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Image mosaicing permits achieving one high-resolution image, extending the visible area of the sample while keeping the same
resolution. However, intensity inhomogeneity of the stitched images can altermeasurements and the right perception of the original
sample. The problem can be solved by flat-field correcting the images through the vignetting function. Vignetting correction has
been widely addressed for grey-level images, but not for colour ones. In this work, a practical solution for the colour vignetting
correction in microscopy, also facing the problem of saturated pixels, is described. In order to assess the quality of the proposed
approach, five different tonal correction approaches were quantitatively compared using state-of-the-art metrics and seven pairs of
partially overlapping images of seven different samples. The results obtained proved that the proposed approach allows obtaining
high quality colour flat-field corrected images and seamless mosaics without employing any blending adjustment. In order to give
the opportunity to easily obtain seamless mosaics ready for quantitative analysis, the described vignetting correction method has
been implemented in an upgraded release ofMicroMos (version 3.0), an open-source software specifically designed to automatically
obtain mosaics of partially overlapped images.

1. Introduction

Panoramic photography is very popular. It has been used
for more than a century; the first attempts of panoramic
photographs are found at war photography (e.g., during the
American Civil War in 1860) [1]. Nowadays, they are widely
used in oncology, in particular in histopathology [2]. As
far as microscopy is concerned, various high-magnification
microscopes are used in order to observe the fine details
of biological specimens. However, they all suffer from a
limited field of view (FOV) [3]. Mosaicing has a key role
for this purpose, since high-resolution images representing
a whole sample are a valuable resource for pathologists
and biologists in general [4]. Technically, image mosaicing
is defined as the process of obtaining a wider FOV of a
scene from a tile of partial views, and mosaics are built by

registering and stitching several overlapping images [5]. In
order to obtain a mosaic suitable for quantitative analysis,
two important aspects must be considered: the geometric
alignment of the images and the colour homogenization of
the different views [6]. Errors propagated via geometric and
photometric misalignments result in undesirable seams and
object discontinuities that can be then seen at the borders of
the images.

Ghosh and Kaabouch provided an in-depth survey of
the existing image mosaicing algorithms, by classifying them
into several categories [7]. Furthermore, a number of image
mosaicing algorithms have been proposed in the literature
over the last three decades [8]. For instance, Autostich [9]
and Image Composite Editor (http://research.microsoft.com/
en-us/um/redmond/groups/ivm/ICE/) are two very popular
freely available software tools widely used off-line to stitch
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partly overlapping images. On the one hand, the geometric
point of view has been thoroughly investigated by the
computer vision community [10]. On the other hand, colour
mapping (i.e., correction of colour mismatches) used to
obtain seamless mosaics for quantitative analyses has not
been extensively studied yet and the tonal registration of
colour images is still a pending problem.

Microscope image acquisition has several limitations due
to imperfect illumination of the specimen, optical aber-
rations in the objectives, and different sources of camera
noise [11]. These conditions can cause the generation of
images with inhomogeneous intensity, a phenomenon gen-
erally referred to as vignetting [12]. As such, vignetting
reduces overall intensity of objects in the periphery or
other parts of the image [13], while noise is increased
[6]. In practice, uneven distribution of the FOV’s intensity
is often tolerable if images are analyzed qualitatively. On
the contrary, when quantitative measurements are needed,
uneven illumination hides real quantitative differences and
jeopardizes biological experiments [14]. Although blending
is used to minimize the discontinuities along the stitch-
ing regions of mosaics [7], it cannot fix the problem of
inhomogeneous brightness; hence discontinuities remain in
the mosaic (Figure 1). Flat-field correction performed using
the vignetting function is the only solution available to
obtain seamless mosaics with undistorted intensity values
[15].

Several linear [16] and nonlinear [17] vignetting cor-
rection approaches have been proposed in literature for
grey-level images and the problem has been extensively
discussed [18]. For instance, Liu et al. [19] deeply compared
10 different approaches and Peng et al. [20] tested the most
recent software implementations using 12 microscope image
collections (also provided for future analyses). Chernavskaia
et al. [21] wrote an extensive tutorial article with practi-
cal recommendations for the application of different flat-
field correction methods to the development of automatic
software for medical diagnostics. However, the literature
about vignetting correction of colour images is very sparse
[22].

