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THE HODGE DIAMOND OF O’GRADY’S 6–DIMENSIONAL EXAMPLE

GIOVANNI MONGARDI, ANTONIO RAPAGNETTA, AND GIULIA SACCÀ

Abstract. We realize O’Grady’s six dimensional example of irreducible holomorphic symplectic manifold
as a quotient of an IHS manifold of K3[3]–type by a birational involution, thereby computing its Hodge
numbers.

1. Introduction

In this paper we present a new way of obtaining O’Grady’s six dimensional example of irreducible holo-
morphic symplectic manifold and use this to compute its Hodge numbers. Further applications, such as
the description of the movable cone or the answer to Torelli–type questions for this deformation class of
irreducible holomorphic symplectic manifolds, will be the topic of a subsequent paper.
Recall that an irreducible holomorphic symplectic manifold (IHS) is a simply connected compact Kähler
manifold that has a unique up to scalar holomorphic symplectic form. They arise naturally as one of
the three building blocks of manifolds with trivial first Chern class according to the Beauville–Bogomolov
decomposition [6], [2], the other two blocks being Abelian varieties and Calabi-Yau manifolds. By definition,
IHS manifolds are higher dimensional generalizations of K3 surfaces, moreover they have a canonically defined
quadratic form on their integral second cohomology group, which allows to speak of their periods and to
develop their theory in a way which is analogous to the theory of K3 surfaces. The interested reader can see
[16] and [39] for a general introduction on the topic.
There are two deformation classes of IHS manifolds in every even dimension greater or equal to 4, introduced
by Beauville in [2]. They are the Hilbert scheme of n points on a K3 and the generalized Kummer variety of
dimension 2n of an abelian surface (i.e. the Albanese fiber of the Hilbert scheme of n+1 points of the abelian
surface). Elements of these two deformation classes have second Betti number equal to 23 and 7, respectively,
and are referred to as IHS manifolds of K3[n]–type and of generalized Kummer type, respectively. There
are two more examples, found by O’Grady in [37] and [38], of dimension ten and six, respectively, which are
obtained from a symplectic resolution of some singular moduli spaces of sheaves on a K3 surface and on an
abelian surface, respectively. They are referred to as the exceptional examples of IHS, and their deformation
classes are denoted by OG10, respectively OG6.
These exceptional examples have not been studied as much and their geometries are less understood. Though
their topological Euler characteristic is known, see [42] and [31], even other basic invariants such as their
Hodge numbers have not been computed yet. In the case of manifolds of K3[n]–type, the Hodge numbers
were computed by Göttsche [11].
One of the main results of this paper is to realize O’Grady’s six dimensional example as a quotient of an
IHS manifold of K3[3]–type by a birational symplectic involution: we therefore relate this deformation class
to the most studied deformation class of IHS manifolds and this allows us, by resolving the indeterminacy
locus of the involution and by describing explicitly its fixed locus (which has codimension 2), to compute
the Hodge numbers. The involution we use was first introduced in [42] to compute the Beauville-Bogomolov
form for IHS of type OG6 and then used in [30] to determine a special subgroup of the automorphisms group
of such manifolds.
Recently, there has been considerable interest in exhibiting and classifying symplectic automorphisms of IHS
manifolds [7], [15], [28] and [29]. Notice that quotients of IHS by symplectic automorphisms rarely admit a
symplectic resolution since for this to happen the fixed locus has to be of codimension 2 (see [20] for one

Key words and phrases. Keywords: Irreducible holomorphic symplectic manifolds, Hodge numbers, O’Grady’s six dimen-
sional manifold
MSC 2010 classification Primary 14J40; Secondary 14E07, 14F05.

1



of the few cases where this happens). Our construction, however, indicates that “quotients” by birational
symplectic automorphisms can have a symplectic resolution, and thus they are potentially interesting. In
upcoming work, we will study some of these birational morphisms for manifolds of K3[n]–type.
Recall that O’Grady’s six dimensional example is obtained as a symplectic resolution of a certain natural
subvariety of a moduli space of sheaves on an abelian surface A. In order to describe how to obtain it
as a “quotient” of another IHS by a birational symplectic automorphism, we first need to introduce some
notation.
Let X be a K3 or an abelian surface. Fix an effective Mukai vector1 v ∈ H∗

alg(X,Z), with v
2 ≥ −2, and let

H be a sufficiently general ample line bundle on X . It is well known [33], [47] that, if v is primitive, the
moduli space Mv(X,H) of H–stable sheaves on X with Mukai vector v is a smooth projective manifold of
dimension v2 + 2 and that, if v2 ≥ 0, it admits a holomorphic symplectic form. If X is a K3 surface, then
Mv(X,H) is an IHS variety of K3[n]–type, for n = v2/2 + 1. Whereas, if X = A is an abelian surface and
if v2 ≥ 4, there is a non trivial Albanese variety and, in order to get an irreducible holomorphic symplectic
manifold, one needs to consider a fiber

(1) Kv(A,H) := alb−1(0),

of the Albanese morphism (which is isotrivial)

alb :Mv(A,H) → A×A∨.

Recall that if v2 ≥ 6, Kv(A,H) is deformation equivalent to the generalized Kummer variety K [n](A) :=∑−1(0), where
∑

: A[n+1] → A is the summation morphism.
If we consider an H–stable sheaf F with a primitive Mukai vector v0, then for m ≥ 2, the sheaf F⊕m

is strictly H–semistable. Hence if we set v = mv0, this sheaf determines a singular point of the moduli
space Mv(X,H), whose smooth locus still carries a holomorphic symplectic form. In [37] and [38], O’Grady
considered the case of v0 = (1, 0,−1) and m = 2, and showed that the singular symplectic variety Mv(X,H)

admits a symplectic resolution M̃v(X,H). For X K3, this resolution gives a 10–dimensional IHS manifold
of type OG10. For X = A, fix F0 ∈ Mv(A,H) and denote by Kv(A,H) the fiber over 0 of the isotrivial
fibration

(2)
av : Mv(A,H) −→ A×A∨

F 7−→ (Alb(c2(F )), det(F )⊗ det(F0)
−1)

where Alb : CH0(A) → A is the Albanese homomorphism. The proper transform K̃v(A,H) of Kv(A,H) in

M̃v(X,H) is smooth and the induced map

(3) fv : K̃v(A,H) → Kv(A,H),

is a symplectic resolution. The gives the 6–dimensional IHS K̃v(A,H), whose deformation type is called
OG6, that is the object of this paper.
Lehn and Sorger proved in [23] that for any primitive v0, with v

2
0 = 2, the moduli space M2v0(X,H) admits

a symplectic resolution. Finally, Perego and the second named author [41] showed that for any choice of
v0, with v

2
0 = 2, on a K3 or abelian surface, the IHS manifolds that one gets are deformation equivalent to

OG10 and OG6, respectively.
When A is a general principally polarized abelian surface and Mv(X,H) parametrizes pure 1–dimensional

sheaves, the IHS manifold K̃v(A,H) is the image of a degree 2 rational map whose domain is an IHS manifold
of K3[3]–type as we now briefly sketch.
Let us consider a principal polarization Θ ⊂ A. The Mukai vector v0 = (0,Θ, 1) satisfies v20 = 2, and hence,

if we set v = 2v0, there is symplectic resolution K̃v → Kv that is deformation equivalent to OG6. There is
a natural support morphism Kv → |2Θ| = P3, realizing Kv as a Lagrangian fibration. By definition of Kv,
the fiber over a smooth curve C ∈ |2Θ| is the kernel of the natural morphism Pic6(C) → A (which is also
the restriction of av to Pic6(C) ⊂Mv(A,H)).
It is well known that the morphism associated to the linear system |2Θ| is the quotient morphism A → A/
± 1 ⊂ P3 onto the singular Kummer surface of A. Let S → A/± 1 be the minimal resolution of A. It is well
known that S, the Kummer surface of A, is a K3 surface. Notice that S come naturally equipped with the

1
v is effective if it is the Mukai vector of a coherent sheaf on X.
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degree 4 nef line bundle D obtained by pulling back the hyperplane section of A/ ± 1 ⊂ P3. Consider the
diagram

q : A→ A/± 1 ⊂ P3

(4) Ã

b

��

a // S

p

��
A q

// A/± 1

where Ã is the blow up of A at its 16 2–torsion points or, equivalently, the ramified cover of S along the
exceptional curves E1, . . . , E16 of p. Consider the moduli space Mw(S) of sheaves on S with Mukai vector
w = (0, D, 1) that are stable with respect to a choosen, sufficiently general, polarization. This is an IHS
manifold birational to the Hilbert cube of S and it has a natural morphism Mw(S) → |D| = P3 realizing it
as the relative compactified Jacobian of the linear system |D| (also a Lagrangian fibration).
The morphisms in diagram 4 induce a rational generically 2 : 1 map

b∗a
∗ = q∗p∗ :Mw(S) 99KMv(A,H).

Since Mw(S) is simply connected, the image of this map lies in a fiber of av, giving a 2 : 1 morphism
Φ :Mw(S) 99K Kv(A,H) .
On the smooth fibers, this maps restricts to the natural 2 : 1 pull back morphism Pic3(C′) → Pic6(C), whose
image is precisely ker[Pic6(C) → A]. Recall that

∑
iEi is divisible by 2 in H2(S,Z) and that the line bundle

η := OS(
1
2

∑
Ei) determines the double cover q. It follows that the involution onMw(S) corresponding to Φ

is given by tensoring by η and K̃v(A,H) is a birational model of the “quotient” of Mw(S) by the birational
involution induced by tensorization by η.
In this paper, for any Abelian surface A and for an effective Mukai vector v = 2v0 with v20 = 2 on A, we

show that K̃v(A,H) admits a rational double cover from an IHS manifold Y v(A,H) of K3[3]–type. Recall
that the singular locus Σv ⊂ Kv(A,H) has codimension 2 and can be identified with A×A∨/± 1 (for more
details, see Section 2). Following [38], the symplectic resolution (3) can be obtained by two subsequent blow
ups followed by a contraction: first one blows up the singular locus of Σv, then one blows up the proper

transform of Σv itself (which is smooth); these two operations produce a manifold K̂v(A,H) that has a
holomorphic two form degenerating along the strict transform of the exceptional divisor of the first blow

up; contracting this exceptional divisor finally gives the manifold K̃v(A,H) that has non–degenerate (hence

symplectic) two form and a regular morphism K̃ → K which is, therefore, a symplectic resolution. The

inverse image Σ̂ of Σv in Kv(A,H) is a smooth divisor, which is divisible by two in the integral cohomology
by results of the second named author [42]. We show that the associated ramified double cover is a smooth
manifold birational to an IHS manifold of K3[3]–type, which we denote by Y v(A,H) and which is equipped
with a birational symplectic involution.

This enable us to reconstruct K̃(A,H) starting from Y v(A,H), and its symplectic birational involution

τv : Y v(A,H) → Y v(A,H).

More specifically, Y v(A,H) contains 256 P3s, the birational involution τv is regular on the complement of
these P3s, and, moreover, this involution lifts to a regular involution on the blow up Y v(A,H) of Y v(A,H)
along the 256 P3s. The fixed locus of the induced involution on Y v(A,H) is smooth and four dimensional,

hence the blow up Ŷv(A,H) of Y v(A,H) along this fixed locus carries an involution τ̂v admitting a smooth

quotient Ŷv(A,H)/τ̂v. This quotient is K̂v(A,H) and Ŷv(A,H) is its double cover branched over Σ̂v. Finally

K̂v(A,H) is the blow up of K̃v(A,H) along 256 smooth 3–dimensional quadrics.

