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SUMMARY

The posterior parietal cortex is well known to
mediate sensorimotor transformations during the
generation of movement plans, but its ability to con-
trol prosthetic limbs in 3D environments has not yet
been fully demonstrated. With this aim, we trained
monkeys to perform reaches to targets located at
various depths and directions and tested whether
the reach goal position can be extracted from parie-
tal signals. The reach goal location was reliably
decoded with accuracy close to optimal (>90%),
and this occurred also well before movement onset.
These results, together with recent work showing a
reliable decoding of hand grip in the same area, sug-
gest that this is a suitable site to decode the entire
prehension action, to be considered in the develop-
ment of brain-computer interfaces.

INTRODUCTION

When a spinal cord injury or other diseases do not allow motor

commands to reach themuscles, the patient is unable to perform

voluntary actions, despite an intact brain. In cases like these, the

advent of brain-computer interfaces (BCIs) has offered the pos-

sibility to gain control of external devices (neural prostheses) by

using the patient’s own brain activity (Brandman et al., 2017).

Although in the past decade several technical advances pro-

vided impressive examples of successful human applications,

the performances achieved are still far from enabling widespread

clinical application (Cui, 2016). So far, the majority of studies

have used primary motor and premotor cortex signals to recon-

struct reach trajectories in order to guide robotic limbs in mon-

keys (Velliste et al., 2008; Wessberg et al., 2000) and humans

(Collinger et al., 2013; Hochberg et al., 2012). Although decoding

of trajectories is still essential in order to provide the user with

natural interfaces, progress in computer vision and robotics is

leading to prostheses that do not require trajectory information,

as simple algorithms can reconstruct this information from reach

endpoint goals (Andersen et al., 2014; Hotson et al., 2016; Katyal

et al., 2014).

The posterior parietal cortex (PPC) in humans and monkeys

is involved in the sensorimotor transformations required to

generate action plans (Andersen et al., 2014; Cui, 2016; Gard-
This is an open access article und
ner, 2017), so it is a good source for retrieving movement in-

tentions and goals. Pioneering studies demonstrated that

reach endpoints (Musallam et al., 2004; Serruya et al., 2003),

trajectories (Mulliken et al., 2008; Figure 1A), and grips (Schaf-

felhofer et al., 2015; Figure 1A) can be extracted from monkey

PPC. Translational work in humans produced similar results

(Aflalo et al., 2015; Figure 1B), together with reliable hand

shape decoding (Klaes et al., 2015; Figure 1B). In the afore-

mentioned studies, reaches were performed on a single plane.

To the best of our knowledge, only one study in monkey PPC

performed decoding of reach goal and trajectory information in

a virtual three-dimensional (3D) environment (Hauschild et al.,

2012).

A medial PPC area termed V6A (Figure 1A) is known to encode

not only goals and reach movement directions (Bosco et al.,

2010, 2016; Breveglieri et al., 2014; Hadjidimitrakis et al., 2014)

but also several grasping parameters (Fattori et al., 2017). Previ-

ous research suggested that V6A could integrate the arm trans-

port and hand grip components of a reach-to-grasp action.

(Galletti and Fattori, 2018). Although a reliable decoding of

hand grip from V6A signals has recently been shown (Filippini

et al., 2017), decoding of reach-related information has not yet

been performed (Figure 1A). We addressed this issue, with the

aim of finding a parietal region where both grasping and reaching

signals can be decoded. In a different way to most previous

related studies, we varied reaches not only on a frontoparallel

plane but using a naturalistic environment also involving depth

(distance from the body).
RESULTS

Data were recorded from two monkeys while they performed a

fixation-to-reach task toward nine spatial positions with three

different direction angles and three different depth levels (Fig-

ure 1C), covering a wide range of positions in peripersonal

space. Target elevation was kept constant, at eye level. We

sequentially recorded 264 V6A cells, 181 neurons in monkey

1 (M1) and 83 in monkey 2 (M2). Parts of this dataset have

already been published in previous studies aimed at exploring

the encoding of depth and direction in V6A activity (Hadjidimi-

trakis et al., 2014, 2017). The population discharge of the

whole dataset is shown in Figure S1A. The plot shows a clear

distinction among the activations during the early vision of the

target, then during the preparation, and finally during the

execution of reaching action. Moreover, Figure S1A shows
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Figure 1. Decoding Reach-Grasp Action from Parietal Cortex and Task Paradigm

(A) Decoding for reaching and grasping by the monkey posterior parietal cortex. Top left: dorsal view of the left hemisphere of a macaque brain. Highlighted

hotspots in the parietal cortex represent areas used in recent literature to extract signals useful to decode grasp (anterior intraparietal [AIP] area from Schaf-

felhofer et al., 2015) and/or movement trajectories (parietal reach region [PRR] and medial intraparietal area [MIP]; from Mulliken et al., 2008). V6A signals have

recently been used to decode grasping (Filippini et al., 2017). The goal of the present study was to decode reaching targets by the V6A. A, anterior; L, lateral.