In this work: (a) an efficient colour vignetting correction
approach for microscopy images is described, also tackling
the problem of under- and overexposure [15]; (b) a new
release of MicroMos (http://sourceforge.net/p/micromos)
[23], a software recently proposed to automatically obtain
mosaics of partially overlapped images, is presented. In
particular, four new modules and a Graphical User Interface
(GUI) have been added, which make the software user
friendly; (c) mosaics obtained with different tonal correc-
tion approaches are quantitatively compared by using state-
of-the-art metrics. To quantitatively compare the different
correction approaches, we exploited the registrationmatrices
directly provided byMicroMos as the output. It is worth notic-
ing that identifying corresponding pixels to quantitatively
compare original images and related mosaics would be not
possible without using software that provides the registration
matrixes used to build the mosaics. In this way MicroMos, a
software tool conceived for mosaicing can also be used as a
tool to compare registration approaches.

2. Materials and Methods

2.1. Colour Vignetting Correction. The microscope endowed
with a digital camera represents an image acquisition system
with a single illumination source, with constant properties
for a long acquisition time. A sample imaged at different
positions produces different scenes but the corresponding
RGB pixels are related by simple scale factors [24]. Con-
sequently, the flat-field correction performed by using the
vignetting function (also called retrospective correction [25])
enables normalizing the image’s intensities by providing
homogeneous pixels’ values representative of the original
sample’s radiance.

The flat-field correction theory is complex [18]. Sev-
eral methods have been proposed in literature to esti-
mate the vignetting function from a single-image [26]
or a sequence of images acquired by keeping the micro-
scope set-up constant [12]. The most common way to do
that is using a short sequence of empty field images and
computing the median value for each x-y pixel position
[27]. Other approaches rely on the segmentation of the
background [28] or foreground [29] regions followed by
a dense 2D reconstruction. However, once the vignetting
function V has been estimated, each grey-level pixel of
the input image I is then flat-field corrected by simply
normalizing the intensities according to (1) (see [30]). Con-
sider

𝑂 (𝑥, 𝑦) = 𝐼 (𝑥, 𝑦)
𝑉 (𝑥, 𝑦)𝑉 (1)

where 𝑉 is the mean value of 𝑉, (𝑥, 𝑦) represent the 2D
pixel’s coordinates, and 𝑂 is the flat-field corrected image.
In the literature, there are also many works showing colour
mosaics flat-field corrected [31].However,most of the authors
do not declare which colour space they use, neither which
channel is modified to flat-field correct the images, and only
few of them give details on how they transfer the theory of
vignetting correction from grey-level images to colour ones
[15].

Vignetting is basically a channel independent effect [32];
the red, green, and blue channels in an RGB image are
all affected by the same function and to correct vignetting
all channels are typically multiplied by the same correction
factors [33]. Accordingly, Sun et al. [34] calculated the
average intensity from all channels and corrected colours
image with the same approach used for monochrome ones.
In this work, the vignetting function is the median value
for each x-y position of empty field images converted
into grey-level and stored into a z-stack. Then, similarly
to what Kordecki et al. [35, 36] described, we proposed
a colour vignetting correction approach where V is used
to normalize each channel 𝑐 ∈ {R,G,B} as reported
in

𝑂 (𝑥, 𝑦, 𝑐) = 𝐼 (𝑥, 𝑦, 𝑐)𝑉 (𝑥, 𝑦) 𝑉. (2)

Then, for each c of O, the underexposed and the saturated
pixels originally present in I(x,y,c) are remapped back to 0

http://sourceforge.net/p/micromos
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Figure 1: Vignetting correction versus blending. (a) Mosaic obtained by stitching together two partially overlapped images, without
performing any tonal correction. On the right, the intensity plot profile of the dashed-blue line highlighted in the mosaic on the left. (b) Same
mosaic as (a) but obtained by vignetting correction. The intensity profile became flat. (c) Same mosaic as (a) but obtained by minimizing
the discontinuities in the stitching zones through blending. Globally, intensity discontinuities still remain in the mosaic as shown by the plot
profile.



4 BioMed Research International

(a) (b)

(c) (d)

Figure 2: Colour mosaics of cells and tissues. (a, c) Mosaics obtained by stitching two partly overlapping images, without performing any
tonal correction. On the right, a high-magnification detail representing a region across the stitching seam (highlighted with red arrowheads
in the magnified details). The images in (a) do not have saturated pixels, while those in (c) have pixels saturated in the red channel. (b, d)
Same mosaics as (a) and (c), respectively, but obtained by vignetting correcting the images according to (2). Seams in the stitching zones are
still visible in (d).

and the maximum intensity value (usually, 255). This simple
yet effective approach enables obtaining seamless mosaics,
except when saturated pixels are present in at least one c
(Figure 2).