This construction allows to relate the Hodge numbers of K̃v(A,H) to the invariant Hodge numbers of
Y v(A,H). Finally, the invariant Hodge numbers of Y v(A,H) may be determined by using monodromy
results of Markman [25]. This yields our main result:

3



Theorem 1.1. Let K̃ be an irreducible holomorphic symplectic of type OG6. The odd Betti numbers of K̃
are zero, and its non–zero Hodge numbers are collected in the following table:

H0,0 = 1
H2,0 = 1 H1,1 = 6 H0,2 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1
H6,0 = 1 H5,1 = 6 H4,2 = 173 H3,3 = 1144 H2,4 = 173 H1,5 = 6 H0,6 = 1

H6,2 = 1 H5,3 = 12 H4,4 = 173 H3,5 = 12 H2,6 = 1
H6,4 = 1 H5,5 = 6 H4,6 = 1

H6,6 = 1.

As a corollary, we also get the Chern numbers of this sixfold, see Proposition 6.8 for details.
We should point out that this construction cannot be carried out for IHS manifolds of type OG10, since the
exceptional divisor of the second blow up (the procedure to obtain the symplectic resolution is the same) is
not divisible by 2 in the integral cohomology.
The structure of the paper is as follows. In Section 2, we recall local and global properties of O’Grady’s
and Lehn–Sorger symplectic resolution. In Section 3, we construct an affine double of the Lehn–Sorger local
model of the deepest stratum of the singularity of Kv(A,H), branched over the singular locus. In Section 4,
we globalize the previous results to construct global double covers Yv of Kv(A,H) branched over the singular
locus. In Section 5, we prove that Yv is birational to an IHS manifold of K3[3]–type. Finally, in Section 6,
we use the previous results to compute the Hodge numbers.

Notations. For a closed embedding X1 ⊂ X2 of algebraic algebraic varieties we denote with BlX1X2 the
blowup of X2 along X1.
For any affine cone or vector bundle X3, we denote with P(X3) its projectification.
Finally we denote by Hk(X1) the k–th singular cohomology group of X1 with rational coefficient.

Acknowledgments. We wish to thank Kieran O’Grady for useful discussions. The first two named authors
are supported by FIRB 2012 “Spazi di moduli ed applicazioni”.

2. The resolution

Let us fix a primitive Mukai vector v0 ∈ H∗
alg(A,Z) with v

2
0 = 2, set v = 2v0, and consider a v-generic ample

line bundle H on A (see Section 2.1 of [41]). By [23, Théorème 1.1] the projective variety Kv := Kv(A,H)

admits a simplectic resolution K̃v which is deformation equivalent to O’Grady’s six dimensional example by
[41, Theorem 1.6(2)]. In this section we recall the description of the singularity of Kv and of the symplectic

resolution f : K̃v → Kv following both the papers of O’Grady [37], [37] and Lehn and Sorger [23].
Since the singular locus Σv of Kv parametrizes polystable sheaves of the form F1⊕F2, with Fi ∈Mv0(X,H),
we have Σv = Kv ∩ Sym2Mv0(A,H). Since v20 = 2 the smooth moduli space Mv0 is isomorphic to A × A∨

and, as the Albanese map alb is an isotrivial fibration, the singular locus Σv is isomorphic to (A×A∨)/± 1.
This also implies that the singular locus Ωv of Σv consists of 256 points representing sheaves of the form
F⊕2 with F ∈Mv0(X,H).
The analytic type of the singularities appearing in Kv is completely understood. If p ∈ Σv \ Ωv, i.e. p
represents a polystable sheaf of the form F1 ⊕ F2 where F1 6= F2, there exists a neighborhood U ⊂ Kv of p,
in the classical topology, biholomorphic to a neighborhood of the origin in the hypersurface defined in A7 by

the equation
∑3

i=1 x
2
i = 0 (see for example [1, Prop. 4.4] or [37, Prop. 1.4.1]), i.e. Kv has an A1 singularity

along Σv \ Ωv.
If p ∈ Ωv, the description of the analytic type of the singularity of Kv at p is due to Lehn and Sorger and it
is contained in [23, Théorème 4.5.]. To recall this description, let V be a four dimensional vector space, let
σ be a symplectic form on V , and let sp(V ) be the symplectic Lie algebra of (V, σ), i.e. the Lie algebra of
the Lie group of the automorphisms of V preserving the symplectic form σ.
We let

Z := {A ∈ sp(V ) | A2 = 0}
4



be the subvariety of matrices in sp(V ) having square zero. It is known that Z is the closure of the nilpotent
orbit of type o(2, 2), which parametrizes rank 2 square zero matrices. Moreover, by Criterion 2 of [14], Z is
also a normal variety.
By [23, Théorèm 4.5.], if p ∈ Ωv, there exists an euclidean neighborhood of p in Kv, biholomorphic to a
neighborhood of the origin in Z. Hence the local geometry of a symplectic desingularization of Kv is encoded
in the local geometry of a symplectic desingularization of Z.
Let Σ be the singular locus of Z and let Ω be the singular locus of Σ. Let us recall that dimZ = 6, dimΣ = 4,
dimΩ = 0 and, more precisely,

Σ = {A ∈ Z | rkA ≤ 1 }, and Ω = {0}.

Let G ⊂ Gr(2, V ) ⊂ P(∧2V ) be the Grassmannian of Lagrangian subspaces of V , notice that G is a smooth
3-dimensional quadric and set

Z̃ := { (A,U) | A(U) = 0 } ⊂ Z ×G.

The restriction πG : Z̃ → G of the second projection of Z × G makes Z̃ the total space of a 3-dimensional

vector bundle, the cotangent bundle of G. In particular, Z̃ is smooth and the restriction

f : Z̃ → Z

of the first projection of Z × G, which is an isomorphism when restricted to the locus of rank 2 matrices,
is a resolution of the singularities. The fiber f−1(A), over a point A ∈ Σ, is the smooth P1 parametrizing
Lagrangian subspaces contained in the 3-dimensional kernel of A and the central fiber f−1(0) is the whole

G. As Z has a A1 singularity along Σ \ Ω and G has dimension 3 it follows that f : Z̃ → Z is a symplectic
resolution.

Remark 2.1. Let U ⊂ V ⊗ OG be the rank 2 tautological bundle. The smooth symplectic variety Z̃ is
isomorphic to the total space Sym2

GU of the second symmetric power Sym2
G U of U . In fact, an endomorphism

A ∈ gl(V ) belongs to Z if and only if the following conditions hold:

(1) A2 = 0,
(2) σ(Av1, v2) = σ(Av2, v1) for any v1, v2 ∈ V .

By (2) the kernel kerA and the image ImA of A are orthogonal with respect to σ. Hence, for (A,U) ∈ Z̃, we
have V → ImA ⊂ U ⊂ kerA ⊂ V . Since U ⊂ V is lagrangian we have V/U ∼= U∨, so A has a factorization
of the form V ։ U∨ → U →֒ V . Moreover the induced linear map ϕA ∈ Hom(U∨, U) = U ⊗ U defines a
bilinear form on U∨ that is symmetric if and only if (2) holds.

Remark 2.2. Set
Σ̃ := { (A,U) ∈ Z̃ | rank(A) ≤ 1 }.

The variety Σ̃ is the exceptional locus of f . It is a locally trivial bundle over G with fiber the affine cone over

a conic in P2. Using the isomorphism Z̃ = Sym2
GU , the variety Σ̃ is identified with the locus parametrizing

singular symmetric bilinear forms on the fibers of the dual of the tautological rank-2 vector bundle U . In

particular, Σ̃ is a fibration over G in cones over a smooth conic, i.e, Σ̃ is singular only along the zero-section

Ω̃ ≃ G of Sym2
GU and it has an A1 singularity along it.

The following theorem due to Lehn and Sorger ([23]) gives an intrinsic reformulation of the symplectic

desingularization f : Z̃ → Z.

Theorem 2.3 ( [23] ). Let p ∈ Ω be a singular point of the singular locus Σ ⊂ Kv. Then,

a) ([23, Théorème 4.5]) There is a local analytic isomorphism

(Z, 0)
loc
∼= (Kv, p).

b) ([23, Théorème 3.1]) The resolution f : Z̃ → Z, defined above, coincides with the blowup of Z along
its singular locus Σ.

In order to discuss the topology of the symplectic desingularization of fv : K̃v → Kv, we are going to describe
f in term of blow ups along smooth subvarieties.

Proposition 2.4. Let Σ be the strict transform of Σ in BlΩZ.
5



(1) Σ is the singular locus of BlΩ, Σ is smooth and BlΩZ has an A1 singularity along Σ.
(2) The varieties BlΩ̃BlΣZ and BlΣBlΩZ are smooth and isomorphic over Z. In particular, the diagram

BlΩ̃BlΣZ = BlΣBlΩZ

ξ

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
ρ

uu❧❧❧
❧❧❧

❧❧
❧❧❧

❧

Z̃ = BlΣZ

f

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

BlΩZ ,

η

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

Z

where the arrows are blow up maps, is commutative.

Proof. (1) Let P(Z) := Z/C∗ be the projectivization of the affine cone Z. As Z is a cone, its blow up BlΩZ
at the origin is the total space of the tautological line bundle over P(Z). The singular locus Σ of Z is a
subcone, hence its strict transform Σ = BlΩΣ is the total space of the restriction to P(Σ) ⊂ P(Z) of the
tautological line bundle. As Σ \ {0} is smooth, P(Σ) is smooth. Moreover, since Z has an A1 singularity
along Σ \ {0}, the singular locus of P(Z) is P(Σ) and P(Z) has an A1 singularity along P(Σ). Passing to the
total spaces of the tautological line bundles we get item (1).

(2) We only need to show that BlΩ̃BlΣZ and BlΣBl0Z are isomorphic. By Remark 2.1, Z̃ is isomorphic to

Sym2
GU and, by Remark 2.2, BlΩ̃BlΣZ is the blow up of Sym2

GU along its zero section. Letting P(Sym2
G U)

be the projective bundle associated to Sym2
G U , the blow up BlΩ̃BlΣZ is isomorphic to the total space

T ⊂ P(Sym2
G U) ×G Sym2

GU of the tautological line bundle of the projective bundle P(Sym2
G U) . The

isomorphism

Sym2
GU = Z̃ := { (A,U) | A(U) = 0 } ⊂ Z ×G

also implies
P(Sym2

G U) = { ([A], U) | A(U) = 0 } ⊂ P(Z)×G

and, using this identification, we conclude that

BlΩ̃BlΣZ = T = { ([A], B, U) | A(U) = 0 B ∈ [A]} ⊂ P(Z)× Z ×G.

On the other side of the diagram, as Z is a cone, its blow up at the origin can explicitly be given as

BlΩZ = { ([A], B) | B ∈ [A]} ⊂ P(Z)× Z.