(B) Decoding in the human posterior parietal cortex for reach on a frontal plane (Aflalo et al., 2015) and hand shapes (Klaes et al., 2015) separately. Modified from

Aflalo et al. (2015) and Klaes et al. (2015). A5, Brodmann’s area 5.

(C) Scheme of the setup used for the task in the present study. Left: nine LEDs that were used as fixation and reaching targets (orange) were located at eye level.

The distances from the eyes of the three targets of the central row are shown. HB, home button. Right: top view of the target configuration showing the values of

version (top) and vergence angles (left). Targets in different positions on the horizontal axis have a different laterality (direction); on the vertical axis, targets change

in distance from the body (depth).

(D) Cartoon of the fixation-to-reach task performed by monkeys. Left: in the first part of the task (fix epoch), the monkey had to fixate one of nine targets. In the

delay epoch (center) the monkey had to maintain fixation on the target and wait for the go signal (i.e., target color changing from green to red) while planning the

action. Right: in the reach epoch, the monkey released the home button to perform the reaching movement toward the target.
that the V6A neural population starts discriminating among

different targets as soon as the LED is illuminated. The

discrimination power of the population increases slightly

when the monkey is preparing the action (epoch delay, from

450 ms after the fixation onset to the arm movement onset),

and has a second peak when the action is executed (reach).

Population tuning properties were confirmed using a sliding-

window ANOVA (Figure S1B).
726 Cell Reports 23, 725–732, April 17, 2018
Whole-Epoch Decoding
The activity of each neuron was quantified in the three main

epochs depicted in Figure 1D: fix, delay, and reach, corre-

sponding to the period of early fixation of the target, the plan-

ning phase of the subsequent reach action, and the execution

phase, respectively. Subsequently, population decoding anal-

ysis was performed using a naive Bayes classifier (see Exper-

imental Procedures). The results are presented separately for
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Figure 2. Decoding Accuracy of Reach Goals Location from V6A Signals

(A) Whole-epoch decoding. Confusion matrices describing the pattern of errors made by the naive Bayes classifier in the recognition of target positions. Mean

firing rates were calculated for different epochs (left, fix; center, delay; right, reach) and monkeys (first row, monkey 1 [M1]; middle row, monkey 2 [M2]). In each

3 3 3 sub-matrix, the actual goal location is indicated as a white asterisk according to its position in the monkey’s workspace (near/intermediate/far and left/

central/right). For each real class, decoder predictions (recognition rate) were plotted with a color scale. Mean recognition rates are reported together with SDs

below the indices. These matrices show the highly successful decoding and that the few not perfect classifications involve spatially close target positions.

(B) Neuron-dropping analysis. Accuracy of decoding as a function of the number of neurons included in the analysis. Dotted line, chance level (0.11). For each step

(zero to neurons available per monkey), we randomly caught an increasing number of neurons from the pool, to include in the analysis. This procedure was

repeated 100 times per step to calculate SD values. Results are shown for the two cases (green,M1; blue,M2) and the three epochs analyzed. All in all, it is evident

that a maximum of 20–40 neurons is required to efficiently decode reach goals.
the two monkeys. In each monkey, all recorded cells were

included in the analysis, irrespectively of whether they re-

sponded differently depending on the position of the target

or not.

Our decoder correctly classified target positions well before

movement onset: we found a high correlation between the actual

and the decoded spatial positions during fix (Figure 2A). The

mean accuracies, obtained using a ‘‘leave-p-out’’ 5-fold cross-

validation (p value 20% of trials), were excellent in both monkeys

(91%–92%) and well above chance level (11%, the conditions

being nine). Misclassifications were very few and occurred be-

tween adjacent targets. The decoding accuracies during both
reach planning (delay) and execution (reach) were even higher

than during fix, again in both monkeys.