2.2. Pixel Saturated Images. In order to maximize the visual
contrast on the samples, a great quantity of light is required,
through a wide iris aperture or, less frequently, through a
high exposure time. As a drawback, several parts of the
images (the whitest ones) can go towards saturation or even
saturate.The problem of pixels with values at the range limits
is typically neglected by authors presenting colour-correction
approaches [37]. Only few papers describe what procedure
is implemented to deal with saturated pixels [38]. It is
worth remarking that the digital images represent the scene’s
radiance using a limited colour depth, usually 8 bits. Very
low and high radiance values are not accurately represented
in the image [15]. Accordingly, recovering the real sample’s
radiance from underexposed or saturated images without
using prior information is impossible. Consequently, false-
colours (meant as colours not representing the real sample’s
radiance) are artificially generated if saturated images are
flat-field corrected considering the saturated pixels in the
same way as the “good” pixels [10], that is, the nonsatu-
rated ones (Figure 3). In addition, if the images are used
for quantitative analyses, the intensity values generated by
normalizing the saturated pixels with the vignetting function
can produce information (e.g., unnatural profiles in tissues,
as the green curve in Figure 3(b)) that lead to wrong
conclusions.

In the proposed vignetting correction approach, all
pixels originally at a 255-value after normalization are set
back to 255 (Figure 3(c)). Similarly, all pixels with 0-value
before normalization are kept to 0 also after vignetting
correction. Although this approach does not provide a
solution to recover the sample’s radiance from saturated
pixels, it does not introduce any false-colour in the corrected
image.

In mosaicing applications, more representations of the
same scene are available, and pixels that are underex-
posed/saturated in some images might not be underex-
posed/saturated in other ones, due to the spatial nonunifor-
mity of the system [5]. Accordingly, a way to recover the
sample’s radiance from underexposed/saturated pixels can
be exploiting the overlapping areas and, for each channel
c and pixel p of the flat-field corrected image O𝑖 (with
i=1...n, n = number of images composing the mosaic),
checking whether “good” intensity values v contained in
the correct range (i.e., 0 < v < 255) are present in the
corresponding p of the other flat-field corrected images O𝑗,
with j ̸=i (it is worth noting that corresponding p in different
O have always a different (x,y) position, except when O𝑖
and O𝑗 are perfectly geometrically aligned). In that case,
the underexposed/saturated intensity of the pixels in O𝑖,
corresponding to the original underexposed/saturated pixels
in I𝑖, can be replaced by the corresponding “good” flat-
field corrected intensity values taken from the other flat-
field corrected images O𝑗 (Figure 4). Accordingly, the core of
the proposed algorithm can be expressed in pseudocode as
follows
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Figure 3: Saturated pixels. (a) Let us consider the blue continuous curve as a representative of the intensity profile of the blue line in the
image reported in the top-right corner. Considering the image as directly proportional to the vignetting function, the black continuous line
represents the intensity profile after correcting vignetting according to (1). (b) All the saturated pixels (represented as a blue dotted segment),
pixels with intensity value higher than 255 (red dashed line), are captured at 255, thus losing the connection with the original radiance. The
same happens for the green continuous curve achieved after normalizing the new blue continuous curve with the vignetting function. (c) In
the proposed vignetting correction approach, all pixels that before normalization were at 255 are set back to 255.

for each channel c of Oi

for each pixel p of Oi

if Oi(p,c)=255 or Oi(p,c)=0
if image Oj exists with Oj(p,c) ̸=255 and Oj(p,c) ̸=0

Oi(p,c)←Oj(p,c)

We named this approach Overlapping-based Underex-
posed/Saturated Pixels Correction (OUSPC) because it is
worth noting that this tonal correction works in the cases
where more images of the same scene are available (e.g.,
mosaicing applications). Furthermore, this approach requires
a perfect geometric registration and it fixes the problem of
underexposed and saturated pixels only in the overlapping
parts of the images (e.g., the detail shown in the blue
bounding boxes of Figure 4(c)). Consequently, it could
generate discontinuities (e.g., colour fringes [39]) outside
the overlapping regions (see the details shown in the red
bounding boxes of Figures 4(b) and 4(c)).

