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YodaNN1: An Architecture for Ultra-Low Power
Binary-Weight CNN Acceleration

Renzo Andri∗, Lukas Cavigelli∗, Davide Rossi† and Luca Benini∗†
∗Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland

†Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy

Abstract—Convolutional Neural Networks (CNNs) have rev-
olutionized the world of computer vision over the last few
years, pushing image classification beyond human accuracy. The
computational effort of today’s CNNs requires power-hungry
parallel processors or GP-GPUs. Recent developments in CNN
accelerators for system-on-chip integration have reduced en-
ergy consumption significantly. Unfortunately, even these highly
optimized devices are above the power envelope imposed by
mobile and deeply embedded applications and face hard limi-
tations caused by CNN weight I/O and storage. This prevents
the adoption of CNNs in future ultra-low power Internet of
Things end-nodes for near-sensor analytics. Recent algorithmic
and theoretical advancements enable competitive classification
accuracy even when limiting CNNs to binary (+1/-1) weights
during training. These new findings bring major optimization
opportunities in the arithmetic core by removing the need for
expensive multiplications, as well as reducing I/O bandwidth
and storage. In this work, we present an accelerator optimized
for binary-weight CNNs that achieves 1.5 TOp/s at 1.2 V on
a core area of only 1.33 MGE (Million Gate Equivalent) or
1.9 mm2 and with a power dissipation of 895 µW in UMC 65 nm
technology at 0.6 V. Our accelerator significantly outperforms the
state-of-the-art in terms of energy and area efficiency achieving
61.2 TOp/s/W@0.6 V and 1.1 TOp/s/MGE@1.2 V, respectively.

Keywords—Convolutional Neural Networks, Hardware Acceler-
ator, Binary Weights, Internet of Things, ASIC

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been achiev-
ing outstanding results in several complex tasks such as image
recognition [2–4], face detection [5], speech recognition [6],
text understanding [7, 8] and artificial intelligence in games
[9, 10]. Although optimized software implementations have
been largely deployed on mainstream systems [11], CPUs
[12] and GPUs [13] to deal with several state of the art
CNNs, these platforms are obviously not able to fulfill the
power constraints imposed by mobile and Internet of Things
(IoT) end-node devices. On the other hand, sourcing out
all CNN computation from IoT end-nodes to data servers
is extremely challenging and power consuming, due to the
large communication bandwidth required to transmit the data
streams. This prompts for the need of specialized architectures
to achieve higher performance at lower power within the end-
nodes of the IoT.

1YodaNN named after the Jedi master known from StarWars – “Small in
size but wise and powerful” [1].

A few research groups exploited the customization paradigm
by designing highly specialized hardware to enable CNN
computation in the domain of embedded applications. Sev-
eral approaches leverage FPGAs to maintain post-fabrication
programmability, while providing significant boost in terms of
performance and energy efficiency [14]. However, FPGAs are
still two orders of magnitude less energy-efficient than ASICs
[15]. Moreover, CNNs are based on a very reduced set of
computational kernels (i.e. convolution, activation, pooling),
but they can be used to cover several application domains
(e.g., audio, video, biosignals) by simply changing weights
and network topology, relaxing the issues with non-recurring
engineering which are typical in ASIC design.

Among CNN ASIC implementations, the precision of arith-
metic operands plays a crucial role in energy efficiency. Sev-
eral reduced-precision implementations have been proposed
recently, relying on 16-bit, 12-bit or 10-bit of accuracy for
both operands and weights [15–19], exploiting the intrinsic
resiliency of CNNs to quantization and approximation [20, 21].
In this work, we take a significant step forward in energy ef-
ficiency by exploiting recent research on binary-weight CNNs
[22, 23]. BinaryConnect is a method which trains a deep neural
network with binary weights during the forward and backward
propagation, while retaining the precision of the stored weights
for gradient descent optimization. This approach has the poten-
tial to bring great benefits to CNN hardware implementation
by enabling the replacement of multipliers with much simpler
complement operations and multiplexers, and by drastically
reducing weight storage requirements. Interestingly, binary-
weight networks lead to only small accuracy losses on several
well-known CNN benchmarks [24, 25].

