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Symmetric Subspace Motion Generators
Yuanqing Wu, Member, IEEE, and Marco Carricato, Member, IEEE

Abstract—When moving an object endowed with continuous
symmetry, an ambiguity arises in its underlying rigid body trans-
formation, induced by the arbitrariness of the portion of motion
that does not change the body overall shape. The functional
redundancy caused by continuous symmetry is ubiquitously
present in a broad range of robotic applications, including robot
machining and haptic interface (revolute symmetry), remote
center of motion devices for minimal invasive surgery (line
symmetry), and motion modules for hyper-redundant robots
(plane symmetry). In this paper, we argue that such functional
redundancy can be systematically resolved by resorting to sym-
metric subspaces of the special Euclidean group SE(3), which
motivates us to systematically investigate structural synthesis
of symmetric subspace motion generators. In particular, we
develop a general synthesis procedure that allows us to generate
a wide spectrum of novel mechanisms for use in the aforesaid
applications.

Index Terms—Euclidean group, inversion symmetry, sym-
metric space, Lie triple system (LTS), type synthesis, parallel
manipulator.

NOMENCLATURE

SE(3) special Euclidean group of R3

SO(3) special orthogonal group of R3

G,H, ... Lie subgroups of SE(3)
se(3) Lie algebra of SE(3)
[·, ·] commutator (Lie bracket)
se(3)∗ dual space of se(3) (wrench space)
so(3) Lie algebra of SO(3)
g, h, ... Lie algebras of G,H, ...
{...}span linear span
S, Si twist subspaces of se(3)
S⊥, S⊥i annihilator of S and Si in se(3)∗

m Lie triple subsystem (LTS) of se(3)
M := expm a symmetric subspace (SS) of SE(3)
hm := [m,m] commutator algebra of m
gm := m + hm completion algebra of m
GM := exp gm completion group of M = expm
GPD generalized polar decomposition
M,Mi motion manifolds
POE product-of-exponentials submanifold
Mi a serial chain with motion manifold Mi

PM a (purely) parallel manipulator with l chains
Mi, i = 1, ..., l, denoted M1 ... Ml

ICPM an inter-connected parallel manipulator
SPHM a serial-parallel hybrid manipulator
SP symmetric twist pair
SC symmetric twist chain
CSC constraint synthesis condition Eq. (9b)
SMC symmetric movement condition Eq. (16)

Yuanqing Wu (e-mail: yuanqing.wu@unibo.it) and Marco Carricato (e-mail:
marco.carricato@unibo.it) are with Department of Industrial Engineering
(DIN), University of Bologna, Italy.

M+
i proximal half of a SC Mi

M−i distal half of a SC Mi

M+ proximal PM of a SS-ICPM
M− distal PM of a SS-ICPM

I. INTRODUCTION

A. Motivation

ROBOTIC manipulation tasks requiring less-than-six de-
grees of freedom (DoF) can be naturally characterized by

regular submanifolds of SE(3), which coincide with the end-
effector motion set in an open neighborhood of the identity
I. We shall refer to them as motion manifolds. The most
commonly used motion manifolds, aside from SE(3) itself,
are its ten conjugacy classes of (connected) Lie subgroups
[1]. For example, Franz Reuleaux’s lower pairs (revolute R,
prismatic P , helical H, cylindrical C, planar E , spherical S)
generate 1 to 3D Lie subgroups of SE(3) [2]. Lie subgroups of
SE(3) also serve as configuration spaces of a range of robotic
systems [3]–[6].

Lie subgroups may also characterize the invariant motions
of objects with continuous symmetry [7,8]. For example, when
orientating the tool spindle of a five-axis milling task or
rotating a round peg for a peg-in-hole assembly task, two
rotations R1, R2 of the spindle or peg are said to be equivalent
if they differ by an arbitrary rotation about their axis of
revolute symmetry, say the z-axis (see Fig. 1(a)):

R1 = R2e
σẑ σ ∈ R (1)

where z denotes the unit vector (0, 0, 1)T , and ẑ denotes the
3× 3 skew-symmetric matrix satisfying ẑv = z×v,∀v ∈ R3

(the notation used in this paper to denote the elements of
SE(3) and its Lie algebra se(3) is intended to be self-
explanatory; however, a brief explanation is reported in Ap-
pendix A). To resolve such a functional redundancy [9], Bonev
et al. [10] proposed a decomposition of SO(3) using the tilt-
torsion angle parameterization of a rotation matrix R ∈ SO(3)
(see Fig. 1(b)):

R = eψ(cφx̂+sφŷ)eσẑ φ, σ ∈ [0, 2π), ψ ∈ [0, π] (2)

The 2-DoF tilt motion eψŵ, with w = cφx + sφy, x =
(1, 0, 0)T and y = (0, 1, 0)T , unambiguously determines the
configuration of the revolute axis z via:

R · z = eψŵeσẑ · z = eψŵ · z (3)

thereby defining a 2D (non-redundant) motion manifold:

M :=
{
eψ(cφx̂+sφŷ)

∣∣∣ φ ∈ [0, 2π), ψ ∈ [0, π]
}

= exp{x̂, ŷ}span
(4)

It is also the set of all unit quaternions (q0, qx, qy, qz) ∈ R4

with qz = 0 [11,12].
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(a)

(b) (c)

Fig. 1. (a) Orientation ambiguity in peg-in-hole task; (b) and (c) a tilt-torsion
characterization of the ambiguity.

(a) unit 2-sphere S2 (b) Euclidean plane R2

Fig. 2. Examples of symmetric spaces and their associated inversion sym-
metry on (a) the unit 2-sphere S2 (geodesics are great circles); and (b) the
Euclidean plane R2 (geodesics are straight lines).

Recently, we pointed out in [13] that the manifold M in
Eq. (4) admits the structure of a symmetric subspace (SS)
of SO(3) and, hence, of SE(3). Indeed, SE(3) is a symmetric
space [14] with an involutive automorphism sg (i.e., sg ◦sg =
idSE(3)), called inversion symmetry, defined at each point g ∈
SE(3):

sg(h) := gh−1g ∀h ∈ SE(3) (5)

which generalizes the concept of geodesic reflection on a unit
2-sphere S2 or a Euclidean plane R2 , as illustrated in Fig. 2
1. A SS M, such that defined in Eq. (4), is always generated
by the exponential image of a Lie triple subsystem (LTS) m
of se(3) (i.e., a vector subspace m satisfying closure under
double commutators [[m,m],m] ⊂ m):

M = expm (6)

1Strictly speaking, a nD Euclidean space is an affine space [15], which is
equivalent to Rn when a particular reference coordinate frame is chosen. The
choice of the reference frame is irrelevant, for the purpose of this paper.

(a) M2A (b) M3B

Fig. 3. Manipulation with plane symmetry: (a) the 1T1R SS M2A char-
acterizes tilting of its LTS plane about any screw axis in m2A (a parallel
pencil of 0-pitch screws lying on and a ∞-pitch screw perpendicular to the
LTS characteristic plane); (b) the 1T2R SS M3B characterizes tilting of its
characteristic plane about any screw axis in m3B (a planar field of 0-pitch
screws lying on and a∞-pitch screw perpendicular to the characteristic plane).

(a) M3A (b) M4

Fig. 4. Manipulation with line symmetry: (a) the 2T1R SS M3A characterizes
the displacement of a line (the y-axis) that perpendicularly intersects all
screws in m3A while maintaining it perpendicular to the x-axis; (b) the 2T2R
SS M4 characterizes the displacement of its characteristic line (the z-axis) to
an arbitrary location.

Following this lead, we provided a complete classification of
LTSs of se(3) along with their associated SSs of SE(3) in
[12,13]. We denote a mD SS with one and two rotational DoFs
by MmA and MmB respectively; their corresponding LTSs
are mmA and mmB , respectively. M4B and M5B are simply
denoted by M4 and M5, since M4A and M5A do not exist.
Thus, for example, the SS in Eq. (4) is denoted by M2B , and its
LTS {x̂, ŷ}span is m2B . We also identified the decomposition
of Eq. (2) as a special case of the parametrization of the
completion group GM of M by the Cartesian product of m
and its commutator algebra hm := [m,m]:

ẽxp : m× hm → GM

(ξ,η) 7→ eξeη (or eηeξ)
(7)

which is also referred to as a generalized polar decomposition
(GPD) [16].

We investigated in [17] several advantages of M2B by
drawing on the theory of submanifolds [18]: M comprises
shortest rotation paths between the initial configuration z
and a generic configuration Rz; M2B has exactly the same
expressions for acceleration as SO(3). Indeed, M2B underlies
the human eye saccade movement [19,20], and in some sense
provides an optimal redundancy resolution for 2D orienting.

Our preliminary results in [13,17] may be systematically
generalized to characterize motion manifolds of objects with
plane and line symmetry [21] by resorting to higher dimen-
sional SSs of SE(3). For example, 1-translational-1-rotational
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(1T1R 2) or 1T2R motion modules of planar or spatial hyper-
redundant robots [22]–[24], due to their physical construction,
often generate plane symmetric motions, as illustrated in
Fig. 3; Renda et al. also suggested its application in modeling
locally plane symmetric continuum robots [25]. Line symmet-
ric motions, as illustrated in Fig. 4, can be naturally associated
with the 1T2R (planar) or 2T2R (spatial) task of positioning
a needle or laparoscope for minimal invasive surgery [26].
Finally, wearable exoskeleton for robotic rehabilitation [27]–
[31] often requires passively or actively aligning robot and
human joint axes, which involve all three types of symmetry.
We shall refer to the aforementioned motion tasks as symmet-
ric manipulation tasks.