Neuron-Dropping Analysis
Figure 2B depicts the decoding accuracy as a function of the

population size. Results varied across epochs and monkeys: in

fix (Figure 2B, left), a sample of 20–40 neurons (median 40)

was sufficient to achieve 70% accuracy, whereas in reach (Fig-

ure 2B, right), 20–30 neurons (median 26) were required, and in

delay (Figure 2B, center), between 10 and 20 neurons (median

15) were required. In all cases, a small number of neurons was

enough to obtain accurate decoding.
Cell Reports 23, 725–732, April 17, 2018 727
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Figure 3. Sliding-Window Decoding Anal-

ysis

Time course of the decoding accuracy (recognition

rates) on the basis of the firing rates extracted

during the period starting 1 s before the target

illumination (LED on), until 2 s after the movement

onset (reach). Because of the variable duration of

the delay interval (1.3–2.1 s), double-alignment

result plots are shown. Firing rates were calculated

for a 300ms sliding window,moving forward with a

10 ms step. Each dot on the graph was plotted at

the beginning of the 300 ms window. The mean

lines were calculated as the arithmetic mean be-

tween recognition rates of individual target posi-

tions. For each position, variability bands are

shown, representing SDs on the basis of a 5-fold

cross-validation.
Time Course of the Decoding Performance
To evaluate the temporal evolution of decoding accuracy, we

estimated the decoding performance using activity in smaller

time intervals compared with the whole epochs. A rapid in-

crease of the decoding performance, occurring around the

time of the LED onset (LED on), is evident in Figure 3. At fix-

ation onset (fix epoch), the recognition rate reached its peak

and remained constant in the subsequent delay interval

(delay) and in the reaching execution (reach). Interestingly, af-

ter the reaching, the gaze and the hand still remained on the

target, whereas the decoding accuracy decreased. This sug-

gests that the decoding performance is strictly linked to the

preparation and execution of reaching, instead of being

linked to the gaze fixation of the target, as documented by

decoding results shown from a control experiment in Fig-

ure S2. In the task used in the main text (Figures 1C and

1D), gaze position and reach goal were coincident. Rather

than related to reach goals, one could argue that the predic-

tions of our classifier were related to gaze position-related

and/or reach preparation-related activity (Breveglieri et al.,

2012, 2014; Hadjidimitrakis et al., 2011, 2012). To uncouple

the decoding of gaze and reach goals, 67 neurons out of

83 of the original population were recorded while M2 per-

formed a delayed reaching task toward the same nine targets

of the original task with the gaze fixed on the central position

(constant-gaze task). A yellow flash (cue), in the early phase

of the delay, instructed the monkey as to which target should

be reached for. In the constant-gaze task, the increase of

tuned cells occurs at cue onset (i.e., when the monkey re-

ceives instruction about the location of the target to be sub-

sequently reached for). On the contrary, in the same neurons

(n = 67) tested in the fixation-to-reach task, the increase of

tuned cells occurred at the fixation onset, because in this

task the fixation LED per se instructed the monkey about

the reach goal location. The same trend was also observed

in the decoding performance: the accuracy was very low dur-

ing fixation before the cue and increased immediately after

the cue was given. This rules out the possibility that gaze fix-

ation per se is responsible for the high decoding performance

achieved in the fixation-to-reach task. The accuracy shown in

the confusion matrices from the constant-gaze task is not
728 Cell Reports 23, 725–732, April 17, 2018
significantly different from the results of the same population

of cells when tested for the fixation-to-reach task (results for

the fixation-to-reach task for the 67 cells tested for both

tasks: 90% [SD 4.1%] for fix epoch, 98% [SD 2.2%] for delay

epoch, and 88% [SD 4.9%] for reach epoch, t-test p > 0.05).

Neuron-dropping and sliding-window analyses (Figures S2D

and S2E) support the evidence that as soon as the visual

cue was provided, the decoding performance reached

optimal values for both constant-gaze and fixation-to-reach

tasks. The data of the control experiment highlight that

gaze information is not necessary to obtain high decoding ac-

curacy from area V6A.

Generalization Analysis
To evaluate whether the neural code used during the early fix-

ation period was retained or changed during the subsequent

planning interval before the reach movement, we performed a

generalization analysis by training decoders in either the fix or

the reach epoch, then we applied both codes on these epochs

and portions of the delay epoch. Figure 4 shows the results of

this analysis for the two monkeys. The code learned during the

early fixation period (fix, blue line) was gradually lost in the

delay intervals; the accuracy then dropped during movement

execution (�20%). This suggests that the neural code used

during the earliest fixation phase became progressively weaker

as soon as the animal began to prepare the movement. The

time course of the accuracy obtained by training the algorithm

with the movement neural activity (reach, red line in Figure 4),

and testing the algorithm with the delay activity demonstrated

that the neural code used during the action execution was

partially preserved also during the last part of the planning

period, but not in the earlier planning phases and initial fixation.