In this paper, we introduce the first optimized hardware de-
sign implementing a flexible, energy-efficient and performance
scalable convolutional accelerator supporting binary-weight
CNNs. We demonstrate that this approach improves the energy
efficiency of the digital core of the accelerator by 5.1×, and
the throughput by 1.3×, with respect to a baseline architecture
based on 12-bit MAC units operating at a nominal supply
voltage of 1.2 V. To extend the performance scalability of
the device, we implement a latch-based standard cell memory
(SCM) architecture for on-chip data storage. Although SCMs
are more expensive than SRAMs in terms of area, they provide
better voltage scalability and energy efficiency [26], extending
the operating range of the device in the low-voltage region.
This further improves the energy efficiency of the engine by
6× at 0.6 V, with respect to the nominal operating voltage
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of 1.2 V, and leads to an improvement in energy efficiency
by 11.6× with respect to a fixed-point implementation with
SRAMs at its best energy point of 0.8 V. To improve the flex-
ibility of the convolutional engine we implement support for
several kernel sizes (1×1 – 7×7), and support for per-channel
scaling and biasing, making it suitable for implementing a
large variety of CNNs. The proposed accelerator surpasses
state-of-the-art CNN accelerators by 2.7× in peak performance
with 1.5 TOp/s [27], by 10× in peak area efficiency with
1.1 TOp/s/MGE [28] and by 32× peak energy efficiency with
61.2 TOp/s/W [28].

II. RELATED WORK

Convolutional neural networks are reaching record-breaking
accuracy in image recognition on small data sets like MNIST,
SVHN and CIFAR-10 with accuracy rates of 99.79%, 98.31%
and 96.53% [29–31]. Recent CNN architectures also perform
very well for large and complex data sets such as ImageNet:
GoogLeNet reached 93.33% and ResNet achieved a higher
recognition rate (96.43%) than humans (94.9%). As the trend
goes to deeper CNNs (e.g. ResNet uses from 18 up to
1001 layers, VGG OxfordNet uses 19 layers [32]), both the
memory and the computational complexity increases. Although
CNN-based classification is not problematic when running on
mainstream processors or large GPU clusters with kW-level
power budgets, IoT edge-node applications have much tighter,
mW-level power budgets. This ”CNN power wall” led to the
development of many approaches to improve CNN energy
efficiency, both at the algorithmic and at the hardware level.

A. Algorithmic Approaches
frameworks, such as Ristretto focus on CNN quantization

after training. For LeNet and Cifar-10 the additional error
introduced by this quantization is less than 0.3% and 2%,
respectively, even when the word width has been constrained
to 4 bit [21]. It was shown that state-of-the-art results can
be achieved quantizing the weights and activations of each
layer separately [33], while lowering precision down to 2 bit
(−1,0,+1) and increasing the network size [20]. Moons et
al. [34] analyzed the accuracy-energy trade-off by exploiting
quantization and precision scaling. Considering the sparsity
in deeper layers because of the ReLU activation function, they
detect multiplications with zeros and skip them, reducing run
time and saving energy. They reduce power by 30× (compared
to 16-bit fixed-point) without accuracy loss, or 225× with a
1% increase in error by quantizing layers independently.

BinaryConnect [25] proposes to binarize (−1, +1) the
weights wfp. During training, the weights are stored and up-
dated in full precision, but binarized for forward and backward
propagation. The following formula shows the deterministic
and stochastic binarization function, where a ”hard sigmoid”
function σ is used to determine the probability distribution:

wb,det =

{
1, if wfp < 0

−1, if wfp > 0
, wb,sto =

{
1, p = σ(wfp)

−1, p = 1− σ

σ(x) = clip
(
x+ 1

2
, 0, 1

)
= max

(
0,min

(
1,
x+ 1

2

))

In a follow-up work [25], the same authors propose to quantize
the inputs of the layers in the backward propagation to 3
or 4 bits, and to replace the multiplications with shift-add
operations. The resulting CNN outperforms in terms of ac-
curacy even the full-precision network. This can be attributed
to the regularization effect caused by restricting the number of
possible values of the weights.

Following this trend, Courbariaux et al. [24] and Rastegari
et al. [23] consider also the binarization of the layer inputs,
such that the proposed algorithms can be implemented using
only XNOR operations. In these works, two approaches are
presented:
i) Binary-weight-networks BWN which scale the output
channels by the mean of the real-valued weights. With this
approach they reach similar accuracy in the ImageNet data set
when using AlexNet [2].
ii) XNOR-Networks where they also binarize the input images.
This approach achieves an accuracy of 69.2% in the Top-5
measure, compared to the 80.2% of the setup i). Based on
this work, Wu [35] improved the accuracy up to 81% using
log-loss with soft-max pooling, and he was able to outperform
even the accuracy results of AlexNet. However, the XNOR-
based approach is not mature enough since it has only been
proven on a few networks by a small research community.