Despite the aforesaid advantages of SSs for portraying
symmetric manipulation tasks outside the Lie group frame-
work, there is no theory or methodology available for the
systematic synthesis of their motion generators. Indeed, in
mechanism synthesis community, mixed DoFs such as 1T2R
and 2T2R DoFs are almost always associated with product-
of-exponentials submanifolds (POEs), i.e., the motion mani-
folds generated by serial kinematic chains [32]–[35]. Unlike
SSs, POEs in general introduce undesired redundant motions
and therefore are not ideal motion generators for symmetric
manipulation tasks. To fully explore SS motion manifolds in
symmetric manipulation, in this paper we develop a systematic
type synthesis method for SS motion generators. Our work is
motivated by the fact that the SS synthesis problem is es-
sentially different from those solvable by state-of-the-art type
synthesis methods [32,34,36]–[38]. Notable exceptions include
some efforts towards the synthesis of M3B-PMs [39,40].

B. Related works

Popplestone et al. used Lie subgroups of SE(3) to study
assembly planning of objects with symmetry [7]. Li et al.
used homogeneous space to model the configuration space
of symmetric objects for workpiece localization algorithms
[8] and robot kinematic calibration [41]. Discrete symmetry
groups are investigated in computer vision [42,43].

Hervé et al. initiated research on type synthesis of parallel
manipulators (PMs) using Lie subgroups [1,44] and dependent
products (of Lie subgroups) of SE(3) [32,38]. Both Lie
subgroups and dependent products can be represented by
POEs [33,45]. Meanwhile, Hunt [39] initiated type synthesis
of PM using screw theory of se(3), which is later pursued by
Carricato et al. [35,37,40,46,47], Huang, Li et al. [32,36,48],
Fang, Tsai et al. [49,50], Kong, Gosselin et al. [51]–[53], etc.

Bonev et al. proposed a tilt-torsion parametrization of
SO(3) for characterizing the orientation workspace of PMs
[10], and later investigated zero-torsion PMs [54]. In partic-
ular, homokinetic-coupling-equivalent PMs [39,40] are zero-
torsion PMs. Later, we showed that the motion manifolds of
both 2R and 1T2R homokinetic-coupling-equivalent PMs are
given by the exponential image of LTSs of se(3) (and therefore

2The notion of mTnR motion, although widely used in mechanisms and
robotics research, does not accurately define a unique motion manifold. In
this paper, such a notion merely serves as a quick reference to predefined
motion manifolds, such as Lie subgroups and symmetric subspaces listed in
Tab. B.1.

are SSs of SE(3)), which prompted us to systematically
investigate SSs of SE(3) [13].

Aside from Lie subgroups, which are trivially SSs, a total
of seven conjugacy classes of SSs of SE(3) are reported in
[13]. We also presented ample evidence that SSs are suitable
motion manifolds for analyzing various mechanical / kinesi-
ological systems. Selig used LTSs and Cartan decomposition
to investigate a class of explicitly solvable optimal motion
planning problem [55]. The role of symmetric space and
GPD in numerical integration and interpolation is investigated
by Munthe-Kass [16] and Gawlik and Leok [56]. The SSs
of SE(3) and their symmetric twist pairs are reported in
Appendix B for convenience of the reader.

C. Organization of the paper

The paper is organized as follows. In Section II, we give
a brief review of state-of-the-art PM type synthesis method
with an emphasis on SSs. We prove that not all SSs admit
PM realization. To break this limitation, in Section III we
propose a systematic type synthesis method for SS motion
generators with general topology. We classify SSs into three
overlapping subcategories according to their synthesizability
under different topology assumptions:
A) M2A,M2B and M3B admit PM realizations;
B) all SSs except M5 admit inter-connected PMs (ICPMs);
C) M3A and M5 admit serial-parallel hybrid manipulators

(SPHMs).
For each subcategory, a number of exemplifying manipulators
are presented. In Section IV, we show how the synthesized
SS motion generators may be use to manipulate objects with
revolute, plane or line symmetry, along with a discussion about
their potential application in robotics.

II. PM TYPE SYNTHESIS FOR SYMMETRIC SUBSPACES

From a motion manifold viewpoint, the many state-of-the-
art PM type synthesis methods summarized in Sec. I-B are
equivalent to the following procedure:

Procedure 1 : type synthesis of PMs.
1) Initialization: specify M as the desired motion manifold of

the PM to be synthesized.
2) Chain synthesis: synthesize chainsMi’s with motion man-

ifolds Mi’s such that Mi contains M (in a neighborhood
of I):

M ⊂ Mi (8)

The joint twists in a chain should be linearly independent
to avoid internal motion.

3) PM synthesis: select from all admissible chains synthesized
in 1) a combination of l chainsMi, i = 1, ..., l with motion
manifolds M1,...,Ml, such that

⋂l
i=1 Mi and M are equal

(in a neighborhood of I):⋂l
i=1 Mi = M (9)

4) End.

The issue of actuation selection is not essential for the devel-
opment of our paper and is therefore not included in the above
procedure.
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If Eq. (8) is satisfied for all motion manifolds Mi’s, Eq. (9)
may conveniently be replaced by:⋂l

i=1 Si = S (9a)

where Si := TIMi, i = 1, ..., l and S := TIM, or dually,∑l
i=1 S

⊥
i = S⊥ (9b)

where S⊥i and S⊥ denote the annihilators or the constraint
wrench spaces of S and Si, respectively:

S⊥i :=
{
ζ ∈ se(3)∗ | ζT · ξ = 0, ∀ξ ∈ Si

}
S⊥ :=

{
ζ ∈ se(3)∗ | ζT · ξ = 0, ∀ξ ∈ S

} (10)

where se(3)∗ is the dual space of se(3), ζ is a wrench
expressed in ray coordinates and ξ is a twist expressed in
axis coordinates.

Equation (9b) is often referred to as the constraint synthesis
condition (CSC) [36]. The equivalence of Eq. (9a) or Eq. (9b)
to Eq. (9) is essentially due to the following fact. The rank
of the constraint Jacobian matrix, i.e., the number of its non-
zero singular values, cannot decrease by small perturbations,
whereas Eq. (8) ensures that the rank cannot increase either.
A detailed proof can be found in [33, Prop. 6].

A. Chain synthesis for symmetric subspace motion generators
Without loss of generality, we restrict ourselves to 1-

DoF Reuleaux lower pairs for serial chain synthesis. The
chain motion manifold Mi will therefore always be a POE∏ki
j=1 exp{ξij}span, with ki = dim Mi and ξij the j-th joint

twist. We also assume that the joint twists in a chain are
linearly independent.

Note that the POE generated by any basis of a kD LTS
m, namely

∏
j=1 exp{ξj}span with {ξ1, ..., ξk}span = m, is

not equal to the corresponding SS M (see Appendix D for
a rigorous proof). In other words, the GPD of a generic
configuration of

∏k
j=1 exp{ξj}span:

eθ1ξ1 ···eθkξk = eξeη ξ ∈ m, η ∈ hm (11)

will have a non-trivial HM-component eη , i.e., η 6= 0. The
concept of symmetric twist pair (SP) and symmetric twist chain
(SC) introduced in our earlier work [13] are essentially means
of eliminating the HM-component from Eq. (11), which we
briefly review as follows.

Review : symmetric pair and symmetric chain [13]. Given a
kD SS M with LTS m, a SP of type m, denoted m-SP, is an
ordered pair of twists (ξ+, ξ−) with ξ+, ξ− ∈ gm that admit
the following condition:{

ξ+ = ξ + η

ξ− = ξ − η
ξ ∈ m,η ∈ hm (12)

Geometrically, the axes of (ξ+, ξ−) attain symmetry about
either a characteristic plane that contains the screws of m
(for M2A,M2B ,M3A and M3B) or a characteristic line that
perpendicularly intersects the screws of m (for M4).

A SC of type m, denoted m-SC, is a kinematic chain Mi

(i being the leg index) with k nesting m-SPs (ξ+ij , ξ
−
ij), j =

1, ..., k:
Mi := (ξ+i1, ..., ξ

+
ik, ξ

−
ik, ..., ξ

−
i1) (13)

such that ξ±ij = ξij ±ηij , ξij ∈ m, ηij ∈ hm, j = 1, ..., k and
satisfy

{ξi1, ..., ξik}span = m (14a)

When m ∩ hm = 0 (i.e., m 6= m5), condition Eq. (14a) is
equivalent to either one of the following two conditions:

{ξ+i1, ..., ξ
+
ik}span ⊕ hm = gm (14b)

{ξ−i1, ..., ξ
−
ik}span ⊕ hm = gm (14c)

We shall refer to (ξ+i1, ..., ξ
+
ik) and (ξ−ik, ..., ξ

−
i1) as the proximal

and distal half of the SC, which we denote by M+
i and M−i ,

respectively. Their motion manifolds will be denoted by M+
i

and M−i respectively. Note also that a m-SC may have either
2k or 2k− 1 joints, with the latter occurring when ξ+ik = ξ−ik
or equivalently ηik = 0, so that the innermost SP (ξ+ik, ξ

−
ik)

collapses into a single joint ξik. We shall refer to the SC with
2k and 2k−1 joints as even SC and odd SC, respectively.