In summary, by looking at the activity during early fixation, it

was not possible to predict the spatial position during reach

execution, and vice versa. When the accuracy of the classifier

trained in the different fractions of the delay was analyzed (Fig-

ures 4C and 4D, gray lines), progressive code transformations

were present. Both monkeys depicted a smooth transition be-

tween an earlier code, possibly related to the gaze location in-

formation, and a later code correlated with the movement

preparation.
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Figure 4. Generalization Analysis

(A–D) Generalization of codes derived from different epochs: the decoder was trained with the mean firing rates during one epoch and then tested to decode the

other epochs. The trend of mean recognition rates together with the SD bars through different epochs are plotted as colored lines. Results are shown for the two

monkeys M1 (A and C) and M2 (B and D). The delay epoch was split in portions because of variable time duration between the trials: D1, 0%–25% of the delay

epoch; D2, 25%–50%; D3, 50%–75%; and D4, 75%–100%. Blue line shows the decoder trained on fix, and red line shows the decoder trained on reach (A andB).

The decoder was trained on fractions (different gray scales) of the delay epoch (C and D).
DISCUSSION

In this study, we demonstrated that neural signals from area V6A

can be successfully used for the offline decoding of reach goals

located at different depths and directions, in conditions similar to

everyday life, in which reaching movements are performed not

only on a single plane but also in three dimensions. In most

cases, just a few neurons (�20) were sufficient to achieve a cor-

rect prediction. The accuracy of decodingwas optimal fromearly

target fixation to the end of reaching.

We used a task configuration in which the monkeys fixated the

goal of reachingmovement, which is themost physiological con-

dition (Hayhoe et al., 2003; Neggers and Bekkering, 2001). How-

ever, this setup cannot distinguish whether decoding uses gaze

signals or arm movement-related activity. To exclude gaze-

related activity from decoded signals, we performed decoding

in another experiment in which the monkey performed a task in

which gaze and reaching targets were not coincident (Figure S2).

In this case too, decoding performance was very high. This result

is in line with the strong spatial tuning in V6A reach-related activ-

ity when gaze is dissociated from the reach target position

(Bosco et al., 2016). However, in our study, we did not test

decoding in a free-gaze condition, in which gaze was truly inde-

pendent. Thus, we cannot exclude the possibility that eye move-

ments could potentially disturb the decoding from V6A.

However, the very similar results obtained between tasks

(Figures 3 and S2E) suggest that free gaze should not interfere
with decoding reliability from V6A. Nevertheless, these results

suggest V6A as a source for BCIs, not only when the patient

can move his or her eyes to the reaching target but also in the

absence of ocular motility.

Decoding Reach Goals from Parietal Cortex
Several monkey studies performed decoding of reach goals (Mu-

sallam et al., 2004; Scherberger et al., 2005; Shenoy et al., 2003)

and trajectories (Mulliken et al., 2008) in two-dimensional (2D)

space from activity in PPC (specifically, from the parietal reach

region [PRR]). Here, we decoded reach goal from another part

of PPC, while also considering the depth dimension.

In V6A, target location was decoded from neural responses

occurring not only during reaching execution but also well before

movement onset. This is similar to the neighboring PRR area,

where neural signals during reach planning were used to online

decode up to six reach goals on a screen and to guide a cursor

(Musallam et al., 2004). Accuracy obtained in PRR was lower

than in V6A (from 25% to 60% in PRR [Musallam et al., 2004]

versus about 90%–100% in V6A [present results]). However, dif-

ferences in the experimental design may account for these

discrepancies.

Here, the trajectory of the reachingmovement could not be ex-

tracted, because only information on the reach goal location was

available. Nevertheless, it was demonstrated that goal speci-

ficity is advantageous for ballistic operations (Musallam et al.,

2004) and that by incorporating information about the reach
Cell Reports 23, 725–732, April 17, 2018 729



goal (target position), the decoding accuracy of the trajectory

estimation from PRR signals improved by 17% (goal-based

Kalman filter; Mulliken et al., 2008). Alternatively, the optimal

reconstruction of movement trajectories could be performed

by computer vision (Andersen et al., 2014; Katyal et al., 2014).