2.3. Blending Technique. Employing blending techniques is
the onlyway to obtain fully seamlessmosaics if all the original

images have pixels with underexposed and saturated values in
the parts to be overlapped. Piccinini et al. [40] have recently
proposed a blending solution based on a bilinear interpola-
tion of the intensity values of the pixels in the overlapping
regions of the images to be stitched. The values of pixels
within a transition zone are computed through a weighted
average of the relative pixel values in the different images [41].
First of all, the overlapping region OR between the mosaicM
and the new image I to be stitched is computed by estimat-
ing the bounding-box coordinates according to registration
matrix. Then, a weighting mask M, with dimension equal to
OR and values in the range [0, 1], is used for the final stitching
of I. The values of the inner pixels of M are computed by
considering the Euclidean distances between the inner pixel
and the closer border of OR, differentiating between borders
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(a) (b) (c)

Figure 4: Mosaics of two partially saturated images. The saturated pixels in the overlapping region of the first image are not saturated in the
second one. The details reported in the red boxes show a region where the two stitched images do not overlap, while the details in the blue
boxes show an overlapping region. (a) Mosaic obtained by stitching the images without performing the vignetting correction. (b) Mosaic
obtained through vignetting correcting the images according to (2). Discontinuities generated by the presence of saturated pixels are visible
in the two magnified details (highlighted also from arrowheads). (c) Mosaic obtained by vignetting correcting the images according to the
OUSPC approach explained in Section 2.2. The discontinuities, previously shown in the blue boxes, disappeared because in correspondence
of that overlapping part there are unsaturated pixels available in the other image. Instead, the discontinuities highlighted in the red boxes (i.e.,
where the two stitched images do not overlap) are still visible.

belonging to M or I. For the sake of clarity, to make the
reader better understand the proposed approach, the authors
provided an algorithm in pseudocode, also describing in
detail how to process colour images. It is worth noting that
blending approaches require a perfect geometric registration;
otherwise “ghost” objects (i.e., duplicate blur objects, visible
as shadings Figure 5) may appear [42]. However, exposure
differences, discontinuities in the border of the overlapping
regions, and seams in the stitching zones disappear by using
a bilinear blending method to fade the images in the over-
lapping area [43] (Figure 6). Blending can actually address
efficiently the problem if the goal is to obtain a good-looking
beautiful mosaic only for aesthetic reasons, without discon-
tinuities in the stitching zones. However, discontinuities still
remain in themosaics (e.g., Figure 1(c)), and this is the reason
why they should not be used for quantitative analyses.

2.4. MicroMos Version 3.0. MicroMos is a software tool
specifically designed to automatically stitch together a tile

of partially overlapping microscopy images. Briefly, the Shi-
Tomasi [44] corner detector is used to extract salient points
for each pair of subsequent images, and the LKT tracker [45]
is then used to determine correspondences between corners
at subpixel accuracy. Various warping models (i.e., trans-
lational, affine, and projective) and registration approaches
(i.e., frame-to-frame and frame-to-mosaic) are available.
Finally, a single full-resolution mosaic is saved as output of
the process.

An early version ofMicroMos (version 1.0), able to operate
with images acquired with label-free microscopy techniques
only, was proposed in [23].The software was then extended to
operate with fluorescent images, providing a specific module
to correct for intensity decay due to photobleaching effects
(MicroMos v2.0, [46]). Finally, a new registration strategy,
based on the phase-correlation algorithm [47], was imple-
mented to obtain mosaics of images characterized by highly
repeated patterns such as the images of a hemocytometer’s
grid [40].
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(a)

(b)

(c)

Figure 5: Ghost effect due to blending weighting. (a) Mosaic of two partially overlapping images representing a monolayer culture of living
cells. Corpuscles and debris floating in the culture medium generate blur objects that look like shadings, when blending is used. In red colour,
a magnification detail showing a corpuscle artificially duplicated as a side effect of blending. (b, c) Same detail reported in a red squared, but
coming from the two original images composing the mosaic. The corpuscle in motion is present once only for each original image, as shown
by the green and yellow arrowheads.
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(a) (b) (c)

Figure 6: Mosaics of fully saturated images. In the overlapping parts, all the stitched images show pixels saturating in the red channel.
(a) Mosaics obtained by stitching four partially overlapped images without performing the vignetting correction. (b) Mosaic obtained by
vignetting correcting the images according to Eq. (2). Seams in the stitching zones are still visible (highlighted also from arrowheads). There
are no differences with the mosaic built according to the OUSPC approach explained in Section 2.2, because in the overlapping parts all the
images of this set show saturated pixels after flat-field correction. (c) Mosaic obtained without performing the flat-field correction, but using
the blending approach described in Section 2.3. No seams are visible.