Since all joint twists in a m-SC Mi are members of the
completion algebra gm of m, the chain motion manifold M+

i ·
M−i is either a submanifold of, or equal to, the completion
group GM. In the former case, since

M+
i ·M

−
i =

{∏k
j=1 e

θ+ijξ
+
ij
∏1
j=k e

θ−ijξ
−
ij

∣∣∣ θ±ij ∈ R
}

M =
{∏k

j=1 e
θijξ

+
ij
∏1
j=k e

θijξ
−
ij

∣∣∣ θij ∈ R
} (15)

the chain synthesis condition M ⊂ (M+
i ·M

−
i ) is satisfied. We

say that M is generated byM under the symmetric movement
condition (SMC):

θ+ij ≡ θ
−
ij i = 1, ..., l, j = 1, ..., k (16)

In the latter case, the m-SC can be effectively replaced by any
gm-chain irrespective of the SMC.

B. PM synthesis for M2A, M2B and M3B

A PM comprising multiple m-SCs generates the correspond-
ing SS M = expm if the CSC Eq. (9b) is satisfied.

For example, a typical M3B-PM, also known as the 3-
RSR (or 3-5R) PM or the reflected tripod [40,54,57], is
shown in Fig. 5(c). The end-effector of this mechanism may
perform either a finite rotation about any axis lying in, or a
finite translation along the normal to, the characteristic plane
as shown in Fig. 5(a). Its three chains M1, M2 and M3

are rendered in light brown, cyan and pink respectively, and
are all odd m3B-SCs generated from m3B-SPs, as shown
in Fig. 5(b). Since each chain admits only one independent
constraint wrench ζi, i = 1, 2, 3, as shown in Fig. 5(d), the
CSC Eq. (9b) is given by:∑3

i=1 S
⊥
i = {ζ1, ζ2, ζ3}span = m⊥3B (17)

Recall that the screw system 3 of m3B , shown in Fig. 5(a),
comprises a planar field of 0-pitch screws along with an ∞-
pitch screw perpendicular to it; it is also self-reciprocal [57],

3Following the convention of [57], a system of n, n ≤ 6, linearly
independent twists span a nD vector subspace of the Lie algebra se(3); its
associated screw system is the corresponding (n−1)D projective subspace of
a 5D real projective space RP5 (ignoring the magnitude of the screw). This
screw system is usually called a n-system.
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(a) (b)

(c)

(d)

Fig. 5. Example of a M3B-PM comprising three 5R (in a RSR configura-
tion) m3B-SCs, which are all mirror symmetric about a common characteristic
plane (reflected tripod [57]). (a) screw system of m3B ; (b) various examples
of m3B-SPs (green arrow: screw in m3B ; yellow arrow: screw in h3B ; red /
blue arrow pair: SP); (c) joint twists of the PM; (d) constraint wrenches.

meaning the constraint wrench space m⊥3B has the same screw
system as m3B . The CSC requires that the three lines repre-
senting the three constraint wrenches ζi’s, i = 1, 2, 3, must
be neither mutually concurrent nor parallel. This synthesis
condition first appeared in [39] and was later revisited in [54]
and in [40].

We emphasize that the SCs of a kD LTS m in a SS-
PM must have either 2k − 1 (odd SC) or 2k (even SC)
linearly independent (and hence no more than six) joint twists
according to Procedure 1; since no more than 6 twists can
be linearly independent, k must be smaller than or equal to
3. For example, any SC of m4 (resp., m5) comprises at least
seven (resp., nine) joint twists and does not serve as legitimate
chains for PM synthesis.

Another restraint comes from the fact that when only Lie
subgroup chains (say, generating a Lie subgroup Gi, i =

(a) (b)

(c)

(d)

Fig. 6. Example of a M2A-PM comprising a mirror symmetric 5R m3B-SC
and a planar chain, whose planar normal is parallel to the characteristic plane
of the former. (a) screw system of mp

2A (m2A if p = 0); (b) various examples
of m2A-SPs; (c) joint twists of the PM; (d) constraint wrenches.

1, ..., l) are employed, the resulting PM necessarily has a Lie
subgroup motion manifold ∩li=1Gi instead of the desired SS.
For example, it can be verified that m2A-SCs (resp., m2B-SCs
and m3A-SCs) are necessarily g2A-chains (resp., g2B-chains
and g3A-chains). Consequently, one can not synthesize M2A-
PMs, M2B-PMs or M3A-PMs with only their corresponding
SCs.

On the other hand, since m3B is a parent LTS of m2A

and m2B , a m3B-SC necessarily satisfies the chain synthesis
condition Eq. (8) for M2A and M2B , i.e., its chain motion
manifold contains M2A and M2B respectively. A M2A-PM
(resp., M2B-PM) may then be synthesized using a combination
of m3B-SCs and g2A-chains (resp., g2B-chains) as shown in
Fig. 6(c) and Fig. 7(c) respectively. In both cases, all SCs in
a synthesized PM must share the same characteristic plane.

To proceed with Procedure 1, we verify the CSC for the
M2A-PM shown in Fig. 6(c) as follows. Since the screw
system of m2A comprises a parallel pencil of 0-pitch screws
and an ∞-pitch screw perpendicular to the pencil plane (see
Fig. 6(a)), its constraint wrench system comprises a four-
system that may be spanned by g⊥2A (spanned by ζ21, ζ22 and
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(a) (b)

(c)

(d)

Fig. 7. Example of a M2B-PM comprising a mirror symmetric 5R m3B-SC
and a spherical chain, whose center of rotation o lies on the characteristic
plane of the former. (a) screw system of m2A; (b) various examples of m2A-
SPs; (c) joint twists of the PM; (d) constraint wrenches.

ζ23 in Fig. 6(d)) and an additional 0-pitch wrench (e.g., ζ11
in Fig. 6(d)) that intersects (not in-parallel) all twists in the
pencil of m2A:

S⊥1 + g⊥2A = m⊥2A (18)

In other words, by letting M1 = (ξ+11, ξ
+
12, ξ13, ξ

−
12, ξ

−
11) be

m3B-SC and M2 = (ξ21, ξ22, ξ23) be a m2A-SC (or more
generally, a g2A-chain, i.e., a 3-DoF planar chain), we may
synthesize a M2A-PM, as shown in Fig. 6(c), so long as:
(i) the m3B-SC M1 and the m2A-SC M2 share the same
characteristic plane, and (ii) the constraint force ζ1 of M1 is
not parallel to the constraint forces associated with m2A (see
Fig. 6(d)). The end-effector of synthesized PM may perform
finite rotation about any axis belonging to a parallel pencil
prescribed by m2A.

Similarly we may synthesize a M2B-PM by letting M1 be
the same m3B-SC andM2 = (ξ21, ξ22, ξ23) be a m2B-SC (or
more generally, any g2B-chain, i.e., a 3-DoF spherical chain),
as shown in Fig. 7(c), so long as:

S⊥1 + g⊥2B = m⊥2B (19)

(a) (b)

(c) (d)

Fig. 8. Connectivity graph of an SS-ICPM generating a SS M other than
M5. (a) M-PM; (b) M-ICPM; (c) proximal half PMM+; (d) distal half PM
M−.

or, equivalently, (i) the m3B-SC M1 and m2B-SC M2 share
the same characteristic plane, and (ii) the constraint wrench
ζ1 of M1 does not pass through the center of the pencil of
0-pitch screws associated with m2B (Fig. 7(d)). This 2-DoF
parallel wrist is a standard realization for 2-DoF constant-
velocity (CV) couplings [39,40]. Its end-effector may perform
finite rotation about any axis in the pencil prescribed by m2B

(see Fig. 7(a)).
To summarize this section, we have shown that only

M2A,M2B and M3B admit PM realizations. The PM type
synthesis for M2B and M3B was systematically investigated by
Hunt [39] and later by Carricato [40], without the knowledge
of LTSs and SSs. The PM type synthesis for M2A is performed
here for the first time.

III. TYPE SYNTHESIS OF SYMMETRIC SUBSPACE
MOTION GENERATORS WITH GENERAL TOPOLOGY

We have shown in Sec. II-A that PM synthesis for SSs still
revolves around traditional PM synthesis methods [33,34,36]
with extensive use of SCs [13]. On the other hand, such
synthesis results are limited to three out of seven SSs of
SE(3), due to insufficient loop-closure constraints for the
CSC Eq. (9b) (or equivalently the SMC in Eq. (16)). To
compensate for the missing constraints, we may consider
forming additional internal loops in a PM formed by multiple
m-SCs, as illustrated by Fig. 8(a), so that the SMC of the m-
SCs are not violated. It turns out that an effective and universal
approach to accomplish this (for all SSs except M5) is to
impose an additional hm-chain between the innermost links of
each pair of m-SCs of the PM, as shown in Fig. 8(b), resulting
in what we refer to as an inter-connected PM or ICPM [58].

A M-ICPM for a SS M other than M5 may be essentially
considered as two intertwining PMs which we call the prox-
imal half PM and distal half PM, and denoted by M+ and
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(a) (b)

(c) (d)

Fig. 9. GPD of the chain motions of a ICPM. (a) GPD of the proximal
half PM M+; (b) GPD of the distal half PM M− (M+

1 ,M−
1 obeying the

SMC); (c) M+ after locking M+
1 ; (d) M− after locking M+

1 .