Similarly to the scaling by the batch normalization, Merolla
et al. evaluated different weight projection functions where
the accuracy could even be improved from 89% to 92% on
Cifar-10 when binarizing weights and scaling every output
channel by the maximum-absolute value of all contained filters
[36]. In this work we focus on implementing a CNN inference
accelerator for neural networks supporting per-channel scaling
and biasing, and implementing binary weights and fixed-
point activation. Exploiting this approach, the reduction of
complexity is promising in terms of energy and speed, while
near state-of-the-art classification accuracy can be achieved
with appropriately trained binary networks [22, 23].

B. CNN Acceleration Hardware
There are several approaches to perform CNN computations

on GPUs, which are able to reach a throughput up to 6 TOp/s
with a power consumption of 250 W [13, 37]. On the other
hand, there is a clear demand for low-power CNN acceleration.
For example, Google exploits in its data-centers a custom-
made neural network accelerator called Tensor Processing
Unit (TPU) tailored to their TensorFlow framework. Google
claims that they were able to reduce power by roughly 10×
with respect to GP-GPUs [38]. Specialized functional units
are also beneficial for low-power programmable accelerators
which recently entered the market. A known example is the
Movidius Myriad 2 which computes 100 GFLOPS and needs
just 500 mW@600 MHz [39]. However, these low-power archi-
tectures are still significantly above the energy budget of IoT
end-nodes. Therefore, several dedicated hardware architectures
have been proposed to improve the energy efficiency while
preserving performance, at the cost of flexibility.

Several CNN systems were presented implementing acti-
vation layer (mainly ReLU) and pooling (i.e. max pooling)
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[27, 28, 40]. In this work we focus on the convolution
layer as this contributes most to the computational complexity
[13]. Since convolutions typically rely on recent data for
the majority of computations, sliding window schemes are
typically used [17, 18, 40, 41] (e.g. in case of 7×7 kernels,
6×7 pixels are re-used in the subsequent step). In this work, we
go even further and cache the values, such that we can reuse
them when we switch from one to the next tile. In this way,
only one pixel per cycle has to be loaded from the off-chip
storage.

As the filter kernel sizes change from problem to problem,
several approaches were proposed to support more than one
fixed kernel size. Zero-padding is one possibility: in Neuflow
the filter kernel was fixed to 9 × 9 and it was filled with
zeros for smaller filters [42]. However, this means that for
smaller filters unnecessary data has to be loaded, and that the
unused hardware cannot be switched off. Another approach
was presented by Chen et al., who have proposed an accelerator
containing an array of 14×12 configurable processing elements
connected through a network-on-chip. The PEs can be adjusted
for several filter sizes. For small filter sizes, they can be used
to calculate several output channels in parallel or they can be
switched-off [41]. Even though this approach brings flexibility,
all data packets have to be labeled, such that the data can be
reassembled in a later step. Hence, this system requires a lot of
additional multiplexers and control logic, forming a bottleneck
for energy efficiency. To improve the flexibility of YodaNN
we propose an architecture that implements several kernel sizes
(1×1, 2×2, ..., 7×7). Our hardware exploits a native hardware
implementation for 7×7, 5×5, and 3×3 filters, in conjunction
with zero-padding to implement the other kernel sizes.

Another approach minimizes the on-chip computational
complexity exploiting the fact that due to the ReLU activation
layer, zero-values appear quite often in CNNs. In this way
some of the multiplications can be bypassed by means of zero-
skipping [41]. This approach is also exploited by Reagon et
al. [43] and Albericio et al. [44]. Another approach exploits
that the weights’ distribution shows a clear maximum around
zero. Jaehyeong et al. proposed in their work a small 16-bit
multiplier, which triggers a stall and calculation of the higher-
order bits only when an overflow is detected, which gives an
improvement of 56% in energy efficiency [40]. The complexity
can be reduced further by implementing quantization scaling
as described in Section II-A. Even though most approaches
work with fixed-point operations, the number of quantization
bits is still kept at 24-bit [28, 40] or 16-bit [17, 18, 27, 42, 45].