In this new release of MicroMos (version 3.0), four new
modules were implemented. (I) The first one enables a
manual correction of the image alignments automatically
estimated. (II) The second module enables determination of
the order of overlapping (i.e., layers) between subsequent
images, choosing between “first image stitched in front” (i.e.,
first image shown in the upper layer, Figure 7(a)) and “last
image stitched in front” (i.e., first image shown in the bottom
layer, Figure 7(b)). The first option is useful to work with
fluorescent datasets so as to have a mosaic representative of
the original sample status before intensity decay due to the
photobleaching effect. (III) The third module enables flat-
field correcting the images according to themethoddescribed
in Section 2.1 (Figure 7(c)). Furthermore, an additional
parameter enables the OUSPC colour remapping strategy
introduced in Section 2.2. (IV) Finally, it is now possible to
load an external registration matrix, to enable the user to
register the images using different tonal correctionsmethods,
while keeping the geometric shifts unchanged. Furthermore,
MicroMos v3.0 has been endowed with a Graphical User
Interface (GUI), where every module is now coupled with
a help menu, and several flags enable the function of the
different modules (Figure 7(d)).

MicroMos is written in MATLAB (The MathWorks,
Inc., Massachusetts, USA). Source code and standalone exe-
cutable version (i.e., not requiring MATLAB being installed)
are freely distributed as an open-source software tool at
http://sourceforge.net/p/micromos.

3. Results

3.1. Image Datasets. In order to assess the quality of the
proposed vignetting correction approach, seven pairs of
partially overlapping images of seven different samples were
acquired.The datasets were acquired in brightfield, or phase-
contrast, by using two different widefield optical micro-
scopes, equipped with 8-bit/channel RGB colour cameras.
The first microscope was an inverted Nikon (Tokyo, Japan)
Eclipse TE2000-U, equipped with a colour Nikon DXM1200
digital camera (2/3” CCD sensor, pixels of 6.7𝜇m side,
640×512 resolution) and a Plan Fluor 10×/0.30 Ph1 DLL∞/0.17 objective lens. The second is an Optika (Bergamo,
Italy) B-353-PLi microscope, equipped with a Matrix Vision
(Stuttgart, Germany) BlueFOX 221C colour camera (1/3”
CCD sensor, pixels of 4.65𝜇m side, 1024×768 resolution)
and an Optika E Plan 4×/0.10 BF ∞/0.17 objective lens.
The acquired images regard two cancerous bone samples
(hereinafter, BONEa and BONEb), PANCREAS, STOM-
ACH, TESTICLE histology specimens, a monolayer culture
of living mesenchymal stromal cells (MSC), and a dead fruit
fly (hereinafter, briefly FLY) held between a coverslip and a
microscope slide. Table 1 summarises the main features of
the images used in the experiments. PANCREAS and FLY are
characterized by a strong vignetting effect and, together with
BONEa, are the only datasets showing saturated pixels.

In order to estimate the vignetting function, at the end of
each acquisition stage a short sequence of empty field images
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Table 1: Main features of the sets used in the experiments.

set name main image’s characteristics microscope,
magnification

pixel in
saturation

vignetting
effect

PANCREAS Pancreas histology characterized by
a very strong vignetting effect

Nikon 10x
phase-contrast present high

FLY Fruit fly characterized by a very
strong vignetting effect

Optika 4x
brightfield present high

BONEa Bone tissue with fully-saturated
pixels in the red channel

Nikon 10x
brightfield present low

BONEb Bone tissue characterized by a low
contrast

Nikon 10x
phase-contrast no present low

STOMACH Stomach histology characterized by
a low vignetting effect

Optika 4x
brightfield no present low

TESTICLE Testicle histology characterized by a
low vignetting effect

Optika 4x
brightfield no present low

MSC Living mesenchymal stem cells
characterized by a low contrast

Nikon 10x
phase-contrast no present low

(a) (b) (c) (d)

Figure 7:MicroMos GUI. The new release ofMicroMos is endowed with a GUI that makes the selection of the different modules, to choose
different geometric and tonal registration strategies, very simple. (a) Colour mosaic obtained without performing any tonal correction and
imposing the first registered image into the front (i.e., upper layer). (b) Same mosaic as (a), but with the last image into the front. Seams
(highlighted also from arrowheads) are visible in the magnified details. (c) Same mosaic as (a), but vignetting corrected. No seam is now
visible in the high-magnification detail reported at the bottom of the mosaic. (d) GUI of MicroMos with the main screen describing all the
buttons and flags that enable the function of the various modules.

was acquired by using the same equipment set-up. Briefly, the
empty field images were converted into grey-level and stored
into a z-stack. Then, the median value for each x-y position
was computed and considered as V(x,y) value.