It remains to show that the map ξ : BlΩ̃BlΣZ → BlΩZ induced by the projection π1,2 : P(Z) × Z × G →

P(Z) × Z is the blow up of P(Z) × Z along Σ. Since for q ∈ Σ the schematic fiber ξ−1(q) is isomorphic to
P1 and Σ is smooth, the schematic inverse image ξ−1(Σ) is a smooth, hence reduced and irreducible Cartier
divisor. By the universal property of blow ups, ξ factors through a proper map ι : BlΩ̃BlΣZ → BlΣBlΩZ

sending ξ−1(Σ) surjectively onto the exceptional divisor of the blow up of BlΩZ along Σ. Finally, since BlΩZ
is only singular along Σ and has an A1 singularity along Σ, the blow up BlΣBlΩZ is smooth. It follows that
ι is a proper birational map between smooth varieties that does not contract any divisor, therefore ι is a
isomorphism. �

This proposition also allows us to describe the exceptional loci of the blow up maps appearing in item (2).

Let Σ̂ ⊂ BlΩ̃BlΣZ be the exceptional divisor of ξ, let Ω̂ ⊂ BlΩ̃BlΣZ be the exceptional divisor of ρ, and

recall that Ω̃ ∼= G is the inverse image of Ω under the resolution f .

Corollary 2.5. (1) Σ̂ is a P1-bundle over Σ and Σ̂ = BlΩ̃Σ̃.

(2) Ω̂ is a P2-bundle over Ω̃ isomorphic to P(Sym2
GU).

Proof. (1) By item (1) of Proposition 2.4, the restriction of ξ realizes Σ̂ as a P1-bundle over Σ. Since Σ̂ is

also the strict transform of Σ̃ under ρ and Ω̃ ⊂ Σ̃, the restriction of ρ to Σ̂ can be identified with the blow

up map of Σ̃ along Ω̃. As for (2), we can argue as follows. Since Ω̃ is a smooth subvariety of codimension 3

in the smooth variety Z̃ the restriction of ρ to Ω̂ makes it a P2-bundle over Ω̃. More precisely, since Ω̃ is the

zero section of Z̃ = Sym2
GU (see Remark 2.2), there is an isomorphism Ω̂ ≃ P(Sym2

GU). �
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To compute invariants of K̃v we need the following global versions of Proposition 2.4 and Corollary 2.5.

Proposition 2.6. Let Σv be the strict transform of Σv in BlΩv
Kv.

(1) Σv is the singular locus of BlΩv
Kv, Σv is smooth and BlΩKv

Kv has an A1 singularity along Σv.
(2) The projective varieties BlΩ̃v

BlΣv
Kv and BlΣv

BlΩv
Kv are smooth and isomorphic over Kv. Hence

the diagram

BlΩ̃v
BlΣv

Kv = BlΣv
BlΩv

Kv

ξv

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

ρv

tt❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥

K̃v = BlΣv
Kv

fv
**❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

BlΩv
Kv ,

ηv

uu❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

Kv

where the arrows are blow ups, is commutative.

Proof. As Σv \ Ωv is smooth and Kv has an A1 singularity along Σv \ Ωv, item (1) follows from Theorem
2.3(a) and Proposition 2.4(1), since the blow up is a local construction. Item (2) holds since item (2)
of Proposition 2.4 also implies that the natural birational map between BlΩ̃v

BlΣv
Kv and BlΣv

BlΩv
Kv is

actually an isomorphism. �

Remark 2.7. Since Σv contains Ωv as a closed subscheme, its strict transform Σv in BlΩv
Kv is isomorphic

to the blow up BlΩv
Σv. Recall that Σv ≃ (A × A∨)/ ± 1, so that its singular locus Sing((A × A∨)/ ± 1) is

in bijective correspondence with the set of 2-torsion points (A×A∨)[2] of A×A∨. It follows that there is a
chain of isomorphisms

Σv ≃ BlSing((A×A∨)/±1)((A×A∨)/ ± 1) ≃ (Bl(A×A∨)[2](A×A∨))/ ± 1.

This also implies that the exceptional divisor of BlΩv
Σv, which is given by the (reduced induced) intersection

of the exceptional divisor Ωv of BlΩv
Kv and Σv, consists of a union of 256 disjoint P3.

Corollary 2.8. Let Σ̂v ⊂ BlΩ̃v
BlΣv

Kv be the exceptional divisor of ξ, let Ω̂v ⊂ BlΩ̃v
BlΣv

K̃v be the excep-

tional divisor of ρ, let Ωv ⊂ BlΩv
Kv be the exceptional divisor of η, and, finally, let Ωv ∩ Σv denote the

intersection of Ωv and Σv with its reduced induced structure.

(1) Σ̂v is a P1-bundle over Σv and Σ̂v = BlΩ̃v
Σ̃v.

(2) Ω̂v is a P2-bundle over Ω̃v isomorphic to P(Sym2
GU)

Proof. This follows from item (2) of Theorem 2.3 and Corollary 2.5. �

Remark 2.9. The proof of the existence of an isomorphism between the smooth projective varieties BlΩ̃v
BlΣv

Kv

and BlΣv
BlΩv

Kv follows the original strategy used by O’Grady in [37]. For v = (2, 0,−2), he proved

that a symplectic desingularization of Kv can be obtained by contracting the strict transform Ω̂v of Ωv
in BlΣv

BlΩv
Kv. Proposition 2.6 shows, in particular, that O’Grady’s procedure gives a symplectic desingu-

larization of Kv that is isomorphic to the Lehn-Sorger desingularization BlΣv
Kv. The proof of Proposition

2.6 is elementary because it uses the crucial description, due to Lehn and Sorger, of the analytic type of the
singularities appearing in Kv.

3. The local covering

This section is devoted to the local description of the double cover, branched along the singular locus, of
O’Grady’s singularity.
It is known [8, Cor. 6.1.6] that the fundamental group of the open orbit o(2, 2) is isomorphic to Z/(2). We

wish to extend this double cover to a ramified double cover of o(2, 2) = Z.
To this aim, let

W := { v ⊗ w | σ(v, w) = 0 } ⊂ V ⊗ V, and ∆W = { v ⊗ v } ⊂W.
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be the affine cone over the incidence subvariety

I := {([v], [w]) | σ(v, w) = 0 } ⊂ PV × PV ⊂ P(V ⊗ V ).

Since I is smooth, the singular locus Γ of W consists only of the vertex 0 ∈ V ⊗ V .
Moreover, since I ⊂ P(V ⊗ V ) is projectively normal, W is a normal variety.
Let

τ :W →W

be the involution induced by restricting the linear involution τV⊗V on V ⊗ V that interchanges the two
factors.
The following lemma exhibits W as the desired double cover of Z.

Lemma 3.1. The morphism
ε :W −→ Z

v ⊗ w 7−→ σ(v, ·)w + σ(w, ·)v

realizes Z as the quotient W/τ . In particular, ε is a finite 2 : 1 morphism, the ramification locus of ε is ∆
and the branch locus of ε is Σ.

Proof. We leave it to the reader to check that ε(W ) ⊂ Z. For a rank 2 endomorphism A ∈ Z \Σ, let us show
that ε−1(A) consists of 2 points interchanged by τ . Let U ⊂ V be the kernel of A, which is a Lagrangian
subspace. As shown in Remark 2.1, A induces a linear map ϕA ∈ Hom(U∨, U) = U ⊗ U that gives a rank
2 bilinear symmetric form on U∨ and, conversely, any symmetric bilinear form on U∨ determines a a rank
2 endomorphism A ∈ Z whose kernel is U . A rank 2 symmetric bilinear form on U∨ is determined, up
to scalars, by 2 independent distinct isotropic vectors L1 and L2, hence by their kernels ker(L1) ⊂ U and
ker(L2) ⊂ U . Now it suffices to notice that, for v and w spanning U and for A = ε(v⊗w), the lines ker(L1)
and ker(L2) are the lines generated by v and w.
Since kerA and ImA are orthogonal (see Remark 2.1), if A ∈ Σ is a rank 1 endomorphism or the 0
endomorphism, then there exists a unique up to scalars v ∈ V such that A = σ(v, ·)v. This shows that
ε−1(A) consists of a unique point, which is fixed by τ .
To show that Z ∼= W/τ , notice that ε is τ–invariant and its fibers are the orbits of the action of τ , hence ε
induces a bijective morphism W/τ → Z . Since Z is normal (see Criterion 2 of [14]), this morphism is an
isomorphism. �

Remark 3.2. Using Lemma 3.1, we may reprove that the fundamental group of o(2, 2) = Z \Σ is isomorphic
to Z/(2). As ε is étale on Z \ Σ, it suffices to show that ε−1(Z \ Σ) = W \∆ is simply connected. W \∆
can be obtained from the smooth variety W \ {0} by removing a codimension 2 subvariety, hence there is an
isomorphism of fundamental groups π1(W \∆) ≃ π1(W \ {0}). Finally the map k :W \ {0} → P(V ) defined
by k(v⊗w) = [v] is a locally trivial fibration with fiber isomorphic to the complement of 0 in a 3 dimensional
vector space. Therefore k has simply connected base and fiber and π1(W \ {0}) = 0.

The morphism ε induces double coverings of the varieties Z̃ = BlΣZ, BlΩZ and BlΩ̃BlΣZ = BlΣBlΩ. The
following corollary discusses the case of BlΩZ.

Corollary 3.3. The morphism ε lifts to a finite 2 : 1 morphism

ε : BlΓW → BlΩZ,

whose branch locus is the strict transform Σ of Σ in BlΩZ.

Proof. The morphism ε is the restriction to W of the linear map

εV⊗V : V ⊗ V → sp(V )

sending v ⊗ w to σ(v, ·)w + σ(w, ·)v for any v ⊗ w ⊂ V ⊗ V . As ker εV⊗V ∩W = 0, the map ǫ induces a
morphism P(ε) : I → P(Z) between the projectivization of W and Z. There are the identifications

BlΓW = Bl0W = { (Cα, v ⊗ w) ∈ I ×W | v ⊗ w ∈ Cα }

and

BlΩZ = Bl0Z = { (CA,B) ∈ P(Z)× Z | B ∈ CA }.
8



It follows that P(ε) × ε restricts to a map ε : BlΓW → BlΩZ and, by Lemma 3.1, ε is a finite 2 : 1 map
whose branch locus is

ΣW = BlΩΣ = Bl0Σ = { (CA,B ∈ P(Σ)× Σ | B ∈ CA }.

�

Remark 3.4. Since W is the cone over a smooth variety, both its blow up at the origin BlΓW and the
exceptional divisor Γ ⊂ BlΓW are smooth. Finally the strict transform ∆ of ∆ in BlΓW is isomorphic to
BlΓ∆ and, since ∆ is the cone over a smooth variety, also ∆ is smooth.

The following corollary treats the case of the induced double cover of Z̃

Corollary 3.5. Let π : SCGU
⊗2 → G be the relative affine Segre cone parametrizing decomposable tensors

in the total space of the rank 4 vector bundle U⊗2.

(1) SCGU⊗2 is isomorphic to Bl∆W ,
(2) Using this identification, the map

ε̃ : Bl∆W (= SCGU
⊗2) → Z̃(= Sym2

GU),

induced by symmetrization on the fibers, is a finite 2 : 1 morphism lifting ε, whose branch locus is Σ̃.