To improve throughput and energy efficiency, Hang et al.
present compressed deep neural networks, where the number
of different weights are limited, and instead of saving or
transmitting full precision weights, the related indices are
used [46]. They present a neural networks accelerator, called
Efficient Inference Engine (EIE), exploiting network pruning
and weight sharing (deep compression). For a network with
a sparsity as high as 97%, EIE reaches an energy efficiency
of 5 TOp/s/W, and a throughput of 100 GOp/s, which is
equal to a throughput of 3 TOp/W for the equivalent non-
compressed network [47]. Even though this outperforms the
previous state-of-the-art by 5×, we can still demonstrate a 12×

more efficient design exploiting binary weights. Jaehyeong et
al. used PCA to reduce the dimension of the kernels. Indeed,
they showed that there is a strong correlation among the
kernels, which can be exploited to reduce their dimension-
ality without major influence on accuracy [40]. This actually
reduces the energy needed to load the chip with the filters and
reduces the area to save the weights, since only a small number
of bases and a reduced number of weight components need to
be transmitted. On the other hand, it also increases the core
power consumption, since the weights have to be reconstructed
on-the-fly. With binary weights, we were able to reduce the
total kernel data by 12×, which is similar to the 12.5×
reported in Jaehyeong et al. [40]. On the other hand, YodaNN
outperforms their architecture by 43× in terms of energy
efficiency thanks to its simpler internal architecture that do not
require on-the-fly reconstruction. Some CNN accelerators have
been presented exploiting analog computation: in one approach
[48], part of the computation was performed partially on the
camera sensor chip before transmitting the data to the digital
processing chip. Another mixed-signal approach [50] looked
into embedding part of the CNN computation in a memristive
crossbar. Efficiencies of 960 GOp/s [48] and 380 GOp/s/W
[49] were achieved. YodaNN outperforms these approaches by
64× and 161× respectively, thanks to aggressive discretization
and low-voltage digital logic.

The next step consists in quantizing the weights to a binary
value. However, this approach has only been implemented on
Nvidia GTX750 GPU leading to a 7× run-time reduction
[24]. In this work, we present the first hardware accelerator
optimized for binary weights CNN, fully exploiting the benefits
of the reduction in computational complexity boosting area
and energy efficiency. Furthermore, the proposed design scales
to deep near-threshold thanks to SCM and an optimized
implementation flow, outperforming the state of the art by 2.7×
in performance, 10× in area efficiency and 32× in energy
efficiency.

III. ARCHITECTURE

A CNN consists of several layers, usually they are convolu-
tion, activation, pooling or batch normalization layers. In this
work, we focus on the convolution layers as they make up
for the largest share of the total computation time. As can
be seen in Figure 1 from [13], convolution layers make up
for the largest fraction of compute time in CPU and GPU
implementations. This is why we focus on convolution layers
in this work. A general convolution layer is drawn in Figure 2
and it is described by Equation (1). A layer consists of nin
input channels, nout output channels, and nin · nout kernels
with hk × bk weights; we denote the matrix of filter weights
as wk,n. For each output channel k every input channel n is
convolved with a different kernel wk,n, resulting in the terms
õk,n, which are accumulated to the final output channel ok. We
propose a hardware architecture able to calculate nch × nch
channels in parallel. If the number of input channels nin
is greater than nch, the system has to process the network
dnin/nche times and the results are accumulated off-chip. This
adds only dnin/nche−1 operations per pixel. In the following,
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ok = Ck +
∑
n∈I

in ∗wk,n︸ ︷︷ ︸
õk,n

, ok(x, y) = Ck +
∑
n∈I

(
bk−1∑
a=0

hk−1∑
b=0

in (x+ a, y + b) · wk,n(a, b)

)
︸ ︷︷ ︸

õk,n(x,y)

(1)

CPU

GPU

Conv Conv

Act. Pooling

Conv

ConvConvConv

Act. Pooling

0% 20% 40% 60% 80% 100%

Act. class.

Fig. 1. Overview of execution time in a convolution neural network for scene
labeling from Cavigelli et al. executed on CPU and GPU [13].

i0

i1

i31

o0

o1

o31

Σ

i0 ∗ w0,0

i1 ∗ w0,1

i31 ∗ w0,31

i0 ∗ w1,0

i1 ∗ w1,1

i31 ∗ w1,31

i0 ∗ w31,0

i1 ∗ w31,1

i31 ∗ w31,31

Σ

Σ

Fig. 2. A 32×32 CNN layer, with input channels in and output channels
ok .

we fix, for ease of illustration, the number of output channels
to nch = 32 and the filter kernel size to hk = bk = 7. The
system is composed of the following units (an overview can
be seen in Figure 3):
• The Filter Bank is a shift register which contains the

binary filter weights wk,n for the output channels k ∈
N<32 and input channels n ∈ N<32 (nin·nout·h2k ·1 bit =
6.4 kB) and supports column-wise left circular shift per
kernel.