3.2. Quantitative Assessment. Once the images were
acquired, the following five mosaics were compared for each
dataset:

(a) Mosaic obtained without performing any tonal cor-
rection (hereinafter, briefly TA, standing for mosaic of “Type
A”)

(b) Mosaic flat-field corrected according to (2) and
remapping back to 0 and 255 the underexposed and the
saturated pixels originally present, as explained in Section 2.1
(hereinafter, TB)

(c) Mosaic where vignetting is corrected according to the
OUSPC approach proposed in Section 2.2 (TC)

(d) Mosaic obtained using the blending strategy outlined
in Section 2.3 (TD), without any vignetting correction

(e) Mosaic obtained by performing both vignetting cor-
rection and blending (TE).

Comparing the mosaic with each input image is a com-
mon strategy widely used to assess the quality of a mosaic
[48]. In this work, we adopted the strategy proposed in
[23]. Briefly, each original image is first flat-field corrected
and then warped and projected into the coordinate system
of the mosaic using the corresponding registration matrix.
In this way, it is easy to check the difference in intensity
between corresponding pixels of the mosaic and the single
composing images [23]. According to this strategy, for each
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pair of images used in the experiments, the second image
registered was backprojected. It is worth noting that in
the experiments performed in this work all mosaics were
obtained by placing the first registered image into the upper
layer. Accordingly, the first image was not backprojected (the
difference in intensity would be 0 for all pixels). Finally,
considering only the pixels of the overlapping region, two
standard parameters widely employed to measure the signal
quality were computed.

First is Root Mean Squared Error (RMSE), defined
according to

𝑅𝑀𝑆𝐸 = √∑𝑥∑𝑦 (𝑂𝑅 (𝑥, 𝑦) − 𝐵𝑃 (𝑥, 𝑦))
2

𝑃 . (3)

Second is Signal-to-Noise Ratio (SNR):

𝑆𝑁𝑅 = 10 log10 ∑𝑥∑𝑦 𝑂𝑅 (𝑥, 𝑦)2
∑𝑥∑𝑦 (𝑂𝑅 (𝑥, 𝑦) − 𝐵𝑃 (𝑥, 𝑦))2 . (4)

In the above equations, (x,y) are the 2D pixel’s coordinates;
OR and BP point out the pixels of the overlapping-region
of the mosaic and the overlapping part of the backprojected
image, respectively;P is the number of pixels ofOR andBP. In
case signals are images, the image-specific Universal Quality
Index (UQI, [49]) is also available and computed according to

𝑈𝑄𝐼 = ( 𝜐(𝑂𝑅,𝐵𝑃)𝜎𝑂𝑅 ⋅ 𝜎𝐵𝑃) ⋅ (
2 ⋅ 𝜇𝑂𝑅 ⋅ 𝜇𝐵𝑃𝜇2𝑂𝑅 + 𝜇2𝐵𝑃 )

⋅ (2 ⋅ 𝜎𝑂𝑅 ⋅ 𝜎𝐵𝑃𝜎2𝑂𝑅 + 𝜎2𝐵𝑃 )
(5)

𝜇𝑂𝑅, 𝜇𝐵𝑃, 𝜎𝑂𝑅, 𝜎𝐵𝑃, and 𝜐(𝑂𝑅,𝐵𝑃) are mean, standard deviation
(std), and covariance, respectively, of OR and BP. The UQI is
defined mathematically and no human visual system model
is explicitly employed. However, it has been widely proved in
the literature to be able to measure the quality of images by
“mimicking” what the human visual perception does [50].
For 8-bit images, RMSE ranges between 0 and 255, where the
lower the better. SNR and UQI range from [-∞, +∞] and[0, 1], respectively, where the higher the better.
3.3. Evaluation. Figure 8 shows the TA, TC, and TDmosaics
for each image dataset. TB and TE mosaics have been
reported in Supplementary Figure 1 to keep mosaics in
an appreciable resolution. As described in Section 2.2, TC
mosaics are always as good as the TB ones or better. In
particular, TC mosaics are better than TB if the registered
images present underexposed or saturated pixels in the
overlapping regions. Otherwise, the TC and the TB mosaics
are the same. On the other hand, the TE mosaics are always
the best for each dataset, because they present smoothed
stitching regions, thanks to the blending, and they have
no global intensity discontinuities, thanks to the vignetting
correction.