M−, respectively (see Fig. 8(c)). Without loss of generality,
we specify that the base and end-effector ofM+ are the base
and the innermost link of the first leg of the ICPM, whereas
the base and end-effector of M− are the innermost link of
the first leg and the end-effector of the ICPM. The word
“intertwining” refers to the fact that M+ and M− share the
same interconnecting hm-chains. Note that the same hm-chain
considered in M+ becomes its kinematic inverse in M−.

A. Type synthesis of SS-ICPMs for: M2A, M2B , M3A, M3B

and M4

Note from Fig. 8(c) that M+
2 , ...,M

+
l , when augmented

with the interconnecting hm-chains, become gm-legs forM+.
Their leg motion manifolds are thus, the completion group
GM, which contains the motion manifold M+

1 of M+
1 . Con-

sequently, the motion of M+ is completely determined by
that of M+

1 . Similarly, the motion of M− is completely
determined by that of M−1 . The following theorem is the key
to understanding the working principle of the ICPM.

Theorem 1. Given a m-SC Mi = (ξ+i1, ..., ξ
+
ik, ξ

−
ik, ..., ξ

−
i1) (i

being leg index), with m 6= m5, dimm = k and the following
GPD for M+

i :

eθi1ξ
+
i1···eθikξ

+
ik = eξeη ξ ∈ m,η ∈ hm (20)

where θij ∈ (−ε, ε), j = 1, ..., k for a sufficiently small
positive number ε > 0, then we also have the following GPD
for M−i :

eθikξ
−
ik ···eθi1ξ

−
i1 = e−ηeξ (21)

Consequently,

eθi1ξ
+
i1···eθikξ

+
ikeθikξ

−
ik ···eθi1ξ

−
i1 =eξeηe−ηeξ=e2ξ∈M (22)

and Mi generates M = expm under the SMC Eq. (16) if it
satisfies one of the three equivalent conditions in Eq. (14).

Proof. See Appendix C.

According to Theorem 1, the SMC of the ICPM is equiva-
lent to a particular pattern of chain motions of the ICPM, as
shown in Fig. 9 and elaborated as follows.

1) Given the GPD of a particular configuration of M+
1 , say

eξeη1 , ξ ∈ m,η1 ∈ hm, the GPD of M−1 must be given
by e−η1eξ, according to the SMC.

2) By the loop closure constraint of M+, as shown in
Fig. 9(a), the GPD of M+

i , i = 2, ..., l must be of the
form eξeηi ,ηi ∈ hm. In other words, all M+

i ’s should
have the same M-component eξ while not necessarily
having the same HM-component eηi ’s.

3) The differences between the HM-components eηi ’s are
compensated by the hm-chains (as subchains of M+),
whose motion are then given by e−ηieη1 , i = 2, ..., l.

4) By the same argument as in 2) and 3), the GPD ofM−i ’s,
i = 1, ..., l, under the SMC and loop closure constraint
of M− should be given by e−ηieξ, i = 1, ..., l, and the
motion of the augmenting hm-chains (as subchains of
M−) are given by e−η1eηi , i = 2, ..., l, and they are
exactly the inverse of the chain motions obtained in 3).
This implies that imposing the hm-chains does not violate
the SMC of the ICPM.

The following arguments show that the SMC is the only
possible motion of the ICPM.

5) All but the first leg of M+ are gm-chains (each being
a half m-SC M+

i concatenated with a hm-chain) with
linearly independent joint twists. Therefore, the configu-
ration of M+ is completely determined by that of M+

1 .
By fixingM+

1 at a desired configuration, each remaining
leg of M+ becomes completely immobile (as indicated
by a single solid link in Fig. 9(c) and (d)).

6) Consequently, if the remaining chains of M− (as indi-
cated by blue in Fig. 9(d)) are also immobile, i.e., if
the PM formed by M−1 , ...,M

−
l becomes a structure,

the ICPM will follow exactly the SMC for all full-cycle
motion away from singularities.

The SMC along with the second half of Theorem 1 guarantees
that the ICPM is a motion generator of the desired SS motion
manifold M, which leads to the following procedure for
synthesizing SS-ICPMs for a general SS M 6= M5.

Procedure 2 : type synthesis of SS-ICPM.

1) Initialization: Assign a SS M other than M5 as motion
manifold of the ICPM: m = TIM, hm = [m,m], gm =
m⊕ hm.

2) SC synthesis: Synthesize, for the initial configuration, the
distal half-SCs (ξ−ik, ..., ξ

−
i1), i = 1, ..., l, k = dimm, such

that

{ξ−ik, ..., ξ
−
i1}span︸ ︷︷ ︸

:= S−i

⊕hm = gm (23)

Then, synthesize the proximal half-SCs (ξ+i1, ..., ξ
+
ik) by the

unique decomposition{
ξ+ij = ξij + ηij

ξ−ij = ξij − ηij
(24)
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with ξij ∈ m,ηij ∈ hm for i = 1, ..., l and j = 1, ..., k, or
equivalently by plane symmetry for M2A,M2B ,M3A,M3B

or line symmetry for M4.
3) Inter-SC chain synthesis: Synthesize inter-SC hm-chains

(ηm1, ..., ηmh), m = 2, ..., l, h = dim hm, such that:

{ηm1, ...,ηmh}span = hm (25)

4) ICPM synthesis: verify that

l∑
i=1

(S−i )⊥ = se(3)∗ (26)

5) End �

Remark. Note that in Procedure 2, unlike in Procedure
1, we no longer require all twists {ξ+i1, ..., ξ

+
ik; ξ−ik, ..., ξ

−
i1},

k = dimm, to be linearly independent. This offers many new
design possibilities, even for SSs synthesizable by Procedure
1.

Example 1 : M2A-ICPM and Mp
2A-ICPM. M2A = expm2A =

exp{e3, e4}span comprises rotations about any axis in a planar
parallel pencil and also a translation perpendicular to the pencil
plane (see Fig. 6(a)). Consider now the synthesis of a M2A-
ICPM with l 3R m2A-SCs (ξ+i1, ξi2, ξ

−
i1), i = 1, ..., l. First, for

Step 2) of Procedure 2, M−i = (ξi2, ξ
−
i1), i = 1, ..., l, should

be designated in such a way that:

{ξi2, ξ−i1}span ⊕ {e2}span︸ ︷︷ ︸
h2A

= {e2, e3, e4}span︸ ︷︷ ︸
g2A

(27)

Here, h2A is the 1D translation algebra along the y-axis,
and g2A is the 3D planar algebra on the yz-plane. In other
words, the plane passing through ξi2 and ξ−i1 should not be
perpendicular to the characteristic plane of m2A. This fully
determines the l m2A-SCs by plane symmetry.

Next, for Step 3), since h2A = {e2}span, the inter-SC chains
should each comprise only one prismatic joint along the y-axis
at the initial configuration (see yellow joints in Fig. 10).

Finally, for Step 4), since the distal half PM (after locking
the proximal half PM)M−1 ‖···‖M

−
l is a purely planar mecha-

nism, each legM−i = (ξi2, ξ
−
i1), i = 1, ..., l contributes to one

planar constraint force ζi1, as shown in Fig. 10(c). In order to
satisfy Eq. (26), i.e.,

{ζ11, ..., ζl1}span + g⊥2A = se(3)∗ (28)

we need at least three m2A-SCs for the M2A-ICPM (rendered
in light brown, cyan and pink in Fig. 10(a)), where ζ11, ζ21
and ζ31 span a planar field of 0-pitch wrenches on the yz-
plane, as shown in Fig. 10(c).

For the synthesis of Mp
2A-ICPMs, note that the geometry of

m2A and mp2A is essentially the same. It is straightforward to
verify that, by replacing all R joints in a M2A-ICPM with H
joints having a common pitch p, we obtain a corresponding
Mp

2A-ICPM. One such example is shown in [59] without proof.
As we shall see in Sec. IV, a variant of the M2A-ICPM

may serve as an exoskeleton mechanism for the human elbow
joint.

(a)

(b)

(c)

Fig. 10. Example of a M2A-ICPM comprising three 3R m2A-SCs (with
ξ+i2 = ξ−i2 = ξi2, i = 1, 2, 3). (a): joint twists of the ICPM; (b): proximal
half PM; (c): distal half PM and constraint wrenches.

Example 2 : M2B-ICPM. This design example was recently
presented at ISRR2015 [60], where details of the theory were
not shown. Consider the synthesis of an M2B-ICPM as shown
in Fig. 11. It comprises multiple m2B-SCs , denoted by:

Mi = (ξ+i1, ξi2, ξ
−
i1), i = 1, ..., l. (29)

where ξ+i1, ξi2 and ξ−i1 are 0-pitch screws through o, namely
(0T, (w+

i1)T)T, (0T,wT
i2)T and (0T, (w−i1)T)T, with w+

i1,
wi2, w−i1 ∈ R3, respectively.

First, for Step 2) of Procedure 2, ξi2 and ξ−i1 should satisfy:

{ξi2, ξ−i1}span ⊕ {e6}span︸ ︷︷ ︸
h2B

= {e4, e5, e6}span︸ ︷︷ ︸
g2B

(30)

for all i = 1, ..., l. In other words, the plane containing ξi2 and
ξ−i1 should not be perpendicular to the characteristic plane (the
xy-plane at the initial configuration). This fully determines the
l m2B-SCs by plane symmetry.