• The Image Memory saves an image stripe of bk = 7
width and 1024 height (10.8 kB), which can be used
to cache 1024/nin = 1024/32 = 32 rows per input
channel.

• The Image Bank (ImgBank) caches a spatial window of
hk × bk = 7 × 7 per input channel n (2.4 kB), which
are applied to the SoP units. This unit is used to reduce
memory accesses, as the hk − 1 = 6 last rows can be
reused when we proceed in a column-wise order through
the input images. Only the lowest row has to be loaded
from the image memory and the upper rows are shifted
one row up.

• Sum-of-Product (SoP) Units (32, 1 per output channel):
For every output channel k, the SoP unit k calculates the

SoP 31

Im
gM

em SoP 0

FilterBank 32 · 32 · 7 · 7 · 1

ImgBank

ChSum 0 ChSum 31

10
24
· 7
· 1

2 32·72·12

Sc
al

in
g

Fa
ct

or
C

ha
nn

el
B

ia
s

Fig. 3. General overview of the system with the image memory and image
bank in blue, filter bank and SoP units in green, channel summer in red and
the interleaved per-channel scaling, biasing and streaming-out units in yellow.

sum terms õk,n, where in each cycle the contribution of
a new input channel n is calculated.

• Channel Summer (ChSum) Units (32, 1 per output
channel): The Channel Summer k accumulates the sum
terms õk,n for all input channels n.

• 1 Scale-Bias Unit: After all the contributions of the input
channels are summed together by the channel summers,
this unit starts to scale and bias the output channels in
an interleaved manner and streams them out.

• I/O Interface: Manages the 12-bit input stream (input
channels) and the two 12-bit output streams (output
channels) with a protocol based on a blocking ready-
valid handshaking.

A. Dataflow
The pseudo-code in Algorithm 1 gives an overview of the

main steps required for the processing of convolution layers,
while Figure 4 shows a timing diagram of the parallel working
units. The input and output channels need to be split into
blocks smaller than 32×32, while the image is split into slices
of 1024/cin height (lines 1–3). These blocks are indicated as
YodaNN chip block. Depending on whether the border is zero-
padded or not, b(hk − 1)/2c or hk − 1 columns need to be
preloaded (just in case of 1 × 1 filters no pixels need to be
preloaded) (Line 6). The same number of pixels are preloaded
from one subsequent column, such that a full square of h2k
pixels for each input channel is available in the image bank
(Line 7). After this preloading step, the SoPs start to calculate
the partial sums of all 32 output channels while the input
channel is changed every cycle (lines 15–20). When the final
input channel is reached, the channel summers keep the final
sum for all 32 output channels of the current row and column,
which are scaled and biased by the Scale-Bias Unit and the
final results are streamed out in an interleaved manner (lines
27–33). In case of nout = nin (e.g. 32×32) the same number
of cycles are needed to stream out the pixels for all output
channels as cycles are needed to sum all input channels for the
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i
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õ
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i
(6,8)
0 i

(6,8)
1

õ
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stream ouput feat. maps ...

Fig. 4. Timing diagram of the operating scheme: Input Stream, SoP k’s operations, output stream after accumulation.

Algorithm 1 Dataflow Pseudo-Code
Require: weights wk,n, input feature map ik(x, y)
Ensure: on =

∑
k ik ∗ wk,n

1: for all yblock ∈ {1, .., dhim/hmaxe} do
2: for all cout,block ∈ {1, .., dnout/nche} do
3: for all cin,block ∈ {1, .., dnin/nche} do
4: – YodaNN chip block
5: Load Filters wk,n

6: Load m colums, where

m =

{
hk − 1, if not zero-padded
bhk−1

2 c, if zero-padded
7: Load m pixels of the (m+ 1)th column.
8:
9: – Parallel block 1

10: for all x do
11: for all y do
12: õ(cout := ·, x, y) := 0
13: for all cin do
14:
15: – Single cycle block
16: for all cout do
17: for all (a,b) ∈ {−bhk

2 e ≤ a, b ≤ dhk

2 c}
do

18: õcout(x, y) = õcout(x, y)+
icin(x+a, y+b) · wcout,cin(a, b)