As far as quantitative assessment is concerned, RMSE,
SNR, and UQI were computed for each dataset and config-
uration by considering the pixels in the overlapping regions.

Table 2: Quantitative analysis of mosaic’s quality: RMSE.

RMSE values mosaic typology
set name TA TB TC TD TE
PANCREAS 25.74 9.17 8.32 18.80 7.20
FLY 12.12 4.66 4.64 6.80 2.81
BONEa 11.43 6.08 6.06 5.43 2.24
BONEb 4.49 1.84 1.84 2.79 1.11
STOMACH 8.71 6.11 6.11 5.67 3.61
TESTICLE 10.59 6.78 6.78 6.62 3.63
MSC 5.06 2.28 2.28 3.07 1.39

Table 3: Quantitative analysis of mosaic’s quality: SNR.

SNR values mosaic typology
set name TA TB TC TD TE
PANCREAS 16.82 25.25 26.07 18.94 27.33
FLY 16.97 25.71 25.73 22.53 29.99
BONEa 25.72 31.17 31.20 32.39 39.89
BONEb 29.94 37.60 37.60 33.96 41.94
STOMACH 25.23 28.18 28.18 28.84 32.72
TESTICLE 23.10 27.01 27.01 27.24 32.45
MSC 27.95 34.71 34.71 32.13 39.01

Table 4: Quantitative analysis of mosaic’s quality: UQI.

UQI values mosaic typology
set name TA TB TC TD TE
PANCREAS 0.9090 0.9789 0.9825 0.9451 0.9869
FLY 0.9822 0.9973 0.9973 0.9946 0.9990
BONEa 0.9678 0.9704 0.9708 0.9900 0.9967
BONEb 0.8930 0.9301 0.9301 0.9351 0.9751
STOMACH 0.9939 0.9961 0.9961 0.9973 0.9986
TESTICLE 0.9839 0.9937 0.9937 0.9944 0.9982
MSC 0.8500 0.8589 0.8589 0.8923 0.9438

The values are reported in Tables 2, 3, and 4, respectively.
The values of the TE configuration are in italics, and for
each dataset the best value obtained (the TE values aside)
is in bold. RMSE and SNR values can be analyzed together
because they present for each set the same rank. First of
all, it is worth noting that the TA configuration showed
the worst values for each metric, meaning that vignetting
and blending always lead to improvement. For PANCREAS,
FLY, and BONEa sets, which present saturated pixels in the
overlapping region, TC mosaics were always better than the
TB ones. For the other sets, TC and TB mosaics reached the
same values.

With regard to RMSE and SNR, TC was better four
times out of seven and TD three times. In particular, TC
resulted as the best configuration for PANCREAS and FLY
sets, characterized by a very strong vignetting effect and,
for MSC, presenting living cells, corpuscles, and debris
floating in the culture medium. It is worth remarking that,
in case of moving objects, blending usually provides bad
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Figure 8: Set overview. In order to facilitate a comparison between the mosaics obtained with the proposed colour vignetting correction, TC
mosaics are shown between TA and TD ones.
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performances, due to the ghost side effect (Figure 5). For
BONEa, STOMACH, and TESTICLE, characterized by a low
vignetting effect, TD was the best configuration. However,
considering the blending configuration as the best one for
the sets characterized by a low vignetting effect would be
a mistake. For instance, for BONEb, characterized by a
low vignetting effect, TC resulted as the best configuration.
Furthermore, by computing the absolute difference (AD)
between RMSE values of TD and TC in Table 2, it can be
seen that, in the three sets where TD had the lowest RMSE,
AD was never higher than 12%. Meanwhile, in the four sets
where TC was the best, AD was never lower than 34%.
Similarly, the AD of SNR values reported in Table 3 for
BONEa, STOMACH, and TESTICLE was never higher than
4% for SNR values, while for PANCREAS, FLY, MSC, and
BONEb it was never lower than 8%. This means that when
TDprovides the best results, the TC configuration is similarly
good. Oppositely, when TC is the best configuration, it is
superior to TD.