Proof. (1) By definition of fiber product, W ×Z Z̃ is equal to

{(v ⊗ w,A,U) ∈W × Z ×G | ε(v ⊗ w) = A and v, w ∈ U }

and, by Lemma 3.1, the fiber over U of the projection πG : W ×Z Z̃ → G is naturally isomorphic to the

variety SC U⊗2 of decomposable tensors in U ⊗ U . It follows that SCGU⊗2 is isomorphic to W ×Z Z̃.
Let us show that W ×Z Z̃ has a birational morphism to Bl∆W . Let πW :W ×Z Z̃ →W be the projection,
by the universal property of blow ups, it will suffice to show that the schematic inverse image π−1

W (∆) is a
Cartier divisor.
For U ∈ G, the projection πW sends the fiber π−1

G (U) isomorphically onto SC U⊗2. Hence the schematic

intersection π−1
W (∆)∩π−1

G (U) is isomorphic to the schematic intersection ∆∩SC U⊗2, i.e. the reduced cone
over a smooth conic C ⊂ P(U ⊗ U) parametrizing symmetric decomposable tensors in U ⊗ U . As varying
U ∈ G the intersections π−1

W (∆) ∩ π−1
G (U) form a locally trivial family over G, the family π−1

W (∆) → G is
locally trivial. Finally, as the cone over C ⊂ P(U ⊗ U) is a Cartier divisor in the variety of decomposable

tensors of U ⊗ U , the scheme π−1
W (∆) is a Cartier divisor in W ×Z Z̃.

On the other hand, Bl∆W has a regular birational morphism to W ×Z Z̃ inverting the previous birational
morphism.
This will follow if we prove that the ideal of ε−1(Σ) in W is the square I2∆ of the ideal of ∆. In fact, in this
case, the blow up Bl∆W equals the blow up Blε−1(Σ)W , hence the schematic inverse image of Σ in Bl∆W

is a Cartier divisor. Therefore, as Z̃ = BlΣZ, by the universal property of blow ups, we can conclude that
there exists a commutative diagram

Bl∆W

g

��

ξ′
// Z̃

f

��
W

ε
// Z

inducing the desired birational regular morphism from Bl∆W to W ×Z Z̃.
To determine the ideals of ε−1(Σ) and ∆ in W we recall that the involution τ is the restriction of the linear
involution τV⊗V on V ⊗ V that can be interpreted as the transposition on 4× 4 matrices if we chose a basis
for V . Moreover, the ideal of ∆ in W is generated by the restrictions of the linear antiinvariant functions on
V ⊗V (this already holds for the ideal of ∆ in the affine cone over the Segre variety P(V )×P(V ) ⊂ P(V ⊗V )).
Hence, I2∆ is generated by restrictions of products of pairs of linear antiinvariant functions on V ⊗ V and
any such product comes from a function on the quotient (V ⊗ V )/τV⊗V vanishing along the branch locus
B. Since B contains the branch locus Σ of W/τ , we conclude that the ideal of ε−1(Σ) contains I2∆. Equality
holds becouse W \ {0} is smooth and the fixed locus ∆ \ {0} has codimension 2, hence ε−1(Σ) equals the
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subscheme ∆2 defined by I2∆ outside the origin. As ∆2 is a subcone of W , it is the closure of ∆2 \ {0},
therefore it is a closed subscheme of ε−1(Σ).

(2) The existence of the regular morphism ε̃ lifting ε follows from (1). The branch locus of ε̃ is Σ̃ because,
by our description of ε̃, it parametrizes singular bilinear symmetric tensors (see Remark 2.2). �

Corollary 3.5 also allows us to describe the singularities of the exceptional divisor ∆̃ of the blow up Bl∆W
of W along ∆.

Remark 3.6. Bl∆W ≃ SCGU⊗2 is a locally trivial bundle over G with fiber the affine cone over a smooth

quadric in P3. Hence it is smooth outside the zero section Γ̃ and any point of Γ̃ has a neighborhood isomorphic
to the product of the affine cone over a smooth quadric and a smooth 3-dimensional variety. As ε and ε̃ are

finite, the morphism ε̃ sends the exceptional divisor ∆̃ ⊂ Bl∆W onto the exceptional divisor Σ̃ ⊂ Z̃. By the

definition of ε̃ in item (2) of Corollary 3.5, the divisor ∆̃ parametrizes symmetric decomposible tensors in
the fibers of πG : SCGU⊗2 → G, hence it is a locally trivial bundle with fiber the affine cone over a smooth

conic. Therefore it is smooth outside Γ̃ and has an A1 singularity along Γ̃.

The following corollary completes the picture of the double covering induced by ε in the local case.

Corollary 3.7. (1) There exist finite degree 2 morphisms ε̂1 : BlΓ̃Bl∆W → BlΩ̃BlΣZ and ε̂2 : Bl∆BlΓW →

BlΣBlΩZ, lifting ε̃ and ε, whose branch loci are the strict transform of Σ̃ in BlΩ̃BlΣZ and the ex-

ceptional divisor Σ̂ of BlΣBlΩZ respectively.
(2) The varieties BlΓ̃Bl∆W and Bl∆BlΓW are smooth and isomorphic over W . Hence there exists a

commutative diagram

BlΓ̃Bl∆W = Bl∆BlΓW

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

ε̂1=ε̂2

��uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦

Bl∆W

ε̃
��

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

BlΩ̃BlΣZ = BlΣBlΩZ

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
BlΓW

ε

��
vv♠♠♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

Z̃ = BlΣZ

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

W

ε

��

BlΩZ

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

Z

where the diagonal arrows are blow ups.

Proof. (1) Recall that Bl∆W ≃ SCGU⊗2 and BlΣZ ≃ Sym2
GU are locally trivial bundles over G and Γ̃

and Ω̃ are their respective zero sections. As ε̃ : Bl∆W → BlΣZ is a morphism over G, the existence of

ǫ̂1 : BlΓ̃Bl∆W → BlΩ̃BlΣZ branched over the strict transform of Σ̃ in BlΩ̃BlΣZ follows from the existence
of a commutative diagram of the form

Bl0SCU
⊗2

��

// Bl0Sym
2U

��
SCU⊗2 // Sym2U

where U is a 2-dimensional vector space, SC U⊗2 ⊂ U ⊗ U is the affine cone, parametrizing decomposable
tensors, over the Segre variety P(U) × P(U), the vertical arrows are blow ups, the horizontal arrows are
induced by symmetrization (hence their branch locus parametrizes singular symmetric tensors).
By Corollary 3.3, the branch locus of the finite 2 : 1 morphism ε : BlΓW → BlΩZ is the singular locus Σ
of BlΩZ. By item (1) of Proposition 2.4, BlΩZ has an A1 singularity along Σ and this suffices to imply
the existence of the desired finite 2 : 1 morphism ε̂2 : Bl∆BlΓW → BlΣBlΩZ whose branch locus is the

exceptional divisor Σ̂ of BlΣBlΩZ.
(2) Smoothness of BlΓ̃Bl∆W and Bl∆BlΓW follow from Remark 3.6 and Remark 3.4 respectively.
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It remains to show that the natural birational map j : BlΓ̃Bl∆W 99K Bl∆BlΓW extends to a biregular
morphism. Using the identification BlΩ̃BlΣZ = BlΣBlΩ, ε̂1 and ε̂2 may be seen as finite covers of BlΩ̃BlΣZ
and we have an equality of rational maps ε2 ◦ j = ε1. It follows that the closure of the graph of j is contained
in the fiber product BlΓ̃Bl∆W ×BlΩ̃BlΣZ Bl∆BlΓW . As ε̂1 and ε̂2 are finite, the closure of the graph of j is
finite and generically injective on the smooth factors BlΓ̃Bl∆W and Bl∆BlΓW . By Zariski’s Main Theorem
it is the graph of an isomorphism extending j.
The commutativity of the diagram holds because all maps are regular and commutativity is trivial on open
dense subsets.

�

In the final remark of this section we discuss the behavior of the restriction of the morphisms appearing in
the diagram in item (2) of Corollary 3.7, to the divisors appearing over Ω. Since this remark will not be
used in the rest of the paper, some of the computations are left to the reader.

Remark 3.8. Let Γ̂ be the exceptional divisor of the blow up of Bl∆W along its singular locus Γ̃ (see Remark
3.6). By restricting the morphisms in the upper part of the diagram in Corollary 3.7, we get the diagram

Γ̃

a3
��

Γ̂
a1oo

a4
��

a2 // I

a5
��

Ω̃ Ω̂
a6oo a7 // Ω.

As Ω̃ is contained in the branch locus of ǫ̃, the morphism a4 is an isomorphism and Γ̃ and Ω̃ are isomorphic to

G. By item (1) of Corollary 3.5, the exceptional divisor Γ̂ has a natural identification with P(U)×GP(U) and

a1 is the natural fibration over G. Analogously, by Remark 2.1, the divisor Ω̂ is identified with P(Sym2 U) =

P(Z̃) and a6 is the fibration over G.
The restriction a4 : P(U)×G P(U) → P(Sym2 U) of ε̂1,v is the natural 2 : 1 morphism.
The birational morphism a2 : P(U) ×G P(U) → I ⊂ P(V ) × P(V ) is induced by composing with the natural
morphism P(U) → P(V ).

The birational morphism a7 : P(Z̃) → Z is induced by f and finally the finite 2 : 1 morphism a5 : I → Ω =
P(Z) is the map P(ε) obtained from ε by projectivization (see the proof of Corollary 3.3).

4. The global covering

In this section we globalize the local double coverings of Lemma 3.7.2 Our starting point is the following

result contained in [42] and [40]. Keeping the notation as above, let Σ̃v ⊂ K̃v be the exceptional divisor of

the blow up K̃v = BlΣKv → Kv.

Theorem 4.1. [42, Theorem 3.3.1] The class of Σ̃v in the Picard group Pic(K̃v) of K̃v is divisible by two.

Proof. The case of K̃(2,0,−2) is dealt in [42, Theorem 3.3.1]. The general case follows from Theorem 3.1 and
Remark 3.4 of [40]. �

As the Picard group of the IHS manifold K̃v is torsion free, there exists a unique normal projective variety

Ỹv equipped with a double cover ǫ̃v : Ỹv → K̃v branched over Σ̃v. This double cover allows us to construct
the global analogue of the morphism ε of Lemma 3.7.

Theorem 4.2. There exists a unique normal projective variety Yv equipped with a finite 2 : 1 morphism
εv : Yv → Kv whose branch locus is Σv. The ramified double cover induced by εv on a small analytic
neighborhood of a point of Ωv is isomorphic to the ramified double cover induced by ε : W → Z on a small
analytic neighborhood of a point of Ω in Z.

2The varieties that we construct in this section depend on the abelian surface A and the chosen v–generic polarization but,
as in the previous sections, we omit this dependence to avoid cumbersome notation.
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Proof. For any p ∈ Ωv there exists a small analytic neighborhood Up,v of p ∈ Kv that is biholomorphic to
the intersection of Z with an open ball. Hence, for any p ∈ Ωv there exists a proper complex analytic space
Yp,v and a finite 2 : 1 morphism εp,v : Yp,v → Up,v branched along Up,v ∩Σv, which is obtained by restricting
ε.
On the other hand, there exists an analytic manifold Y ov and a finite 2 : 1 morphism εov : Y ov → Kv \ Ωv
branched along Σv \ Ωv. To see this, first of all notice that by restricting ǫ̃v : Ỹv → K̃v we get a double

covering of K̃v \ Ω̃v branched along Σ̃v \ Ω̃v. Since Kv has an A1 singularity along Σv, the exceptional

divisor Σ̃v \ Ω̃ is a P1–bundle whose normal bundle has degree −2 on the fibers. It follows that ε̃−1
v (Σ̃v \ Ω̃)

is a P1–bundle whose normal bundle has degree −1 on the fibers. By Nakano’s Theorem (see [34] and [9] ),

ǫ̃−1
v (K̃v \ Ω̃) is the blow up of a complex manifold Y ov along a submanifold isomorphic to Σv \Ωv. Moreover,

since fv ◦ ǫ̃v : Ỹv → Kv is constant on the fibers of the P1 bundle ǫ̃−1
v (Σ̃v \ Ω̃), it induces the desired finite

2 : 1 morphism εov : Y
o
v → Kv \ Ωv.