Next, for Step 3), since h2B = {e6}span, the inter-SC chains
should each comprise only one revolute joint along the z-
axis at the initial configuration (see yellow links and joints in
Fig. 11).
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(a)

(b)

(c)

Fig. 11. Example of a M2B-ICPM comprising three 3R m2B-SCs (with
ξ+i2 = ξ−i2, i = 1, 2, 3). Inter-SC chains are rendered in yellow. (a) joint
twists of the ICPM; (b) proximal half PM; (c) distal half PM and constraint
wrenches.

Finally, for Step 4), since the distal half PM (after locking
the proximal half PM) M−1 ‖···‖M

−
l is a purely spherical

mechanism, each legM−i = (ξi2, ξ
−
i1), i = 1, ..., l, contributes

to one constraint torque ζi1 about o, which is parallel to
wi2 ×w−i1 (see Fig. 11(c)). In order to satisfy Eq. (26), i.e.,

{ζ11, ..., ζl1}span = so(3)∗ (31)

we need at least three m2B-SCs for the M2B-ICPM (rendered
in light brown, cyan and pink in Fig. 11(a)), where ζ11, ζ21 and
ζ31 span a bundle of∞-pitch screws, as shown in Fig. 11(c)).

(a) (b) (c)

Fig. 12. A M2B-ICPM with four m2B-SCs (courtesy of Roberto Di Leva
and Claudio Mazzotti). (a) CAD model of the wrist; (b) a prototype at initial
configuration and (c) tilted configuration.

The proximal PM of the M2B-ICPM, shown in Fig. 11(b),
is a 2-DoF spherical PM, previously investigated in [61]. The
M2B-ICPM proposed here cannot be transformed into a M2B-
PM by removing the interconnecting revolute joints, because
this would result in a SO(3)-PM.

A novel 2-DoF wrist based on the M2B-ICPM was pre-
sented in [60] and is shown in Fig. 12, which exhibits an
extraordinary rotation (tilting) range of ±90◦ about any axis
w = (cosφ, sinφ, 0)T ∈ R3, φ ∈ [0, 2π), in comparison
to ±70◦ of the 3-DoF parallel wrist “Agile Eye” [62] and
±84◦ of the 6-DoF general parallel manipulator reported in
[10]. Another 2-DoF parallel wrist, the “Omni-wrist” [63],
was reported to have the same rotation range as our M2B-
ICPM, but it lacks the advantage of having a fixed center of
rotation. The readers may refer to [60] for more details about
the analysis and design of this new wrist.

Example 3 : M3A-ICPM. Since M3A is a parent SS of
M2A, its ICPM may be conveniently constructed based on
that of M2A. In order to generate an additional translational
DoF along e1 ∈ m3A, we may for example augment a 3R
m2A-SC with another SP comprising two prismatic or helical
joints. A practical alternative is to use a pair of parallelogram
joints (denoted PA), resulting in the RPARPAR m3A-SCs as
shown in Fig. 13. Note that according to the decomposition
in Eq. (24), we have:

{e1, e3, e4}span︸ ︷︷ ︸
m3A

⊕{e2}span︸ ︷︷ ︸
h3A

= {e1, e2, e3, e4}span︸ ︷︷ ︸
g3A

(32)

The two PA joints in the PA-SP should have equal projection
onto the xz-plane and equal and opposite projection along the
y-axis (see Fig. 13(b)).

We point out that although PA is not a lower pair joint, its
motion manifold may still be parameterized as the exponential
image of a circular path ξ(θ), θ ∈ R in {e1, e2, e3}span. It is
not difficult to verify that each of the PA-SPs as shown in
Fig. 13 is instantaneously equivalent to a prismatic SP (as
illustrated by the SP (ξ1 + η1, ξ1 − η1) in Fig. 13(b)), and
will be denoted by (ξ+i2, ξ

−
i2), i = 1, ..., l.

We may then proceed with Step 2) of Procedure 2:

{ξi3, ξ−i2, ξ
−
i1}span ⊕ h3A = g3A (33)
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(a) (c)

(b) (d)

(e)

Fig. 13. Example of a M3A-ICPM comprising four RPARPAR m3A-SCs. (a) screw system of m3A; (b) various examples of m3A-SPs; (c) joint twists of
the ICPM (for clarity, only joint twists of leg 1 are shown); (d) proximal half PM; (e) distal half PM and constraint wrenches.

for all i = 1, ..., l. According to our construction, (ξi3, ξ
−
i1)⊕

{e2}span = g2A = {e2, e3, e4}span and therefore the PA-
SP (ξ+i2, ξ

−
i2) must have non-zero e1-components to satisfy

Eq. (33).

Next, for Step 3) of Procedure 2, since h3A = {e2}span,
each inter-SC chain should comprise one prismatic joint along
the y-axis at the initial configuration (yellow links and joints
in Fig. 13).

Finally, for Step 4), since g⊥3A is a 2-system comprising all
∞-pitch wrenches perpendicular to the x-axis and each distal
half SCM−i contributes (after locking the proximal half PM)
one additional constraint force, at least four SCs (rendered in
light brown, cyan, pink and gray in Fig. 13) are needed to

satisfy Eq. (26), i.e.,

{ζ11, ..., ζ41}span ⊕ g⊥3A = se(3)∗ (34)

or dually

{ζ−11, ζ
−
21, ζ

−
31, ζ

−
41}⊥span ∩ g3A

= {ξ1, ξ2}span ∩ {e1, e2, e3, e4}span = 0
(35)

where ξ1, ξ2 are illustrated in Fig. 13(e). Equation (35) cer-
tainly holds, since the Shönflies algebra g3A contains no 0-
pitch twists in the pencil spanned by ξ1 and ξ2.

As mentioned in Sec. I (see Fig. 4(a)), the M3A-ICPM can
tilt a line-symmetric object about the x-axis, and also translate
it in the xy-plane. This, as we shall demonstrate in Sec. IV,
serves as a potential candidate for an elbow exoskeleton.
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(a) (b)

(c) (d)

Fig. 14. Example of a M3B-ICPM derived from the geometry of a 3-3 Gough-Stewart platform. It comprises two 5R m3B-SCs and one RRR inter-SC
chain. (a) the M3B-ICPM constructed based on Procedure 2; (b) the proximal half PM M+; (c) the distal half PM M− and constraint wrenches; (d)
equivalent geometry of a 3-3 Gough-Stewart platform (GSP).

We finally remark that the resulting m3A-ICPM has an
undeniably complex kinematic structure. We shall resolve this
issue by introducing hybrid structure in Sec. III-B.

Example 4 : M3B-ICPM. Consider the synthesis of a
M3B-ICPM with l 5R m3B-SCs Mi = (ξ+i1, ξ

+
i2, ξi3, ξ

−
i2,

ξ−i1), i = 1, ..., l. First, for Step 2) of Procedure 2, M−i =
(ξi3, ξ

−
i2, ξ

−
i1)’s should satisfy:

{ξi3, ξ−i2, ξ
−
i1}span ⊕ {e1, e2, e6}span︸ ︷︷ ︸

h3B

= se(3)︸ ︷︷ ︸
g3B

(36)

for all i = 1, ..., l. In other words, the screw system of
{ξi3, ξ−i2, ξ

−
i1}span should not intersect the planar algebra h3B ,

i.e., it should not contain any 0-pitch screws parallel to the
z-axis or any ∞-pitch screws perpendicular to the z-axis.
Once M−i are determined, the m3B-SCs Mi may simply be
determined by mirror symmetry (see Fig. 5(b)).

Next, for Step 3), since h3B = {e1, e2, e6}span is a planar
algebra, the inter-SC h3B-chains are simply planar kinematic
chains or even PMs, which can be synthesized using state-of-
the-art methods [32]–[34].

Finally, for Step 4), since each M−i = (ξi3, ξ
−
i2, ξ

−
i1)

contributes three linearly independent constraint wrenches
(ζi1, ζi2, ζi3), i = 1, ..., l, at least two m3B-SCs are needed
to satisfy Eq. (26):

(S−1 )⊥ + (S−2 )⊥

= {ζ11, ζ12, ζ13, ζ21, ζ22, ζ23}span = se(3)∗
(37)

Note that since all joint twists of the m3B-SCs are 0-pitch
screws, ξi3, ξ

−
i2, ξ

−
i1 should in general belong to one of the

two reguli of a hyperboloid [57], while their (reciprocal)
constraint wrenches ζi1, ζi2, ζi3 can be chosen as three 0-
pitch wrenches lying on the other regulus of the hyperboloid.
We end up with verifying the linear independence of six
0-pitch constraint wrenches, which is exactly the same as
verifying the controllability (free of actuation singularity) of a
Gough-Stewart platform [64]–[67], as illustrated in Fig. 14(d).
We remark that the proposed M3B-ICPM comprises one less
m3B-SC leg than the M3B-PM shown in Fig. 5, and that
the interconnecting h3B-chain is responsible for providing an
equivalent constraint of the missing leg.

As suggested in Sec. I (see Fig. 3(b), the proposed M3B-
ICPM can tilt a plane that initially coincides with the charac-
teristic plane of m3B about any axis lying in the characteristic
plane itself or translate it perpendicularly. We will discuss in
Sec. IV its application in exoskeleton design. The proposed
M3B-ICPM may also serve as a novel 3-DoF CV coupling
[39] due to its simplified structure.