Looking at current state-of-the-art neural prosthesis technol-

ogy, in order to increase prosthesis reliability, we need to incre-

ment the number of neurons sampled. This involves overcoming

several technical limitations and using more invasive implants.

Intuitively, a mixed neural signals-computer vision-driven BCI

looks more feasible. From the PPC region, we can retrieve inten-

tion of movements, and this information could aid computer

vision systems to be ‘‘mind controlled’’ or classic motor BCIs

(i.e., BCIs driven by motor cortex) to reconstruct the movement

smoothly, knowing movement goals in advance. Exploiting

higher order, multidimensional information for decoding

purposes could allow the development of more natural and

user-friendly brain-machine interfaces to achieve fully integrated

prehensile actions.

Decoding of Depth Information for Reaching
This study shows the decoding of reaching goals from signals in

PPC, also taking into account the depth dimension. Several

studies demonstrated the feasibility of retrieving instantaneous

movement attributes, such as position, velocity, and accelera-

tion useful to drive artificial limbs in 3D space (Brandman et al.,

2017). This has been achieved using activity frommotor and pre-

motor regions in monkeys (Carmena et al., 2003; Jarosiewicz

et al., 2008; Taylor et al., 2002; Velliste et al., 2008) and in hu-

mans (Collinger et al., 2013; Hochberg et al., 2012). In monkey

PPC (areas PRR and 5d), continuous trajectory reconstruction

of cursor movements in a 3D virtual space was demonstrated

by Hauschild et al. (2012). In that study, a good decoding perfor-

mance (R2 � 40%) was obtained using ensembles of about sixty

neurons.

BCI applications that restore basic interaction with objects in

tetraplegic patients have recently been reported (Aflalo et al.,

2015; Collinger et al., 2013; Hochberg et al., 2012). These studies

demonstrated the feasibility of BCIs in humans, but there ismuch

work still to be done. When the depth information was added,

movements became reasonably slower and clumsier (Collinger

et al., 2013). Thus, our results showing reliable decoding not

only in two dimensions but also in depth are of particular

importance.

Decoding Entire Prehension from V6A
V6A has recently been suggested as a site of convergence of arm

signals for reaching and grip signals for grasping to direct our

hands toward efficient prehensile actions (Galletti and Fattori,

2018; Gardner, 2017). In humans, fMRI signals from a region

that is a likely homolog of monkey V6A (Pitzalis et al., 2013)

were used to successfully predict the direction of an upcoming

reach,butnot of a saccade (Gallivanet al., 2011). In a recent study,

Nelissen et al. (2018) decoded grasping-related information from

fMRI signals in monkey area V6A. This finding complements the

decodingof the typeofgrasp (Filippini et al., 2017) and reachgoals

(present results) and suggests that V6A could be a useful site for

the neuroprosthetic control of the entire prehension action.
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Potential Applications and Future Directions
Despite the tremendous advances in neural prosthetics on the

basis of signals from the motor cortex, the future of BCIs relies

on the acquisition of neural signals that also reflect the cognitive

state of the patient (i.e., intentions and movement goals) (Ander-

sen et al., 2014). These cognitive prostheses may be imple-

mented by decoding neural signals from parietal regions, such

as V6A, so as to have signals related to movement intention

and execution from the same area. V6A incorporates signals

typical of parietal regions (intentions of movement) but also sig-

nals coding for some useful details of the movement, such as

depth and direction of reaching, and even grip type (Filippini

et al., 2017). These intelligent prosthetics are one potential appli-

cation of the results presented here.

Another potential and promising application of decoding arm

actions from V6A is in the emerging field of soft robotics, a tech-

nology born mimicking natural beings, to replace classical rigid-

bodied robots with limbs that are more comfortable and easy to

handle (Rus and Tolley, 2015). Although soft robotics is

becomingmore andmore popular, the potential of soft machines

in the clinical field is still greatly under-exploited, mainly because

of limited functionality and versatility caused by the lack of intel-

ligent, natural control systems. Indeed, so far soft robots have

relied on classic control approaches that reduce the advantages

of ‘‘soft’’ robotics in terms of flexible interaction with a variable

environment. A direction for the very near future is to design

more intelligent soft robots taking advantage of bio-inspired con-

trollers that will be developed thanks to advances in artificial in-

telligence and inspired by the neurophysiology of our bodies

(Fani et al., 2016; Santello et al., 2016). For a new generation of

user-friendly prostheses such as these biomorphic robots, natu-

ral signals with multiple neural information such as those from

V6A might be exploited for a more dexterous control of artificial

limbs.

