fd,u as n — o0.
X X

Remark A.6. Obviously, narrow convergence implies weak™ convergence, and nar-
row and weak® convergences are equivalent if X is compact.

PROPOSITION A.7. Let X be a separable metric space. Let (pn)nen be a sequence
in Pp(X). We have
(i) of Wp(tin, 1) = 0 as n — oo, then pu, — p as n — oo weakly”;
(ii) suppose there exist a compact set K such that supp p, C K for alln € N and
an open set O satisfying

KcoO and X\ O#0.

Then
Wy (ton, t) — 0 asmn — oo

if and only if p, — p as n — oo weakly” (or, equivalently, narrowly).
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Proof. We apply [2, Proposition 7.1.5]. We have but to prove that the p,’s have
uniformly integrable p-moments. By [2, Lemma 5.1.7] the assertion will follow by
showing that

n—00

i [ (@) dpalo) = [ f)da)
b'e X
for any continuous real function f such that
(67) |f(z)] < A+ Bd(z,z)?, A,B >0, 7 € X fixed.

Take now a continuous map f : X — R satisfying (67). By Urysohn’s lemma we can
easily construct a continuous function f such that

supp f € O and f=fin K.

Thus
Dim [ f@)dpn(e) = lim [ f@) dpa(a) = tim [ Fe) dysn ()
X K K
= tm [ f@)dpa(@) = [ F@)dp(@) = [ F)duta)
X X K

|
~
—~
8
~
=
=
—~
8
~
I
=
~
—~
8
~
=
=
—~
8
~
O

Remark A.8. If X is compact, then the assertion is trivial. Indeed, we have
already pointed out that narrow convergence and weak® convergence are equivalent
on compact metric spaces. Thus we can apply [2, Proposition 7.1.5]. Indeed the u,’s
have uniformly integrable p-moments, by [2, Lemma 5.1.7].

PROPOSITION A.9. Let X,Y be complete separable metric spaces. In addition, let

X be compact and assume that for any compact set K C 'Y there exists an open set
O such that
Kco and Y\ O #0.

Let (pin)nen be a sequence in Pp(X). Let , : X — Y be a sequence of continuous
injective (and hence open) maps that converges uniformly to a continuous injective
(and hence open) map ® : X =Y. Then, ifp >0

nh_}rgo Wp(ptn, ) =0 if and only if nh_)rrgo Wo((Pn) g pin, Ppepr) = 0.

Proof. By Proposition A.7 and [2, Remark 5.1.5], the sequence (i )nen is tight.
By [2, Lemma 5.2.1]

Jim Wy (pn, 1) =0 = (Pa)ghin — Ppp

narrowly as n — 0o. Set

Ko:={y; dly, ®(K)) <e}.

If n > 7, then supp (Pp)xpn C @, (K) C Ko that is compact. By assumption, there
is an open set Qg such that

K()COO and Y\Oo%@
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Thus, by Proposition A.7, lim,, 00 Wy ((®r) 4 tn, P pt) = 0. This proves the first part
of the statement.

Suppose now limy, 0o Wy ((®r) #ptn, Ppp) = 0.

We notice now that the sequence (g, )nen in P(X) is tight (again by Remark
A.6), and, hence, by [2, Theorem 5.1.3], is relatively compact with respect to the
narrow convergence. Therefore, there exists a subsequence (ji,,);en converging nar-
rowly to v € P(X). By Proposition A.7 Wy(pin;,v) — 0 as n — oo, and then
Wy (thn;,v) — 0 as n — oo (by the first part of the present proposition). Thus the
uniqueness of the Wasserstein limit yields ®xv = ®4p and eventually v = p, ie.,
lim; o0 Wy (pin;, ) = 0. A standard argument in metric spaces makes it possible to
recover the limit for the full sequence (fn)nen- O

COROLLARY A.10. Let X, Y be complete separable metric spaces satisfying the
assumption of Proposition A.9. If I C R is an interval, let & : X xI — Y be a
continuous map such that for any t € I the map v — ®(x,t) is injective and open.

Ift € I, let u(t) € P(X) such that supp u(t) C K for all t € I, where K C X is
a compact as in Proposition A.7.

Then t — u(t) is continuous (with respect to the Wasserstein topology) if and
only if t — ®(-, t)xp(t) is continuous (with respect to the Wasserstein topology).

Acknowledgment. The authors would like to express their gratitude to MD
Norina Marcello for many stimulating and fruitful discussions over several years.

REFERENCES

[1] Y. Acupou, B. FRANCHI, N. MARCELLO, AND M. C. TEsl, A qualitative model for aggregation
and diffusion of B-amyloid in Alzheimer’s disease, J. Math. Biol., 67 (2013), pp. 1369-1392.

[2] L. AMBROSIO, N. GIGLI, AND G. SAVARE, Gradient Flows in Metric Spaces and in the Space
of Probability Measures, 2nd ed., Lectures in Math. ETH Ziirich, Birkh&user, Basel, 2008.