Example 5 : M4-ICPM. Consider the synthesis of a M4-ICPM
with l UUUU m4-SCs:

Mi = (ξ+i1, ξ
+
i2︸ ︷︷ ︸

U

, ξ+i3, ξ
+
i4︸ ︷︷ ︸

U

, ξ−i4, ξ
−
i3︸ ︷︷ ︸

U

, ξ−i2, ξ
−
i1︸ ︷︷ ︸

U

) (38)

for i = 1, ..., l. In this case, S−i corresponds to a special
four-system whose 0-pitch screws form a special congruence
comprising two non-intersecting line pencils (see Fig. 15(c))
[57]. The reciprocal two-system (S−i )⊥ is spanned by two
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(a) (b) (c)

(d) (e)

Fig. 15. Example of a M4-ICPM. (a) Screw system of m4; (b) various examples of m4-SPs; (c) joint twists of the ICPM (for clarity, only joint twists of leg
1 are shown); (d) proximal half PM; (e) distal half PM and constraint wrenches (joint twists have been bent to generate a smaller figure).

conveniently identifiable 0-pitch wrenches ζi1, ζi2, namely
along the line connecting the centers of the two line pencils
and the line at the intersection of the pencil planes (see
Fig. 15(e)).

For Step 2) of Procedure 2,M−i = (ξ−i4, ξ
−
i3, ξ

−
i2, ξ

−
i1) should

satisfy:

{ξ−i4, ξ
−
i3, ξ

−
i2, ξ

−
i1}span ⊕ {e3, e6}span︸ ︷︷ ︸

h4

= se(3)︸ ︷︷ ︸
g4

(39)

or, dually

{ζi1, ζi2}span︸ ︷︷ ︸
(S−i )⊥

∩h⊥4 = 0 (40)

for all i = 1, ..., l. It can be shown using geometry of two-
systems [57, Ch. 4] that this is equivalent to requiring ζi2
must not intersect the z-axis. Once M−i is determined, the
m4-SC Mi may simply be determined by line symmetry (see
Fig. 15(b)).

Next, for Step 3), since h4 = {e3, e6}span is the cylindrical
algebra along the z-axis, the inter-SC h4-chains may simply

be chosen as cylindrical joints, with joint twists denoted by
ζi1, ζi2 for i = 2, ..., l (yellow joints in Fig. 15).

Finally, for Step 4), since each M−i each contributes two
linearly independent constraint wrenches (ζi1, ζi2), i = 1, ..., l,
at least three m4-SCs are needed to satisfy Eq. (26):

(S−1 )⊥ + (S−2 )⊥ + (S−3 )⊥

= {ζ11, ζ12, ζ21, ζ22, ζ31, ζ32}span = se(3)∗
(41)

A possible choice is to arrange the six constraint wrenches
in such a way that three (ζ11, ζ21 and ζ31) span a parallel bun-
dle of lines along the z-axis whereas the remaining (ζ12, ζ22
and ζ32) span a line field comprising 0-pitch screws in the
xy-plane (see Fig. 15(e)).

As suggested in Sec. I (see Fig. 4(b)), the proposed M4-
ICPM serves as a line-symmetric motion generator and con-
sequently has numerous related applications. First, since the
end-effector of the ICPM may tilt about any point on the z-
axis and may also translate in the xy-plane, it may serve
as a remote center of motion (RCM) mechanism for use in
minimum invasive surgery. Along with an additional prismatic
axis (see Sec. III-B), it may also serve as a five-axis machine,
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a haptic interface or a 5-DoF passive axis-alignment device for
1-DoF human elbow exoskeleton device (see our discussion in
Sec. IV).

We have so far illustrated the universality and effectiveness
of generating SS motion manifolds with ICPMs following
Procedure 2. We emphasize that the reported examples have
been chosen to involve only a few special screw systems,
which suffice to illustrate the core idea of Procedure 2. A
full spectrum of synthesis results based on the geometry of
more general screw systems may be performed and it will be
reported in our future work.

B. Synthesis of serial-parallel hybrid manipulators

Although none of the seven SSs admits POE representa-
tions, it turns out that two SSs, namely M5 and M3A, may in
fact be decomposed into the product of exponentials of two
complementary subspaces of their LTSs, i.e.

expm = exp u · exp v u⊕ v = m (42)

in a neighborhood of I. We refer to (u, v) as an exponential
pair of m.

Theorem 2. Up to conjugation, the only exponential pairs
(u, v) for LTSs of se(3) are the following:

1) m3A = {e1, e3, e4}span admits an exponential pair (u, v)
such that u = {e1}span and v is any complementary
subspace of u in m3A.

2) m5 = {e1, e2, e3, e4, e5}span admits the following expo-
nential pairs (u, v):
(a) u = {e3 + pe1}span
(b) u = {e3}span
(c) u = {e1, e2 + pe3}span
(d) u = {e1, e3}span
(e) u = {e1, e2, e3}span
For each case above, v is any complementary subspace
of u in m5.

The proof of the above theorem is beyond the scope of this
paper and will be reported in a separate paper [68]. However
one may easily verify the above claims by direct computation.
Notice that the choice of the complementary subspace v is
limited by the fact that u is always a Lie subalgebra. Therefore,
v cannot be a Lie subalgebra for otherwise expm would
admit a POE representation. Moreover, the subspace v must
be properly chosen so that the corresponding exponential sub-
manifold exp v is synthesizable: this implies that, within the
framework of this paper, v must be a LTS. A straightforward
verification using all possible LTSs leads to an exhaustive list
of exponential pairs (u, v) as shown in Tab. I.

It follows from Theorem 2 that the concatenation of a exp u-
generator and a exp v-generator is a generator of expm =
exp u · exp v, resulting in what we call a serial-parallel hybrid
manipulator (SPHM). Since u is always a Lie subalgebra
of se(3), exp u may be realized by either a serial chain or
a PM, which can be synthesized using state-of-the-art type
synthesis methods [32]–[36]. On the other hand, all v’s appear
to be LTSs of dimension 2 to 4, and therefore they may be

TABLE I
SYNTHESIZABLE EXPONENTIAL PAIRS OF LTSS OF se(3)

m u v

m3A {e1}span {e3 + pe1, e4}span = m
(p)
2A

m5

{e1 + pe3}span, p 6= 0 {e1, e2, e4, e5}span = m4

{e3}span {e1, e2, e4, e5}span = m4

{e1, e2 + pe3}span {e3, e4, e5}span = m3B

{e1, e3}span no LTS available
{e1, e2, e3}span {e4, e5}span = m2B

generated either by PMs (Sec. II-B) or by ICPMs (Sec. III-A).
The same motion manifolds may also be generated by a pair
of cooperating motion modules generating exp u and exp v
respectively [45]. We also emphasize that Theorem 2 enables
us to synthesize motion generators for M5 where Procedure
2 is not applicable. We can also avoid directly synthesizing
a M3A-ICPM (resulting in a complex kinematic structure) by
concatenating a M2A-ICPM with a prismatic joint. We shall
see some of these examples in Sec. IV.

To summarize, we have so far established an overarching
framework for type synthesis of symmetric subspace motion
generators, which includes:

(i) synthesis of PMs for M2A,M2B and M3B ;
(ii) synthesis of ICPMs for M

(p)
2A ,M2B ,M3A,M3B and M4;

(iii) synthesis of SPHMs for M3A and M5.

IV. APPLICATION OF SYMMETRIC SUBSPACE MOTION
GENERATORS

As pointed out in Sec. I, the symmetric subspaces of SE(3)
may serve as motion manifolds for the manipulation of objects
with revolute, line and plane symmetry. Such manipulation
tasks have a broad range of applications in robotics, but
have not been systematically investigated before. This section
applies the SS-motion generators synthesized in the previous
sections to some key applications involving manipulating
objects with symmetry.

A. Revolute Symmetry in Five-Axis Machining and Haptic
Interfaces

It is pointed out in Sec. I that the 2D SS M2B captures
the geometry of orientating an object with revolute symmetry
over the unit 2-sphere S2. It follows that the 5D SS M5 is
exactly the motion manifold characterizing the displacement
of revolute-symmetric objects in the sense of Theorem 2:

M5 = T3 ·M2B (43)

where T3 denotes the 3D translational subgroup exp{e1,
e2, e3}span. Immediate applications include five-axis machin-
ing [45] and haptic interfaces [69], where the self-spin of the
spindle/stylus is not essential. One may argue that, in this case,
the 2D POE exp{e4}span ·exp{e5}span (generating the motion
of a Cardan joint) may well be used in place of M2B . However,
the Cardan model suffers from parametrization singularity at
90◦ tilt [70]. In comparison, M2B = exp{e4, e5}span enjoys
an almost (except at 180◦ tilt) singularity-free orientation
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(a) (b)

(c)

Fig. 16. (a) A M5-SPHM comprising a PM translational module (a linear
DELTA robot in red) and a M2B-ICPM module; (b) a M5-SPHM comprising
a serial translational module (an ABB IRB260 robot in red) and a M2B-ICPM
module; (c) a M5-SPHM comprising a P joint (in red) and a M4-ICPM
module.

parametrization [60], and does lead to PM (ICPM) designs
with omni-directional 90◦ tilt range [71,72].