EXPERIMENTAL PROCEDURES

The study was performed in accordance with the guidelines of EuropeanUnion

(EU) directives (86/609/EEC and 2010/63/EU) and Italian national laws (D.L.

116-92 and D.L. 26-2014) on the protection of animals used for scientific pur-

poses. Protocols were approved by the Animal-Welfare Body of the University

of Bologna. During training and recording sessions, particular attention was

paid to any behavioral and clinical sign of pain or distress. For surgical and

electrophysiological procedures, see Hadjidimitrakis et al. (2014). Two male

monkeys (M1 and M2, aged 5 and 8 years) were involved in the study.

Equipment and Behavioral Task

Electrophysiological data were collected whilemonkeyswere performing a fix-

ation-to-reach task with the contralateral limb (with respect to the recording

hemisphere), with the head restrained, in darkness, while maintaining steady

fixation of the target. Reaches were performed to one of nine light-emitting di-

odes (LEDs; 6 mm in diameter; Figure 1C). The LEDs were mounted on a panel

located in front of the animal, at different distances and directions with respect

to the eyes, but always at eye level.

Given that the interocular distance for both animals was 30 mm, the nearest

targets were located at 10 cm from the eyes, whereas the LEDs placed at in-

termediate and far positions were at a distance of 15 and 25 cm, respectively.

Because targets were aligned at eye level, they could potentially obscure each

other.We solved the problem bymasking the nearest LEDs to be visibly thinner

than second-line LEDs and the latter thinner than the farthest line. Thus, the

monkeys were able to easily discriminate them.



In the task, themonkeys pressed a button located close to their chest (home

button [HB]; Figure 1C), fixated one of the targets for a variable period (fix; Fig-

ure 1D, left), prepared themovement (delay; Figure 1D, center), and started the

reaching movement (reach, Figure 1D, right) toward the foveated target.

Data Analysis

The analyses were performed with customized scripts in MATLAB (The Math-

Works; RRID: SCR_001622) and Python (using open-source machine learning

toolkit scikit-learn, http://scikit-learn.org; RRID: SCR_002577). The neural ac-

tivity was analyzed by quantifying the discharge in each trial in the following

three different epochs (Figure 1D): (1) the early fixation epoch (fix), from

50 ms after the end of the saccade performed to gaze at the LED until

450 ms after it; (2) the preparation epoch (delay), from 450 ms after the end

of the saccade to the arm movement onset (given the task structure and the

variable reaction time of the monkeys, this epoch had a variable duration

from about 1.3 to 2.1 s); and (3) the reach epoch (reach), from arm movement

onset (M) until the end of it, signaled by the pressing of the LED target.

All analyses and modeling were done offline. Among the original set of re-

corded neurons, we considered only cells with at least ten trials for each of

the nine targets. All recorded neurons, either modulated in the reaching task

or not (see Supplemental Experimental Procedures), were used in the decod-

ing analysis.

Neural Decoding

For each neuron of the population (181 neurons for M1, 83 for M2, respec-

tively), we computed the mean firing rate (mFR; number of spikes per time

unit) over a selected time span using a trial-by-trial approach. The decoder

outputs were the nine targets. Fivefold cross-validation was performed by us-

ing 72 samples (8 for each condition) for training and 18 (2 for each condition)

for testing for each neuron, to ensure that the classifier was trained and tested

on different data. Recognition rates and SDs were calculated as means over

the five folds’ iterations. Not normalized data were used for the decoding

procedure.

We used a naive Bayesian classifier as decoding algorithm. Naive Bayes

methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the ‘‘naive’’ assumption of independence between every pair of

features. This technique has been shown to achieve performance closer to

optimal compared with other classifiers such as support vector machine

(SVM) when analyzing neural data (Carpaneto et al., 2011; Schaffelhofer

et al., 2015). In our Python custom scripts, we implemented the module of

naive Bayes classifiers proposed by scikit-learn libraries (the statistical formu-

lation can be found at http://scikit-learn.org/stable/modules/naive_bayes.

html; Zhang, 2004). Under the assumption of Poisson distribution of features,

we reinforced the model as suggested at the following site: http://github.com/

scikit-learn/scikit-learn/pull/3708/files (Ma et al., 2006). We performed three

types of analysis, computing the following feature vectors over different

epochs and time spans: whole-epoch, sliding-window, and generalization

analysis. The same kinds of analyses have been performed in area V6A from

different sets of neurons recorded in a grasping task (Filippini et al., 2017).
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