To yield the existence of εv : Yv → Kv, it will suffice to prove that εp,v and εov induce isomorphic double
covers on Up \ {p} so that they can be glued to get εv. Recall from Remark 3.2 that the fundamental
group of Z \ Σ is Z/2Z . Since the same holds for Up,v \ Σ, the étale double covers induced by εp,v
and εov on Up,v \ Σ are isomorphic. The closure of the graph of this isomorphism in the fiber product
εo−1
v (Up,v \ {p})×Up,v\{p} ε

−1
p,v(Up \ {p}) is finite and bimeromorphic on the manifolds εo−1

v (Up,v \ {p}) and

ε−1
p,v(Up \ {p}), hence it is the graph of an isomorphism of double covers Kv.
The glued complex analytic space Yv is also projective as a consequence of GAGA’s principles [13, Cor 4.6],
since it has a finite proper map to a projective variety. Finally Yv is normal since W is normal and since the
normality of a complex variety may be checked on the associated complex analytic space ([13, Prop. 2.1]).
To prove uniqueness of εv, let ε′v : Y ′

v → Kv be a finite 2 : 1 morphism branched over Σv such that
Y ′
v is normal. In this case Yv \ ε−1

v (Σv) and Y ′
v \ ε′−1

v (Σv) are algebraic proper étale double covers of

Kv \ Σv = K̃v \ Σ̃v. Any such cover is determined by a 2 torsion point in the Picard group Pic(K̃v \ Σ̃v)

and a nowhere vanishing section (unique up to scalars) of the trivial line bundle. As the Σ̃v is irreducible

and its class is divisible by 2 in the free group Pic(K̃v), there exists a unique non trivial 2 torsion point in

Pic(K̃v \ Σ̃v). Moreover, as Kv is normal and Σv has codimension 2 in Kv, a regular function on Kv \ Σv
extends to the projective varietyKv and therefore it is constant. It follows that Yv\ε−1

v (Σv) and Y
′
v \ε

′−1
v (Σv)

are isomorphic étale double covers of Kv \ Σv.
Repeating the argument in the final part of the proof of the existence, the closure of the graph of this
isomorphism in the fiber product Yv ×Kv

Y ′
v is finite and birational over the normal varieties Yv and Y ′

v ,
hence it is the graph of an isomorphism of double covers. The local characterization of ε near points of Ωv
holds by construction. �

Theorem 4.2 allows to prove a straightforward global version of Lemma 3.7. Let ∆v ⊂ Yv be the ramification
locus (with the reduced induced structure) of εv and let Γv be the singular locus (consisting of 256 points)

of Yv. Denote by Γ̃v the inverse image with reduced structure of Γv in Bl∆v
Yv and denote by ∆v the strict

transform of ∆v in BlΓv
Yv.

Corollary 4.3. (1) The projective varieties BlΓ̃v
Bl∆v

Yv and Bl∆v
BlΓv

Yv are smooth and isomorphic
over Yv.

(2) There exist finite 2 : 1 morphisms ε̃v : Bl∆v
Yv → K̃v, εv : BlΓv

Yv → BlΩv
Kv, ε̂1,v : BlΓ̃v

Bl∆v
Yv →

BlΩ̃v
BlΣv

Kv and ε̂2,v : Bl∆v
BlΓv

Yv → BlΣv
BlΩv

Kv, lifting εv. Hence, there exists a commutative
12



diagram

BlΓ̃v
Bl∆v

Yv = Bl∆v
BlΓv

Yv

))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

ε̂1,v=ε̂2,v

��tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

Bl∆v
Yv

ε̃v
��

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

BlΩ̃v
BlΣv

Kv = BlΣv
BlΩv

KvKv

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐

))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

BlΓv
Yv

εv

��
uu❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥

K̃v = BlΣv
Kv

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯
Yv

εv

��

BlΩv
Kv

uu❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥

Kv

where the diagonal arrows are blow ups.

Proof. (1) Over the inverse images of the smooth locus of Yv, the existence of the isomorphism is trivial,
whereas over the inverse images of small euclidean neighborhoods of the singular points of Yv it follows
from item (2) of Lemma 3.7. Since the global blow up is obtained by gluing local blow ups, BlΓ̃v

Bl∆v
Yv

and Bl∆v
BlΓv

Yv are isomorphic over Yv. The smoothness of Bl∆v
BlΓv

Yv and Bl∆v
BlΓv

Yv follows from the

smoothness of Bl∆BlΓW and Bl∆BlΓW , which was proven in Corollary 3.7. Hence item (1) holds.
(2) The existence of the liftings of the double cover εv over the inverse images of Kv \Ωv is clear. Over the
inverse images of a small euclidean neighborhood in Kv of a point of Ωv, the existence of the lift follows
from (a) of Theorem 2.3, Corollary 3.3, Corollary 3.5, and from item (1) of Lemma 3.7. Since, the lift of
a morphism to bimeromorphic varieties is unique, whenever it exists, it is possible to glue the local liftings
and obtain the desired global morphism. �

Remark 4.4. In Corollary 4.3 we have showed that Bl∆v
Yv is a double cover of K̃v and that it branched

over Σ̃v. Moreover, by Corollary 3.5, the projective variety Bl∆v
Yv is normal. Since the Picard group of the

IHS manifold K̃v is torsion free, there exists a unique such a double cover. It follows that Bl∆v
Yv = Ỹv and

ε̃v = ǫ̃v.

In order to describe the ramification loci of these double coverings, we need to introduce some further

notation. In the following corollary we denote by ∆̃v ⊂ Bl∆v
Yv the exceptional divisor and by ∆̂v ⊂

BlΓ̃v
Bl∆v

Yv = Bl∆v
BlΓv

Yv the strict transform of ∆̃v or, equivalently, the exceptional divisor of the blow

up of BlΓv
Yv along ∆v.

Corollary 4.5. (1) The branch loci of ε̃v, εv, and of ε̂1,v(= ε̂2,v) are Σ̃v, Σv, and Σ̂v, respectively.

(2) The ramification loci of ε̃v, εv and ε̂1,v(= ε̂2,v) are ∆̃v, ∆v, and ∆̂v, respectively.

Proof. The statements on the branch loci are determined by the analogous statement proved for the local
case. Specifically, (1) follows from Corollary 3.5, Corollary 3.3 and item (1) of Corollary 3.7.
Since the ramification locus of εv is ∆v and its branch locus is Σv, (2) follows from (1) and from the
commutativity of the diagram in item (2) of Corollary 4.3. �

In the final part of this section on the global geometry of the double covers induced by εv, we compare their
ramification and their branch loci and discuss the associated involutions.

Remark 4.6. Since Σv ≃ A×A∨/± 1, Σ̃v has an A1 singularity along its singular locus (see Remark 2.2).

Moreover, Σv and Σ̂v are smooth (see Proposition 2.6) and the branch loci of εv, ε̃v, εv, and ε̂1,v(= ε̂2,v) are

normal. Hence these double covers induce isomorphisms ∆v ≃ Σv, ∆̃v ≃ Σ̃v, ∆v ≃ Σv, and ∆̂v ≃ Σ̂v.

Remark 4.7. Remark 3.4 implies that BlΓv
Yv and BlΓ̃v

Bl∆v
Yv = Bl∆v

BlΓv
Yv are smooth, Corollary 3.5

implies that Bl∆v
Yv is normal and, by Theorem 4.2, Yv is normal too. Hence the finite 2 : 1 morphisms

εv, ε̃v, εv and ε̂1,v(= ε̂2,v) induce regular involutions τv, τ̃v, τv, τ̂1,v and τ̂2,v on Yv, Bl∆v
Yv, BlΓv

Yv,
BlΓ̃v

Bl∆v
Yv and Bl∆v

BlΓv
Yv respectively. Recall that Kv is normal, and hence so is BlΩv

Kv by Proposition

2.4. As for K̃v and BlΩ̃v
BlΣv

Kv = BlΣv
BlΩv

Kv, they are both smooth. It follows that the morphisms εv,
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ε̃v, εv and ε̂1,v(= ε̂2,v) can be identified with the quotient maps of the respective involutions τv, τ̃v, τv, τ̂1,v
and τ̂2,v.

5. The birational geometry of Yv

In this section we describe the global geometry of Yv, we show that it is birational to an IHS manifold of
K3[n] type, and we describe explicitly the birational map.
In the first part of the section, we consider the special case where A is a principally polarized abelian surface,
whose Néron–Severi group ois generated by the principal symmetric polarization Θ. As is well known, the
linear system |2Θ| defines a morphism g|2Θ| : A→ |2Θ|∨ ≃ P3 whose image is the singular Kummer surface
Kums of A, a nodal quartic surface isomorphic to the quotient A/ ± 1. The smooth Kummer surface S of
A is the blow up of Kums along the singular locus A[2].
We are going to show that in this case Y(0,2Θ,2) is birational to the Hilbert scheme S[3]. The following remark
collects some known results that we need in the proof.

Remark 5.1. (1) The locus of |2Θ| parametrizing singular curves consists of 17 irreducible divisors:
the divisor R parametrizing reducible curves and, for any 2 torsion point α ∈ A[2], the divisor Nα
parametrizing curves passing through α. The divisor R is isomorphic to Kums and a general point
of R corresponds to a curve of the form Θx ∪ Θ−x, where Θx and Θ−x meet transversally outside
of A[2]. For every α ∈ A[2], the divisor Nα is isomorphic to P2 and parametrizes curves whose
images in Kums are plane sections through the singular point g|2Θ|(α). The general point of Nα
corresponds to a curve C that is a double cover of a quartic plane curve with precisely one node; this
double covers ramifies over the node and therefore C has a node in α and no other singularity.

(2) For the natural choices in the definition of the map

a(0,2Θ,2) :M(0,2Θ,2)(A,Θ) → A×A∨,

(see Introduction formula (2)), the subvariety K(0,2Θ,2) := a−1
(0,2Θ,2)(0, 0) ⊂M(0,2Θ,2)(A,Θ) parametrizes

sheaves whose determinant is equal to O(2Θ) and whose second Chern class sums up to 0 ∈ A. Since
M(0,2Θ,2)(A,Θ) parametrizes pure dimension 1 sheaves, there exists a regular morphism t : Kv →
|2Θ| ≃ P3, called the support morphism, which to every polystable sheaf associates its Fitting sub-
scheme (see [24]). The morphism t is surjective and since K(0,2Θ,2) has a resolution that is a IHS
manifold, all its fibers are 3-dimensional.

(3) Since the polarization Θ is symmetric, −1∗ induces an involution on the moduli spaceM(0,2Θ,2)(A,Θ)
whose fixed locus contains the variety K(0,2Θ,2). Indeed, any smooth curve C ∈ |2Θ| is an étale double
cover of its image g|2Θ|(C). The pull back to C of any degree–3 line bundle on g|2Θ|(C), is a stable
sheaf of K(0,2Θ,2) which is −1∗–invariant. Moreover, the pullback of two line bundles on g|2Θ|(C)
are isomorphic if and only if the two line bundles differ by 2 torsion line bundle defining the étale
double cover C → g|2Θ|(C). Hence, there exists a six dimensional algebraic subset of K(0,2Θ,2) that
is fixed by the involution and hence, by closure of the fixed locus, the whole K(0,2Θ,2) is fixed.