Referring to Eq. (43), we may design a five-axis SPHM
comprising a T3-module concatenated with the M2B-ICPM
(shown in Fig. 11(a)). For example, we may realize the T3-
module by a PM (as shown by the red linear DELTA in
Fig. 16(a)) or also a serial robot [73] (as shown in Fig. 16(b)
by the red ABB IRB260 palletizer). Note that although the
latter also produces a involuntary rotation about the z-axis, the
SPHM is nevertheless legitimate since M2B is invariant under
such a rotation (with its isotropy group being H2B = SO(2)).

If, on the other hand, the traveling range in one direction,
say along the z-axis, is required to be larger than the other
freedoms, we may use a different decomposition of M5, such
as:

M5 = Tz ·M4 (44)

where Tz denotes exp{e3}span, leading to a M5-SPHM with
a M4-ICPM module mounted on a linear rail, as shown in
Fig. 16(c).

B. Line symmetry in Needle Positioning for Minimal Invasive
Surgery

M4, historically known as the space of line symmetric
motions [21,74], characterizes the motion manifold of a line-
symmetric object by screwing it along the common perpendic-
ular of its symmetry axis at the initial and final locations (see

(a) (b)

Fig. 17. Application of M4-ICPM in needle positioning for minimal invasive
surgery. (a) Any point on the characteristic line is a RCM for the end-effector;
(b) a point not on the characteristic line may serve as a pseudo RCM (i.e.,
with involuntary sliding).

Fig. 4). Although line symmetric motions in general do not
correspond to shortest paths under any physically meaningful
Riemannian metric on SE(3) [75], they avoid introducing
undesired spin motion about the symmetry axis, a property that
is desired in needle positioning for minimal invasive surgery
[26,76].

State-of-the-art designs of minimal invasive surgery robot
either implement a 3R1T POE (exp{e4}span · exp{e5}span ·
exp{e6}span · exp{e3}span) motion generator with combined
needle positioning and insertion functionality [77,78], or
a 2T2R POE (exp{e1}span · exp{e2}span · exp{e4}span ·
exp{e5}span) motion generator for needle positioning
(equipped with an additional axis for needle insertion) [79].
The RCM of the robot is fixed to a single point in the former
case, and is allowed to translate in the xy-plane in the latter
case. The problems with such designs are: i) additional depth
alignment is needed to match the needle insertion point with
the RCM or RCM plane; ii) the line symmetry of the needle
positioning task is not identified in either case, resulting in
RCM mechanism designs that introduce involuntary spin of
the needle.

On the other hand, since the M4-ICPM proposed in Fig. 15
can rotate its end-effector about any axis that perpendicularly
intersects the characteristic line of m4 (Fig. 15(a)), any point
on the characteristic line is one of its RCMs (as illustrated
in Fig. 17(a)). This allows the M4-ICPM to accomplish the
needle positioning task free of involuntary spin, and also being
able to accommodate uncertain insertion point depth. If the
desired insertion point does not lie on the characteristic line
(as shown by the red RCM in Fig. 17(b)), it is still possible to
move the end-effector as if it first translates above and rotates
about the desired RCM and then undergoes an involuntary
sliding along the symmetry axis of the end-effector (as shown
in Fig. 17(b)). Consequently, the “pseudo” RCM (in red) may
still serve as the needle insertion point if the needle is initially
not in contact with the patient.
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C. Plane Symmetry in Axis-Misalignment Tolerant Design of
Exoskeletons

Aside from characterizing the motion of the modules of
a hyper-redundant robot, plane-symmetric motions may also
have following potential application. In biomechanics, human
joints such as 1-DoF elbow/knee joint or 3-DoF shoulder joint
are rarely modeled as revolute or spherical joints due to the
presence of joint axis sliding motion [80]. For example, an
accurate kinematic model of the human knee joint is proposed
by Parenti-Castelli et al. [81,82], which leads to an equivalent
5-SS PM model. Such model is important for understanding
and simulating the biomechanics of human joint, but is rarely
considered in ergonomic design of wearable exoskeleton due
to its complexity.

An alternative approach is to model the human joints as
revolute or spherical joints, and provide additional freedoms
to accommodate the inevitable axis misalignment between the
human joint axis and the exoskeleton joint axis [27]–[31]. By
assuming the elbow joint to be a planar joint, Stienen et al. [28]
proposed to use a 2T PAPA passive mechanism to accommo-
date planar axis misalignment of an elbow exoskeleton joint to
the human counterpart, as illustrated in Fig. 18(a). Such design
corresponds, up to conjugation, to the following decomposition
of the planar Euclidean group SE(2) = exp{e2, e3, e4}span:

SE(2) = exp{e4}span · exp{e2, e3}span (45)

Note that both translational DoFs are needed for generating a
finite rotation about the misaligned human elbow joint. On the
other hand, we may also model the elbow exoskeleton after
the GPD for G2A = SE(2):

SE(2) = M2A · exp{e2}span (46)

leading to an active M2A-ICPM elbow exoskeletal joint
with a passive P joint for axis misalignment, as shown in
Fig. 18(c),(d). The M2A-ICPM comprises oneRPPR and two
RRR m2A-SCs, and exhibits a much larger rotation range in
comparison to the M2A-ICPM illustrated in Fig. 10(a) to match
the motion range of the human elbow joint. A differential
mechanism may be employed to drive the active joint by one
input. Note that in this case, axis alignment is achieved so long
as the human elbow axis is aligned with the characteristic
plane of the M2A-ICPM. Such design therefore leads to a
reduced motion range of the alignment mechanism. If elbow
laxity [31] is taken into consideration, we may simply replace
the GPD of G2A with that of G3A = exp{e1, e2, e3, e4}span:

G3A = M3A · exp{e2}span = M2A · exp{e1, e2}span (47)

where the second equality is due to Theorem 2. This leads to
an elbow exoskeleton design with an active M2A joint and a
2T passive alignment mechanism.

A 3D version of the exoskeleton we have designed can be
similarly developed for the 3-DoF shoulder joint by resorting
to the GPD of M3B :

SE(3) = M3B · SE(2) (48)

Our analysis also suggests that the design of such exoskeletons
is closely related to the plane symmetric motions of M2A and

(a) (b)

(c)

(d)

Fig. 18. Elbow exoskeleton with axis alignment mechanisms. (a) R-type
elbow joint with 2T PAPA alignment mechanism; (b) M2A-type joint with
1T P alignment mechanism; (c) proposed M2A-ICPM design; (d) variable
location of rotation axis of the M2A-ICPM.

M3B (as illustrated in Fig. 3), since their corresponding motion
generators can efficiently accommodate axis misalignment by
providing a parallel pencil and a planar field of rotation axes
respectively. Finally, the GPD of G4 = SE(3) can be exploited
in the design of elbow exoskeletons if a more sophisticated
elbow joint model [31] is considered.

V. CONCLUSION

In this paper, we presented an overarching type synthesis
framework of symmetric subspace motion generators for func-
tionally redundant manipulation of 3D shapes with continuous
symmetry. We demonstrated the effectiveness of our synthesis
procedure by presenting, for each symmetric subspace, one or
two novel motion generators, and demonstrated their potential
applications. In order to focus on developing the core ideas, we
refrain from presenting exhaustive enumeration of synthesis
results.

Our work has demonstrated, using practical robotic applica-
tions, the existence of motion manifolds outside the product-
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of-exponentials category and the necessity and means of
addressing their type synthesis problem. On the one hand,
we have provided ample opportunities for further research
on type synthesis and conceptual design of parallel robots
with inherently superior kinematic/dynamic performance (for
functionally redundant manipulation tasks). On the other hand,
the geometric properties of the symmetric subspaces demon-
strated via their type synthesis may also be beneficial to
planning, estimation and control of robotic systems having
either their motion manifolds or their kinematic structures
exhibiting certain types of symmetry.
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APPENDIX A
ELEMENTS OF THE SPECIAL EUCLIDEAN GROUP SE(3)

The following notations are used throughout this paper,
and are reasonably consistent with those in [13,33,83]. As
we shall not give any introduction to Lie group theory of
SE(3) or the screw geometry of se(3), the readers should
refer to authoritative texts for further details [57,83,84]. We
only remark that the former are mainly used in the proofs of
the theorems and synthesis procedures presented in this paper,
and the latter is extensively used in presenting the synthesis
results.

Elements of SE(3), denoted g,h, ..., are understood to be
homogeneous matrices of the form:

g =

(
R t
0T 1

)
∈ R4×4 (A.1)

with R a proper orthogonal matrix, i.e. R ∈ SO(3), and t an
arbitrary vector in R3 representing the rotation and translation
component respectively.

Elements of the Lie algebra se(3) of SE(3) are often
referred to as twists, and are denoted by ξ,η, ... (c.f. ξ̂ in
[83]):

ξ =

(
ŵ v
0T 0

)
∈ R4×4 (A.2)

where w,v ∈ R3 and ŵ denotes the 3 × 3 skew-symmetric
matrix corresponding to w such that ŵw′ = w ×w′, ∀w′ ∈
R3. The exponential map exp : se(3)→ SE(3) is defined by:

exp ξ = I + ξ +
1

2!
ξ2 +

1

3!
ξ3 + ··· ∀ξ ∈ se(3) (A.3)

With an abuse of notation, we also use ξ,η, ... to denote
the axis-coordinates [84] of Eq. (A.2):

ξ =

(
v
w

)
∈ R6 (A.4)

Fig. A.1. Graphical representation of the canonical basis of se(3) and notation
for twists with different pitch value p.

with w and v representing the angular and linear velocity
respectively. Consequently, the canonical basis of R6, denoted
e1, ..., e6,

e1 =

(
x
0

)
e2 =

(
y
0

)
e3 =

(
z
0

)
e4 =

(
0
x

)
e5 =

(
0
y

)
e6 =

(
0
z

)
x = (1, 0, 0)T y = (0, 1, 0)T z = (0, 0, 1)T

(A.5)

also define a set of basis twists for se(3), with e1, e2, e3 (re-
spectively, e4, e5, e6) representing unit instantaneous transla-
tion (respectively, rotation) along the x,y, z axes respectively
(see Fig. A.1).