Regarding the UQI, TC configuration performed the best
two times out of seven. In particular, it was the best only
for PANCREAS and FLY sets, characterized by a strong
vignetting effect. As expected, the highest UQI values go to
the blended mosaics, the purpose of which is to have a pleas-
ant aspect, except for mosaics presenting a strong vignetting
effect that causes global discontinuities, as highlighted in
Figure 1(c).

However, it is worth noting that, for all the metrics, the
TE configuration always resulted better than TD, meaning
that the proposed colour vignetting correction always leads
to improvement.

4. Discussion

Colour is an integral part of our visual world and one of the
main image features used in art and photography [51]. In
microscopy, most of the analyses of living cells and tissues
are carried out by visualizing the samples in brightfield
and phase contrast, and the corresponding RGB images
are acquired using digital colour cameras. Many different
colorimetric assays are used to analyze cell viability [52] as
well as other morphobiological features [53] in the range of
the visible light. For instance, Beachley et al. [54] performed
cell counting for adhesion studies by analyzing RGB images
of Alizarin Red-stained cells. Similarly, Masson’s trichrome, a
three-colour staining protocol, is widely used in histology to
study at the same time the distribution of connective tissue
(stained blue), nuclei (stained red/purple), and cytoplasm
(stained red/pink) [55]. Therefore, colours are necessary to
perform quantitative analyses [56] and different RGB triples,
corresponding to different colours, may lead to the same
grey-level conversion. Consequently, dedicated methods to
correct vignetting in colour imagesmust be adopted to obtain
mosaicswith homogeneous intensity, suitable for quantitative
analyses.

Blending techniques are colour-mapping algorithms
minimizing colour differences between views [57]. Many
different colour-mapping approaches, also known as

colour-registration, colour-correction, colour-balancing (if
restricted to the overlapped area only), and colour-transfer
[37], have been proposed in literature [58]. Their aim is
to transfer the colour palette of the source image to the
target one, while extending the transferred colour from
the overlapped area to the full target image [59]. However,
these approaches are prone to generate unnatural mosaics
[60] and, in general, pseudocolours with pixels’ intensity
that is not representative of the original sample radiance.
In practice, mosaics built by using blending images are
typically good-looking and try effacing the seams but did
not prevent them [5]. Accordingly, such mosaics cannot be
used for quantitative analyses because the intensity values
do not faithfully represent the original sample’s radiance
[61].

The mosaics generated with the proposed OUSPC
approach overcame the ones achieved with the other
methods by four out of seven times according to RMSE
and SNR signal quality measures. Furthermore, when
colour-correction was not the best, the related quanti-
tative index values were always comparable with those
of the method performing the best. Accordingly, the
obtained results proved that the proposed solution for colour
vignetting correction effectively allows creating seamless
mosaics with undistorted intensity values, also recovering
saturated pixels exploiting the overlapping regions of the
mosaics.

As a future work, we have planned to perform vignetting
correction experiments by using different image colour
spaces, for instance, the Hue-Saturation-Intensity/Value
(HSI/HSV). While, HSI and HSV do not provide solutions
for restoration of saturated pixels, they permit optimizing
the flat-field correction by considering the Intensity/Value
channel only [62].

5. Conclusions

In this work, we proposed a practical colour vignetting
correction formosaicing applications.We also considered the
problem of the out-of-range pixels: the original under- and
the overexposed pixels are corrected by exploiting reliable
values extracted from the same pixels in the overlapping
images. In practice, in case a pixel is originally in saturation
or becomes as such after vignetting correction, it is given the
value it assumes in the first overlapping image where it is
nonsaturated.

In the experiments performed, mosaics built with the
proposed colour vignetting correction and other tonal cor-
rection strategies, including blending, were compared. To
this purpose, MicroMos v3.0 was employed, a software tool
specifically designed for stitching overlapping images accord-
ing to different selectable geometric and tonal registration
strategies.

We proved that for each dataset the configuration
employing the vignetting colour-correction and blending at
the same time always resulted better than the configuration
with blending only. This confirms that the proposed colour-
correction always leads to improvement.



BioMed Research International 13

Data Availability

MicroMos source code and standalone executable versions,
as well as all the image datasets used in the experiments, are
freely available at http://sourceforge.net/p/micromos.
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