(4) If C ∈ |2Θ| is smooth or general in R or Nα, the general point of t−1(C) represents a sheaf that is
locally free on its support. This holds because, for any nodal curve C, any torsion free sheaf on C
that is not locally free, is the limit of locally free sheaves on C varying in a family parametrized by
P1. Since any P1 has to be contracted by a(0,2Θ,2), it follows that it has to be contained in K(0,2Θ,2)

and the claim follows.
(5) The inverse image on K(0,2Θ,2) of an irreducible surface contained in |2Θ| ≃ P3 is irreducible. Since

t is equidimensional, it suffices to prove that t−1(C) is irreducible for any curve C that is smooth
or general in R or in Nα. If C is such a curve, the locus t−1(C)lf parametrizing sheaves in t−1(C)
that are locally free on their support is dense in t−1(C) and, moreover, −1 has at most 1 fixed point
on C. It follows that, any F ∈ t−1(C)lf , the −1 action on F can be linearized in such a way that
the action is trivial on the fiber over the fixed point. By Kempf descend Lemma (see Theorem 4.2.15
of [18]), this means that F is the pull back of a line bundle on the irreducible nodal curve g|2Θ|(C).

Since the generalized Jacobian of an irreducible nodal curve is irreducible, t−1(C)lf and its closure
t−1(C) are also irreducible.
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Lemma 5.2. Let A be a principally polarized abelian surface, with NS(A) = ZΘ. Then Ỹ(0,2Θ,2) is birational

to the Hilbert scheme S[3].

Proof. Let D be the pull back on S of a plane section of Kums. We are going to show that Ỹ(0,Θ,2) is
birational to the smooth projective moduli space M(0,D,1) parametrizing sheaves on S with Mukai vector
(0, D, 1) and which are stable with respect to a fixed (0, D, 1)–generic polarization. The moduli spaceM(0,D,1)

is well known to be birational to S[3] (see Proposition 1.3 of [3]).
By construction, there exists an isomorphism between linear systems ψ : |D| → |2Θ|. Moreover, any sheaf
F ∈ M(0,D,1), whose support is a smooth curve, may be seen as a sheaf on Kums and its pull back to A is
a stable sheaf of K(0,2Θ,2). It follows that there exists a commutative diagram

(5) K̃(0,2Θ,2)

f(0,2Θ,2)

��
M(0,D,1)

s

��

ϕ
99s

s
s

s
s

K(0,2Θ,2)

t

��
|D|

ψ
// |2Θ|,

where s and t are the two support morphisms. If C ∈ |2Θ| is a smooth curve, it is a connected étale double
cover of the smooth curve g|2Θ|(C) and since g|2Θ|(C)∩A[2] = ∅, it can be considered as a curve in |D|. The
restriction of ϕ on s−1(g|2Θ|(C)) ≃ Pic3(g|2Θ|(C)) is therefore well defined and gives an étale double cover

of (t ◦ f(0,2Θ,2))
−1(C)) ≃ t−1(C) ⊂ Pic6(C) (see (3) of Remark 5.1). This shows that ϕ is a rational map of

degree 2.

In order to compare Ỹ(0,2Θ,2) andM(0,D,1), we need to determine the branch divisor B of ϕ, i.e. the divisor on

K̃v where a resolution of the indeterminacy of ϕ is not étale. We have already seen that B has to parametrize
sheaves supported on singular curves.
Let U ⊂ M(0,D,1) be the biggest open subset where ϕ extends to a regular morphism. As M(0,D,1) and
K(0,2Θ,2) have trivial canonical bundle, the differential of ϕ is an isomorphism at any point of U . As a

consequence, ϕ does not contract any positive dimensional subvariety and ϕ(U) ⊂ K̃(0,2Θ,2) is an open
subset.
We claim that the open subset ϕ(U) intersects any divisor of K̃(0,2Θ,2) with the possible exception of Σ̃(0,2Θ,2).

Since we have already shown that (t ◦ f(0,2Θ,2))
−1(C)) ∈ ϕ(U) if C is smooth, it remains to check this

statement for divisors contained in (t ◦ f(0,2Θ,2))
−1(R)) and (t ◦ f(0,2Θ,2))

−1(Nα)). As Σ(0,2Θ,2) ⊂ t−1(R), by

5) of Remark 5.1, the divisor (t ◦ f(0,2Θ,2))
−1(R) is the union of Σ̃(0,2Θ,2) and the strict transform of t−1(R).

Finally, (t ◦ f(0,2Θ,2))
−1Nα is irreducible.

The general point F of t−1(R) represents a line bundle supported on the general curve C of R. As C does
not intersect A[2], its image g|2Θ|(C) ≃ C/ ± 1 may be seen as a curve in D and, as in the smooth case, F

descends to a line bundle on g|2Θ|(C). Hence ϕ(U) intersects the strict transform of t−1(R).

Finally, by commutativity of diagram (5), ϕ sends an open subset of (ψ ◦ s)−1(Nα) to the irreducible divisor
(t ◦ f(0,2Θ,2))

−1Nα. Since (ψ ◦ s)−1(Nα) cannot be contracted, ϕ(U) also intersects (t ◦ f(0,2Θ,2))
−1Nα. This

completes the proof of our claim.

Let r : N → K̃v be a resolution of the indeterminacy of ϕ, hence N ia smooth projective variety such that
there exists a commutative diagram

N

b

��

r // K̃(0,2Θ,2)

M(0,D,1)

ϕ
99s

s
s

s
s

where b is birational and induces an isomorphism between b−1(U) and U . Let U ′ ⊂ K̃(0,2Θ,2) \ Ω̃v be the

open subset where the fibers of ξ are 0 dimensional. Notice that, since N and K̃(0,2Θ,2) are smooth, r is flat
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over U ′. Therefore r−1(U ′) is a flat ramified double cover of U ′ and, since K̃(0,2Θ,2) \U
′ has codimension at

least 2 and Pic(K̃(0,2Θ,2)) is torsion free, this double cover is determined by its branch divisor B, i.e. by the
locus where fibers of r are length 2 non reduced subschemes.
We already know that if p ∈ U ′ ∩ϕ(U) the fiber r−1(p) has a at least one component consisting of a reduced
point of U . Hence B is a divisor contained in U ′ \ ϕ(U): therefore, by our claim, either B is empty or

B = U ′ ∩ Σ̃(0,2Θ,2). The first case is impossible becouse U ′ is simply connected and N is irreducible. In the

second case r−1(U ′) is the unique double cover of U ′ ramified over U ′∩Σ̃(0,2Θ,2), hence r
−1(U ′) is isomorphic

to ε−1
v (U ′) ⊂ Ỹ(0,2Θ,2). �

The following Proposition generalizes Lemma 5.2, by showing that Yv is always birational to an IHS manifold,
and describes a resolution of the indeterminacy of the birational map.
Recall that the exceptional divisor Γv of BlΓv

Yv consists of the disjoint union of 256 copies Ii,v of the
incidence variety I ⊂ P(V ) × P(V ), each of which has two natural P2 fibrations given by the projections
onto P(V ). For any i, we let pi : Ii,v → P(V ) be one of the 2 projections. Since Yv is locally analytically
isomorphic to the cone W , the normal bundle of Ii,v in BlΓv

Yv has degree −1 on the fibers of pi.
Therefore, by applying Nakano’s contraction Theorem ([34]), there exists a complex manifold Y v and a
morphism of complex manifolds hv : BlΓv

Yv → Y v whose exceptional locus is Γv and is such that the image
Ji,v := hv(Ii,v) of any component Γv is isomorphic to P3. Moreover, the restriction of hv on Ii,v equals pi
and hv realizes BlΓv

Yv as the blow up of Y v along the disjoint union J := hv(Γv) of the Ji,v’s.

Proposition 5.3. Keeping the notation as above, the complex manifold Y v is a projective IHS manifold
that is deformation equivalent to the Hilbert scheme parametrizing 0-dimensional subschemes of length 3 on
a K3 surface.

Proof. Notice that the ramification locus of εv : Yv → Kv has codimension 2. It follows that the canonical
divisor of Yv is trivial and the canonical divisor of BlΓv

Yv is supported on Γv. As the normal bundle of Ii,v
in BlΓv

Yv has degree −1 on the fibers of both the P2 fibrations of Ii,v , by adjunction, the canonical bundle

of the smooth variety BlΓv
Yv is 2

∑256
i=1 Ii,v.

Let ri be a line contained in a fiber of pi and let li be a line contained in a fiber of the other P2 fibration of
Ii,v. A priori, it is not clear whether ri and li are numerically equivalent. Nevertheless, since Yv is projective
and ri and li generate the cone of effective curves on Ii,v, the set {ri} represents 256 KBlΓvYv

-negative
extremal rays of the Mori cone of BlΓv

Yv. If ri and li are equivalent, the contraction of ri contracts Ii,v to
a point admitting a Zariski neighborhood isomorphic to a Zariski neighborhood of the i-th singular point of
Γv in the normal variety Yv. If ri and li are independent, the contraction of ri can be identified with the
Nakano contraction restricting to pi on Ii,v.
In any case, the contraction of ri is divisorial and, by Corollary 3.18 of [21], it produces only Q–factorial
singularities. Hence, after 256 extremal contractions we terminate with a Q–factorial variety with trivial
canonical divisor and with terminal singularities. If v = (0, 2Θ, 2), by Lemma 5.2, the variety M(0,2Θ,2)

is a minimal model of the IHS manifold S[3] and by a theorem due to Greb, C. Lehn, and Rollenske (see
Proposition 6.4 of [12]) it is an IHS manifold. In particular ri and li are always numerically independent
and this IHS manifold is isomorphic to the Nakano contraction Y v.
To deal with the genaral case, recall from [41, Theorem 1.6] (and its proof) that the singular variety Kv can
be deformed to K(0,2Θ,2) using only isomorphisms induced by Fourier-Mukai transform and locally trivial
deformations induced by deformation of the underlying abelian surface (see Proposition 2.16 of [41]).
Extending the construction of Theorem 4.2 to the case of a locally trivial deformation, it is also possible
to deform Yv to Y(0,2Θ,2) by a locally trivial deformation. By blowing up the subvariety consisting of
singular points of all fibers in the total space of the deformation, we get that BlΓv

Yv can be deformed to
BlΓ(0,2Θ,2)

Y(0,2Θ,2). Up to an étale base change on the base of the deformation, we may also assume that
the exceptional divisor consists of 256 connected components Ii, each of which has two fibration and one of
them restricts to pi on Ii,v . Applying again Nakano’s Theorem, the Ii’s may be contracted respecting the
chosen fibration.
As a consequence, the complex manifold Y v obtained from BlΓv

Yv by contracting the ri’s is deformation
equivalent (via smooth deformations) to an IHS manifold Y (0,2Θ,2) that is birational to S[3]. It remains to

show that Y v is projective. As in the case v = (0, 2Θ, 2), it suffices to show that ri and li are numerically
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independent. This is true because parallel transport preserves numerical independence and the analogous
statement has been shown to hold on BlΓ(0,2Θ,2)

Y(0,2Θ,2). �

By construction, Y v has a regular birational morphism to Yv contracting J to Γv. In the following remark
we show that the involution τv on Yv cannot be lifted to a regular involution on Y v.