Elements of se(3)∗, the dual space of se(3), are referred to
as wrenches and denoted, in ray coordinates, by ζ:

ζ =

(
f
τ

)
(A.6)

with f (force component) and τ (torque component) pairing
with v and w respectively. In this case, the natural pairing
〈·, ·〉 between se(3)∗ and se(3) is simply given by the inner
product:

〈ζ, ξ〉 := ζT · ξ (A.7)

APPENDIX B
SYMMETRIC SUBSPACES OF SE(3) AND THEIR

SYMMETRIC TWIST PAIRS

A symmetric subspace M of SE(3), like a Lie subgroup of
SE(3), is uniquely determined by its identity tangent space
m := TIM, which is closed under double commutators

[[ξ1, ξ2], ξ3] ∈ m ∀ξ1, ξ2, ξ3 ∈ m (B.1)

and hence is referred to as a Lie triple subsystem (LTS) [14].
More precisely, M is the exponential image of m4

M = expm (B.2)

A total of seven conjugacy classes of symmetric subspaces
of SE(3) have been found in [13], and recalled here in

4An exception is mp
2A, p 6= 0, where Mp

2A is generated from expmp
2A by

inversion symmetry [13].
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TABLE B.1
CONJUGACY CLASSES OF SS’S OF SE(3) (EXCLUDING LIE SUBGROUPS OF SE(3), WHICH ARE TRIVIAL SS’S).

dim M m (normal form) hm = [m,m] gm = hm + m isotropy group

2 M
(p)
2A m

(p)
2A , {e3, e4 + pe1}span {e2}span {e2, e3, e4 + pe1}span exp{e1, e2}span

M2B m2B , {e4, e5}span {e6}span {e4, e5, e6}span exp{e6}span
3 M3A m3A , {e1, e3, e4}span {e2}span {e1, e2, e3, e4}span exp{e1, e2}span

M3B m3B , {e3, e4, e5}span {e1, e2, e6}span se(3) exp{e1, e2, e6}span
4 M4 m4 , {e1, e2, e4, e5}span {e3, e6}span se(3) exp{e3, e6}span
5 M5 m5 , {e1, e2, e3, e4, e5}span {e1, e2, e3, e6}span se(3) exp{e1, e2, e3, e6}span

Tab. B.1. This classification makes use of the canonical basis
of se(3) defined in Fig. A.1. A mD SS with one and two
rotational DoFs is denoted by MmA and MmB , respectively.
M4B and M5B are simply denoted by M4 and M5, since
M4A and M5A do not exist. For reference, we also recall the
screw systems of the Lie triple subsystems corresponding to
the symmetric subspaces in Fig. B.1, and their symmetric twist
pairs in Fig. B.2.

APPENDIX C
PROOF OF THEOREM 1

For clarity, we shall drop the leg index i in this proof.
According to [13, Prop. 2(c)], since ξ+j ∈ gm, j = 1, ..., k,
we may assume (by taking θj’s to be small enough) that
eθ1ξ

+
1 ···eθkξ

+
k is contained in the coordinate neighborhood of

I in GM defined by ẽxpI : m × hm → GM. Therefore, there
exists ξ ∈ m and η ∈ hm such that

eθ1ξ
+
1 ···eθkξ

+
k = eξeη (C.1)

To prove Eq. (21), we may simply proceed by induction.
For k = 1, given eθ1ξ

+
1 = eξeη for ξ ∈ m and η ∈ hm,

we apply the Campbell-Baker-Hausdorff-Dynkin (CBHD) for-
mula [85]:

θ1ξ
+
1 = log(eξeη) = ξ + η +

1

2
[ξ,η]+

1

12
([ξ, [ξ,η]] + [η, [η, ξ]]) + h.o.t.

= Σ0 + Σ1

(C.2)

where Σ0 and Σ1 are summations of terms in the CBHD
formula involving an even and an odd number of ξ’s respec-
tively (rearrangement is allowed since the CBHD formula is
absolutely convergent for ‖ξ‖ < 1, ‖η‖ < 1 [86]). By the
definition of LTS m and hm:

[m,m] = hm, [hm,m] ⊂ m, [hm, hm] ⊂ hm (C.3)

one may easily show that Σ0 ∈ hm and Σ1 ∈ m. By the
construction of SP (ξ+1 , ξ

−
1 ) given in Eq. (12),{

ξ+1 = ξ1 + η1

ξ−1 = ξ1 − η1

ξ1 ∈ m,η1 ∈ hm (C.4)

We see that Σ0 = θ1η1 and Σ1 = θ1ξ1. On the other hand,
we have:

log(e−ξeη) = Σ0 − Σ1 = −θ1(ξ1 − η1) = −θ1ξ−1 (C.5)

and therefore e−θ1ξ
−
1 = e−ξeη .

Next, assume the statement is true for k = n − 1, that is,
we have: {

eθ2ξ
+
2 ···eθnξ

+
n = eξeη

e−θ2ξ
−
2 ···e−θnξ

−
n = e−ξeη

(C.6)

for some ξ ∈ m and η ∈ hm (note that the case k = n − 1
also implies k < n − 1 by letting ξ±j = 0, j = 2, ..., n − k).
Then we have for k = n:{

eθ1ξ
+
1 ···eθnξ

+
n = eθ1ξ

+
1 eξeη

e−θ1ξ
−
1 ···e−θnξ

−
n = e−θ1ξ

−
1 e−ξeη

(C.7)

Observe that we have from k = 2:{
eθ1ξ

+
1 eξ = eξ

′
eη
′

e−θ1ξ
−
1 e−ξ = e−ξ

′
eη
′ (C.8)

for some ξ′ ∈ m and η′ ∈ hm. Substitute Eq. (C.8) back into
Eq. (C.7), and notice that eη

′
eη = eη

′′
for some η′′ ∈ hm

(since hm is a Lie subalgebra), and we have:{
eθ1ξ

+
1 ···eθnξ

+
n = eξ

′
eη
′′

e−θ1ξ
−
1 ···e−θnξ

−
n = e−ξ

′
eη
′′ (C.9)

The mathematical induction is now complete.

APPENDIX D
NON-EXISTENCE OF POE REPRESENTATION FOR

SYMMETRIC SUBSPACES

Proposition 1. Given a symmetric subspace expm of SE(3)
that is not a Lie subgroup (i.e., the Lie triple subsystem m
is not a Lie subalgebra of se(3)), expm admits no POE
representation.

Proof. Suppose that

k∏
j=1

exp{ξj}span:={eθ1ξ1···eθkξk | θj∈(−ε,ε),ε>0} (D.1)

is a POE representation of expm. The fact that the identity tan-
gent space of

∏k
j=1 exp{ξj}span is given by {ξ1, ..., ξk}span

implies:
{ξ1, ..., ξk}span = m (D.2)

Since m is not a Lie subalgebra, we have at least two twists
ξr, ξs, 1 ≤ r < s ≤ k, such that [ξr, ξs] 6∈ m.
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(a) mp
2A (m2A if p = 0) (b) m2B (c) m3A

(d) m3B (e) m4 (p arbitrary) (f) m5

Fig. B.1. Screw systems of Lie triple subsystems. The basis screws along with a generic screw are shown for each m (green arrows). The characteristic plane
of mp

2A (m2A), m2B, m3A, m3B is defined as the plane containing the axes of all finite-pitch screws. The characteristic line of m4 is defined as the line that
intersects all finite-pitch screws at right angle. The characteristic direction of m5 is defined as the direction perpendicular to all finite-pitch screws. c(·) and
s(·) denote cos(·) and sin(·) respectively.

(a) m
(p)
2A (b) m2B (c) m3A (d) m3B (e) m4

Fig. B.2. Symmetric twist pairs of LTSs. Since m5 contains all other LTSs, all the above SPs are also SPs of m5.

Now a contradiction is constructed as follows. First,
note that the 2D submanifold exp{ξr}span · exp{ξs}span of∏k
j=1 exp{ξj}span is locally contained in expm (this is true

even if ξr and ξs are not adjacent). We apply the CBHD
formula [85] to construct a curve c(t) in m:

c(t) := log(etξretξs)

=tξr + tξs +
t2

2
[ξr, ξs] +O(t3), t ∈ (−ε, ε)

(D.3)

Since m is a vector space, we have:

dc(t)

dt
= lim
δt→0

c(t+ δt)− c(t)

δt
∈ m (D.4)

and also

d2c(t)

dt2

∣∣∣∣
t=0

= lim
δt→0

(
dc(u)

du

∣∣∣∣
u=δt

− dc(u)

du

∣∣∣∣
u=0

)
= [ξr, ξs] ∈ m

(D.5)

This completes the proof.
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