[3] M. BErTscH, B. FrRANCHI, N. MARCELLO, M. C. TESI, AND A. TOSIN, Alzheimer’s disease: A
mathematical model for onset and progression, Math. Med. Biol., 34 (2017), pp. 193-214.

[4] M. BERrTsCH, B. Franchi, M. C. TEsI, AND A. TOSIN, Microscopic and macroscopic models
for the onset and progression of Alzheimer’s disease, J. Phys. A, 50 (2017), 414003.

[5] H. BRaak AND K. DEL TREDICI, Alzheimer’s pathogenesis: Is there neuron-to-neuron propa-
gation?, Acta Neuropathol., 121 (2011), pp. 589-595.

[6] J. A. CArrILLO, R. M. CoLoMBO, P. GwiazDpA, AND A. ULIKOWSKA, Structured popula-
tions, cell growth and measure valued balance laws, J. Differential Equations, 252 (2012),
pp. 3245-3277.

(7] J. H. M. EvErs, S. C. HILLE, AND A. MUNTEAN, Measure-valued mass evolution problems
with flux boundary conditions and solution-dependent velocities, STAM J. Math. Anal., 48
(2016), pp. 1929-1953.

[8] B. FRANCHI AND S. LORENZANI, From a microscopic to a macroscopic model for Alzheimer
disease: Two-scale homogenization of the Smoluchowski equation in perforated domains,
J. Nonlinear Sci., 26 (2016), pp. 717-753.

[9] B. FRANCHI AND S. LORENZANI, Smoluchowski equation with variable coefficients in perforated
domains: Homogenization and applications to mathematical models in medicine, in Har-
monic Analysis, Partial Differential Equations and Applications, Appl. Numer. Harmon.
Anal., Springer, Cham, Switzerland, 2017, pp. 49-67.

[10] B. FrancHI AND M. C. TEsl, A qualitative model for aggregation-fragmenattion and diffusion
of B-amyloid in Alzheimer’s disease, Rend. Semin. Mat. Univ. Politec. Torino, 7 (2012),
pp. 75-84.

[11] C. Haass AND D. J. SELKOE, Soluble protein oligomers in neurodegeneration: Lessons from
the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell. Biol., 108 (2007), pp. 101-112.

[12] W. Hao AND A. FRIEDMAN, Mathematical model on Alzheimer’s disease, BMC Systems Biol.,
108 (2016), 108.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/12/18 to 137.204.1.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2388 BERTSCH, FRANCHI, TESI, AND TOSIN

[13]

[14]

[20]
21]

22]

[23]

M. HELAL, E. HINGANT, L. PUJOo-MENJOUET, AND G. F. WEBB, Alzheimer’s disease: Analysis
of a mathematical model incorporating the role of prions, J. Math. Biol., 69 (2013), pp. 1-
29.

J. J. Iuirr, M. WANG, Y. Liao, B. A. Procg, W. PENG, G. A. GUNDERSEN, H. BENVENISTE,
G. E. VATES, R. DEANE, S. A. GoLDMAN, E. A. NAGELHUS, AND M. NEDERGAARD, A
paravascular pathway facilitates CSE flow through the brain parenchyma and the clearance
of interstitial solutes, including amyloid 3, Sci. Transl. Med., 4 (2012), 147ralll.

E. KARRAN, M. MERCKEN, AND B. DE STROOPER, The amyloid cascade hypothesis for
Alzheimer’s disease: An appraisal for the development of therapeutics, Nat. Rev. Drug
Discov., 10 (2011), pp. 698-712.

P. MATTILA, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math.
44, Cambridge University Press, Cambridge, 1995.

R. NITTKA, Inhomogeneous parabolic Neumann problems, Czechoslovak Math. J., 64 (2014),
pp. 703-742.

B. PERTHAME, Transport Equations in Biology, Front. Math., Birkhauser, Basel, 2007.

C. REITZ, C. BRAYNE, AND R. MAYEUX, Epidemiology of Alzheimer disease, Nat. Rev. Neurol.,
7 (2011), pp. 137-152.

F. ROTHE, Global solutions of reaction-diffusion systems, Lecture Notes in Math. 1072,

Springer, Berlin, 1984.

D. J. SELKOE AND J. HARDY, The amyloid hypothesis of alzheimer’s disease at 25 years, EMBO
Molec. Med., 8 (2016), pp. 595-608.

J.-M. SEROT, J. ZMUDKA, AND P. JOUANNY, A possible role for CSF turnover and choroid
plezus in the pathogenesis of late onset Alzheimer’s disease, J. Alzheimer’s Dis., 30 (2012),
pp. 17-26.

O. G. TATARNIKOVA, M. A. OrLOV, AND B. N.V, Beta-amyloid and tau protein: Structure,
interaction and prion-like properties, Biochem. (Moscow), 80 (2015), pp. 1800-1819.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Problem statement and main results
	Hypotheses on the data
	Main result

	The characteristics
	Local existence and uniqueness
	Global existence
	Appendix A. Probability measures and Wasserstein metrics
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