Remark 5.4. Since the involution τv : BlΓv
Yv → BlΓv

Yv sends Γv to itself, it descends to a rational
involution τT : Y v 99K Y v restricting to a regular involution on the complement Y v \ Jv of the union of the
projective spaces Ji,v in Y v. Since, by definiton of τ , the involution τv exchanges the two P2 fibrations on
Ii,v, the indeterminacy locus of τT is Jv. Finally, since BlΓv

Yv ≃ BlJv
Y v, the rational involution τT may

be described as the composition of a Mukai flop along Jv and an isomorphism outside of this locus.

6. The Hodge numbers

Collecting the results of the previous sections, we finally present the new construction of K̃v that allows us

to calculate Betti and Hodge numbers of K̃v.
To simplify notation, let us set

Ŷv := BlΓ̃v
Bl∆v

Yv = Bl∆v
BlΓv

Yv,

K̂v := BlΣ̃v
BlΩv

Kv = Bl∆v
BlΓv

Kv,

Y v := BlΓv
Yv

With this notation, the finite 2 : 1 morphism

ε̂v := ε̂1,v = ε̂2,v : Ŷv → K̂v

is a double cover between smooth varieties and is branched over the smooth divisor Σ̂v (see (1) of Corollary

4.3). Hence, ε̂v realizes K̂v as the quotient of Ŷv under the action of the associated involution τ̂v : Ŷv → Ŷv.

This permits to reconstruct K̂v starting from the IHS manifold Y v of K3[3]–type and using only birational
modifications of smooth projective varieties and the finite 2 : 1 morphism ε̂v.
The following commutative diagram contains all the varieties and maps that we will use.

Ŷv

τ̂v
qq

ε̂v
��

βv

  ❅
❅❅

❅❅
❅❅

❅

K̂v

ρv

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

Y v

τv

rr

hv

��❅
❅❅

❅❅
❅❅

❅

K̃v Y v

τv

rr
✐ ✱

♣❢

Here βv is the blow up map of Y v along the smooth subvariety ∆v and τv is the involution associated with
τv (see Remark 4.7).
Notice that this diagram contains only maps between smooth varieties that appear in (2) of Corollary 4.3
and any diagonal map that appears is the blow up of a smooth variety along a smooth subvariety.
The IHS manifold Y v carries a rational involution τv whose indeterminacy locus Jv is the disjoint union
of 256 projective 3–dimensional spaces (see Remark 5.4). The rational involution τv lifts to the regular

involution τv on the blow up Y v of Y v along Jv, which in turn lifts to the involution τ̂v : Ŷv → Ŷv on the

blow up of Y v along the fixed locus ∆v of τv (see (2) of Corollary 4.5). Finally, the quotient K̂v of Ŷv modulo

τ̂v is the blow up of K̃v along the union Ω̃v of 256 disjoint copies of the smooth 3–dimensional quadric G.

The strategy to compute the Hodge numbers of K̃v is the following. Since K̂v is the quotient of Ŷv by the

action of τ̂v, the Hodge numbers of K̂v that determine the Hodge numbers of K̃v are the τ̂v-invariant Hodge

numbers of Ŷv. The Hodge numbers of Ŷv can be easily computed in terms of the known Hodge numbers of
the IHS manifold Y v of K3[3] type, and the action of τ̂v is determined by the action of the rational involution
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τv : Y v 99K Y v (see Remark 5.4) on the Hodge groups of Y v. Finally, by Markman’s monodromy results,
this action only depends on its part on the second cohomology group that is easy to compute.

Following this strategy, it turns out that the Betti numbers of K̃v can be computed without considering the

action τ̂v on the cohomology of K̂v.

Proposition 6.1. The odd Betti numbers of K̃v are zero and the even ones are

h2(K̃v) = 8, h4(K̃v) = 199, h6(K̃v) = 1504.

Proof. By Proposition 5.3, Y v is deformation equivalent to the Hilbert scheme parametrizing length 3 sub-
schemes on a K3 surface, hence its odd Betti numbers are zero. By construction Y v is the blow up of Y v
along 256 disjoint projective spaces. Since the odd cohomology of the projective space is trivial, the same

holds for Y v. By definition, Ŷv is the blow up of Y v along ∆v. We have already recalled that the ramification
locus ∆v of εv is isomorphic to the corresponding branch locus Σv which, by Remark 4.6, is isomorphic to
(Bl(A×A∨)[2](A × A∨))/ ± 1. As the odd cohomology classes of a torus are always antiinvariant under the

action of ±1, the odd Betti numbers of Ŷv are zero. Since ρv ◦ ε̂v : Ŷv → K̃v is a regular surjective map

between smooth projective varieties, the rational cohomology of K̃v injects into the rational cohomology of

Ŷv. Hence the odd Betti numbers of K̃v are zero.
We already know that h2(K̃v) = 8 [38] and that χtop(K̃v) = 1920 [42]. The result follows using Salamon’s for-
mula [44], which gives linear relations among the Betti numbers of a 2n–dimensional irreducible holomorphic
symplectic variety

2
2n∑

j=0

(−1)j(3j2 − n)b2n−j = nb2n.

In our case this yields

18b4 + 90b2 + 210 = 3b6,

Solving these two equations, we obtain the proposition. �

In order to determine the Hodge numbers of K̃v, we first relate the Hodge numbers of K̃v with the τv–
invariant Hodge numbers of Y v. More specifically, we have the following lemmas.

Lemma 6.2. (1) The following equalities of Hodge numbers hold

hp,q(K̂v) = hp,q(K̃v) if p 6= q,

h1,1(K̂v) = h1,1(K̃v) + 256,

h2,2(K̂v) = h2,2(K̃v) + 512,

h3,3(K̂v) = h3,3(K̃v) + 512.

(2) The vector space Hp,q(Ŷv)
τ̂v of τ̂v invariant (p, q)-forms on Ŷv is isomorphic to Hp,q(K̂v).

Proof. (1) follows from the fact that r : K̂v → K̃v is the blow up along the 256 quadrics Gi ⊂ K̃v, and that
the cohomology of a 3–dimensional quadric is one–dimensional in even degrees and zero otherwise. (2) holds

because K̃v ≃ Ŷv/τ̂v (see Remark 4.7). �

In the following lemma we set
(
a
b

)
:= 0 if b > a or b < 0.

Lemma 6.3. The τ̂v–invariant Hodge numbers of Ŷv and the τv–invariant Hodge numbers of Y v are related
in the following way

hp,q(Ŷv)
τ̂v = hp,q(Y v)

τv = 0, for p+ q odd ,

hp,q(Ŷv)
τ̂v = hp,q(Y v)

τv +
(

4
p−1

)(
4
q−1

)
, for p+ q even and p 6= q,

hp,p(Ŷv)
τ̂v = hp,p(Y v)

τv +
(

4
p−1

)2
, for p = 0, 1, 5, 6 ,

hp,p(Ŷv)
τ̂v = hp,p(Y v)

τv +
(

4
p−1

)2
+ 256, for p = 2, 3, 4 .
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Proof. The morphism βv : Ŷv → Y v is the blow up of Y v along a smooth subvariety isomorphic to ∆v. By
Corollary 4.5 and Remark 4.6, the variety ∆v is isomorphic to BlA×A∨[2](A × A∨/ ± 1), hence its Hodge
numbers are the ±1–invariant Hodge numbers of BlA×A∨[2]. In other words

hp,q(∆v) = 0, for p+ q odd ,
hp,q(∆v) = hp,q(A×A∨), for p+ q even and p 6= q,
hp,p(∆v) = hp,p(A×A∨), for p = 0, 4 ,

hp,p(∆v) = hp,p(A×A∨) + 256, for p = 1, 2, 3 .

With hp,q(A×A∨) =
(
4
p

)(
4
q

)
. As a consequence (see Theorem 7.31 [46]), the Hodge numbers of Ŷv satisfy

hp,q(Ŷv) = hp,q(Y v) = 0, for p+ q odd ,

hp,q(Ŷv) = hp,q(Y v) +
(

4
p−1

)(
4
q−1

)
, for p+ q even and p 6= q,

hp,p(Ŷv) = hp,p(Y v) +
(

4
p−1

)2
, for p = 0, 1, 5, 6 ,

hp,p(Ŷv) = hp,p(Y v) +
(

4
p−1

)2
+ 256, for p = 2, 3, 4 .

The lemma follows, since the classes in hp,q(Ŷv) that come from ∆v are the pushforward of cohomology

classes of the exceptional divisor ∆̂v which, by Corollary 4.5, is the fixed locus of τ̂v. �

It remains to determine the τv–invariant Hodge numbers hp,q(Y v)
τv of Y v. This will be done by relating

the action in cohomology of τv with the monodromy operator

m(τv) : H
•(Y v) → H•(Y v)

associated to the birational involution τv.
To explain this relation first let us recall some details on the definition of m(τv).

Remark 6.4. By Theorem 2.5 of [17] there exist smooth proper families of IHS manifolds Y
′

v → S and
Yv → S over a 1–dimensional disk S such that both the central fibers are isomorphic to Y v and there exists

a rational S-morphism T v : Y
′

v 99K Yv sending Y
′

v \ Jv isomorphically to Yv \ Jv and restricting to τv on
central fibers.

By specializing the closure in Y
′

v×SYv of the graph of T v over the central fiber, we obtain a pure 6 dimensional
cycle Υ on Y v × Y v.
By definition m(τv) is the Hodge ring automorphism of H•(Y v) obtained as the associated correspondence

of the cycle Υ. In our case, since T v induces an isomorphism between Y
′

v \ Jv and Yv \ Jv and restricts to
τv on central fibers, it follows that

Υ = Υτ +
∑

i

miJi,v × Ji,v

where Υτ is the closure of the graph of τ and the mi’s are non negative integers 3.

Lemma 6.5. (1) For every i the cohomology class [Ji,v] ∈ H6(Y v) of Ji,v is m(τv)–antiinvariant
(2) The following relations between m(τv)–invariant Hodge numbers of Y v and τv–invariant Hodge num-

bers of Y v hold:

hp,q(Y v)
τv = hp,q(Y v)

m(τv), for p+ q ≤ 6 and p 6= q,
h1,1(Y v)

τv = h1,1(Y v)
m(τv) + 256,

h2,2(Y v)
τv = h2,2(Y v)

m(τv) + 256,
h3,3(Y v)

τv = h3,3(Y v)
m(τ

v
) + 512.

Proof. (1) As the differential of the map (hv, hv ◦ τv) : Y v → Y v × Y v is everywhere injective, it induces an
isomorphism Υτ ≃ Y v = BlJv

Y v. By Key formula of Proposition 6.7 [10], the class [Ji,v] is an eigenvector
for correspondence [Υτ ]

∗ induced by [Υτ ] on H6(Y v) and, moreover, the corresponding eigenvalue λ only
depends on the normal bundle of Ji,v in Y v, therefore it does not depend on i.

3Using Key formula of Proposition 6.7 [10], it can be shown that mi = 1 for every i
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On the other hand the correspondence induced by Ji,v×Ji,v on H6(Y v) multiplies [Ji,v] by the degree of the
third Chern class of its normal bundle in Y v. As this normal bundle is isomorphic to the cotangent bundle
of P3, we obtain [Ji,v × Ji,v]

∗[Ji,v] = −4[Ji,v].
It follows that

m(τv)[Ji,v] = (λ− 4mi)[Ji,v].

As m(τv) is an isomorphism on the integral cohomology, λ− 4mi = ±1 and the sign cannot depend on i.
It remains to exclude that m(τv)[Ji,v] = [Ji,v] for every i. In this case, letting A be the class of an ample
divisor A of τ , we have ∫

Y v

m(τv)[A]
3 ∧ [Ji,v] =

∫

Y v

[A]3 ∧ [Ji,v] > 0.

Therefore, the line bundle associated with m(τv)[A] would be positive on the Ji,v’s and, as A is ample, it
would have positive degree on any curve on Y v. Finally, by Proposition 3.2 of [17], τ∗v(A) would be an ample
divisor and this is absurd because τv does not extend to an isomorphism.
(2) Since Y v is an IHS manifold of K3[n] type, its odd Betti numbers are trivial and the same holds for Y v
as it is isomorphic to the blow up of Y v along J that is the disjoint union of 256 projective spaces. Hence,
we only need to consider the case where p+ q is even.
If p + q = 6, the exact sequences of the pairs (Y v, Y v \ Γv) and (Y v, Y v \ Jv), using excision and Thom
isomorphism, give rise to the commutative diagram

0 // H0(Jv)

��

r1 // H6(Y v)

h∗

v

��

r2 // H6(Y v \ Jv)

��

// 0.

0 // H4(Γv)
s1 // H6(Y v)

s2 // H6(Y v \ Γv) // 0.

In this diagram, r2 and s2 are surjective because the odd Betti numbers of Jv and Γv are zero and r1 is
injective because the classes [Ji,v] are independent. This also implies that H5(Y v \ Γv) = H5(Y v \ Jv) =
H5(Y v) = 0 and therefore s1 is injective too.
As the intersection form of the middle cohomology of Y v is nondegenerate, on H0(Jv) there is a splitting of
Hodge structures

H6(Y v) = H0(Jv)
⊥ ⊕H0(Jv),

where H0(Jv)
⊥ is the perpendicular to H0(Jv) in H6(Y v). Since m(τv) acts as −1 on H0(Jv) and the

correspondence [Ji,v × Ji,v]
∗ acts trivially on H0(Jv)

⊥, we deduce that

Hp,q(Y v)
m(τ

v
) = ((H0(Jv)

⊥)p,q)[Υτ ]
∗

,

for p+ q = 6.
Since h∗v(H

0(Jv)
⊥) is included in the perpendicular H4(Γv)

⊥ to H4(Γv) in H
6(Y v), the injective pull back

h∗v induces an isomorphism of Hodge structures H4(Γv)
⊥ ≃ H0(Jv)

⊥. It follows that the intersection form
on the middle cohomology of Y v is non degenerate on H4(Γv) and there is a splitting of Hodge structures

H6(Y v) = H0(Γv)
⊥ ⊕H4(Γv).

Since τv(Γv) = Γv we also deduce

Hp,q(Y v) = ((H4(Γv)
⊥)p,q)τv ⊕Hp−1,q−1(Γv)

τv ,

for p+ q = 6.
Moreover, the Hodge isomorphism H4(Γv)

⊥ ≃ H0(Jv)
⊥ identifies the action of τv on H4(Γv)

⊥ with the
action of [Υτ ]

∗ on H0(Jv)
⊥.

In fact, for any α ∈ H0(Jv)
⊥, we have [Υτ ]

∗(α) = (hv∗ ◦ τ∗v ◦ h
∗
v)(α). As τ∗v(h

∗
v(α)) ∈ H4(Γv)

⊥ and since

the kernel of hv∗ intersects trivially H4(Γv)
⊥, the class τ∗v(h

∗
v(α)) is the unique class in H4(Γv)

⊥ whose
pushforward in H6(Y v) is [Υτ ]

∗(α). Therefore

τ∗v(h
∗
v(α)) = h∗v([Υτ ]

∗(α)).

As a consequence,

Hp,q(Y v)
τv = Hp,q(Y v)

m(τv) ⊕Hp−1,q−1(Γv)
τv
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and the result for p+ q = 6 follows because Γv consists of 256 copies of I ⊂ P(V )× P(V ) on each of which
τv acts by exchanging the factors and the cohomology of each component of Γv comes by restriction from
the cohomology of P(V )× P(V ).
Finally, If p+ q = 2k, and k = 1 or k = 2, as Jv has codimension 3 in Y v, restriction gives an isomorphism
H2k(Y v) ≃ H2k(Y v \ Jv) and there exists a Hodge decomposition

H2k(Y v) = H2k(Y v)⊕H2k−2(Γv).

Moreover, H2k(Y v) can be seen as the subspaces of forms vanishing on Γv and it is stable under the action
of τv. The same argument used in the case p+ q = 6 shows that the action of τv on H2k(Y v) coincides with
the action of m(τv), therefore

Hp,q(Y v)
τv = Hp,q(Y v)

m(τv) ⊕Hp−1,q−1(Γv)
τv .

As the invariant subspaces for action of τv on the degree 0 and the degree 2 cohomology of each component
of Γv has dimension 1, this proves the lemma. �

It remains to determine the m(τv)–invariant Hodge numbers of Y v. It will suffice to deal with the case
where A is a general principally polarized abelian surface with NS(A) = ZΘ and where v = (0, 2Θ, 2).

Lemma 6.6. In this case the m(τv)–invariant Betti numbers and Hodge numbers of Y (0,2Θ,2) are:

(h0)m(τ
v
) = 1, (h2)m(τ

v
) = 7, (h4)m(τ

v
) = 171, (h6)m(τ

v
) = 1178.

(h2,0)m(τv) = 1, (h1,1)m(τv) = 5,
(h4,0)m(τv) = 1, (h3,1)m(τv) = 6, (h2,2)m(τv) = 157,

(h6,0)m(τv) = 1, (h5,1)m(τv) = 5, (h4,2)m(τv) = 157, (h3,3)m(τv) = 852.

Proof. We first determine the weight 2 m(τ (0,2Θ,2))–invariant Hodge numbers. By Lemma 6.2, Lemma 6.3,
and Lemma 6.5 we have

h2,0(Y v)
m(τv) = h2,0(Y v)

τv = h2,0(K̂v) = h2,0(K̃v) = 1

and
h1,1(Y v)

m(τv) = h1,1(Y v)
τv − 256 = h1,1(K̂v)− 257 = h1,1(K̃v)− 1 = 5.

In order to compute the invariant part of the Hodge structure of Y (0,2Θ,2), we use a result of Markman [25,

Ex. 14], which describes the action of monodromy operators on the Hilbert scheme of 3 points on a K3
surface S in terms of their action on the degree 2 cohomology. Specifically, Markman proves that there are
isomorphisms of representations of the monodromy group of S[3]

(6)
H4(S[3]) = Sym2H2(S[3])⊕H2(S[3]),

H6(S[3]) = Sym3H2(S[3])⊕ Λ2H2(S[3])⊕ C,

where C is a copy of the trival representation.
If v = 2(0,Θ, 1), Y v is birational to the Hilbert scheme S[3] and hence there exists an isomorphism of Hodge
rings k : H•(S[3]) → H•(Y v) and, moreover, the Hodge involution k−1 ◦m(τv) ◦ k is a monodromy operator
on S[3]. Moreover, the m(τv)–invariant Hodge numbers of Y v coincide with the respective k−1 ◦m(τv) ◦ k–
invariant Hodge numbers of S[3]. Since we know the weight-2 Hodge m(τv)–invariant numbers of Y v, we also
know the weight-2 Hodge k−1 ◦m(τv) ◦ k–invariant numbers of Y v and, using formulae (6), we can calculate
all the k−1 ◦m(τv) ◦ k–invariant numbers of S[3] and, therefore, all the m(τv)–invariant numbers of Y v.

To simplify the notation in the computation, set Hp,q
+ := Hp,q(Y v)

m(τv). In particular, H2,0
− = H2,0

− = 0.
By formulae (6) we obtain

H4,0
+ = Sym2H2,0

+ , H3,1
+ = (H2,0

+ ⊗H1,1
+ )⊕H2,0

+ ,

H2,2
+ = (H2,0

+ ⊗H0,2
+ )⊕ Sym2H1,1

+ ⊕ Sym2H1,1
− ⊕H1,1

+ ,

H6,0
+ = Sym3H2,0

+ , H5,1
+ = Sym2H2,0

+ ⊗H1,1
+ ,

H4,2
+ = (Sym2H2,0

+ ⊗H0,2
+ )⊕ (H2,0

+ ⊗ Sym2H1,1
+ )⊕ (H2,0

+ ⊗ Sym2H1,1
+ )⊕ (H2,0

+ ⊗H1,1
+ ),

H3,3
+ = (H2,0

+ ⊗H1,1
+ ⊗H2,0

− )⊕ Sym3H1,1
+ ⊕ (H1,1

+ ⊗ Sym2H1,1
− )⊕
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(H2,0
+ ⊗H0,2

+ )⊕ Λ2H1,1
+ ⊕ Λ2H1,1

− ⊕ C,

which give the invariant Hodge numbers. Finally, the invariant Betti numbers are determined by the invariant
Hodge numbers. �

Now, a straightforward computation gives the Hodge numbers of O’Grady’s 6–dimensional IHS manifold.

Theorem 6.7. Let K̃ be an IHS manifold of type OG6. The odd Betti numbers of K̃ are zero, its even Betti
numbers are

b0 = 1, b2 = 8, b4 = 199, b6 = 1504, b8 = 199, b10 = 8, b12 = 1,

and its non–zero Hodge numbers are collected in the following table

H0,0 = 1
H2,0 = 1 H1,1 = 6 H0,2 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1
H6,0 = 1 H5,1 = 6 H4,2 = 173 H3,3 = 1144 H2,4 = 173 H1,5 = 6 H0,6 = 1

H6,2 = 1 H5,3 = 12 H4,4 = 173 H3,5 = 12 H2,6 = 1
H6,4 = 1 H5,5 = 6 H4,6 = 1

H6,6 = 1.

Proof. As Hodge and Betti numbers are stable under smooth Kähler deformations, it will suffice to deal with

the case where K̃ = K̃(0,2Θ,2) and the underlying abelian surface A is a general abelian surface, whose Neron
Severi group is generated by the principal polarization Θ. In this case, Lemma 6.2, Lemma 6.3, Lemma 6.5,
and Lemma 6.6 imply the result. �

Furthermore, the knowledge of the Hodge numbers is enough to compute the Chern numbers, as shown by
Sawon [45]. We have the following

Corollary 6.8. Let K̃ be a manifold of OG6 type. Then
∫
K̃
c2(K̃)3 = 30720,

∫
K̃
c2(K̃)c4(K̃) = 7680 and∫

K̃
c6(K̃) = χtop(K̃) = 1920.

Proof. Let χp(K̃) =
∑

(−1)qhp,q(K̃). In our case we have χ0(K̃) = 4, χ1(K̃) = −24 and χ2(K̃) = 348. As
shown in [45, Appendix B], we have

∫

K̃

c2(K̃)3 = 7272χ0(K̃)− 184χ1(K̃)− 8χ2(K̃),

∫

K̃

c2(K̃)c4(K̃) = 1368χ0(K̃)− 208χ1(K̃)− 8χ2(K̃),

∫

K̃

c6(K̃) = 36χ0(K̃)− 16χ1(K̃) + 4χ2(K̃).

A direct computation yields our claim. �
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