19: end for
20: end for
21: end for
22: end for
23: end for
24: – Parallel block 2
25: for all x do
26: wait until õ0(x, 0) is computed
27: for all y do
28: for all cout do
29: – Single cycle block
30: ocout

(x, y) = αcout
õcout

(x, y) + βcout

31: output ocout
(x, y)

32: end for
33: end for
34: end for
35: end for
36: – Sum the input channel blocks:
37: on,final =

∑
cin,blocks

on,·
38: end for
39: end for

next row, which means that all computational units of the chip
are fully-utilized. Each row is processed sequentially, then the
system switches to the next column, where again the first pixels
of the column are preloaded. The filters are circularly right
shifted to be aligned to the correct columns. Then, the next
column of all output channels are calculated. This procedure
is repeated until the whole image and blocks of input and
output channels have been processed. Finally, the partial sums
for each output channels need to be summed together for every
block of input channels. (Line 37).

We use the same sliding window approach developed in
Cavigelli et al. [13] and Figure 5 shows the implemented
sliding window approach. To avoid shifting all images in the
image memory to the left for the next column, the right most
pixels are inserted at the position of the obsolete pixel, and
the weights are shifted instead. To illustrate this, Equation (2)
shows the partial convolution for one pixel while the pixels
are aligned to the actual column order and Equation (3) shows
it when the next column is processed and the weights need
to be aligned. To indicate the partial sum, the Frobenius inner
product formalism is used, where: 〈A,B〉F =

∑
i,j aijbij .

õ(2, 2) =

〈[
x11 x12 x13
x21 x22 x23
x31 x32 x33

]
,

[
w11 w12 w13

w21 w22 w23

w31 w32 w33

]〉
F

(2)

õ(3, 2) =

〈[
x14 x12 x13
x24 x22 x23
x34 x32 x33

]
,

[
w13 w11 w12

w23 w21 w22

w33 w31 w32

]〉
F

(3)

Equation 3 shows the operands as they are applied to the
SoP units. The 4th column which should be the most-right
column is in the first column and also the other columns are
shifted to the right, thus the weights also needs to be shifted
to the right to obtain the correct result. The permutation in
algebraic form is formulated in Equation (4):

õ(3, 2) =

〈[
x14 x12 x13
x24 x22 x23
x34 x32 x33

]
,

[
w11 w12 w13

w21 w22 w23

w31 w32 w33

]
· P

〉
F
(4)

where P =

[
0 1 0
0 0 1
1 0 0

]
is the permutation matrix

B. BinaryConnect Approach
In this work we present a CNN accelerator based on Bina-

ryConnect [22]. With respect to an equivalent 12-bit version,
the first major change in architecture are the weights which
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are reduced to a binary value wk,n ∈ {−1, 1} and remapped
by the following equation:

f : {−1, 1} → {0, 1}, y 7→
{

0 if z = −1

1 if z = 1
(5)

The size of the filter bank decreases thus from n2ch · h2k · 12 =
37′632 bit to n2ch · h2k · 1 = 3′136 bit in case of the 12-bit
MAC architecture with 8 × 8 channels and 7 × 7 filters that
we consider as baseline. The 12 × 12-bit multipliers can be
substituted by two’s-complement operations and multiplexers,
which reduce the ”multiplier” and the adder tree size, as the
products have a width of 12 bit instead of 24. The SoP is fed
by a 12-bit and 7×7 pixel sized image window and 7×7 binary
weights. Figure 6 shows the impact on area while moving from
12-bit MACs to the binary connect architectures. Considering
that with the 12-bit MAC implementation 40% of the total
total chip area is used for the filter bank and another 40% are
needed for the 12 × 12-bit multipliers and the accumulating
adder trees, this leads to a significant reduction in area cost and
complexity. In fact the area of the conventional SoP unit could
be reduced by 5.3× and the filter bank by 14.9× when moving
from the Q2.9 to the binary version. The impact on the filter
bank is straightforward as 12 times less bits need to be saved
compared to the Q2.9, but also the SoP shrinks, as the 12×12-
bit multipliers are replaced with 2’s complement operation
units and multiplexers and the adder tree needs to support a
smaller dynamic range, thanks to the smaller products, since
the critical path is reduced as well. It is possible to reduce
voltage while still keeping the same operating frequency and
thus improving the energy efficiency even further.

C. Latch-Based SCM
An effective approach to optimize energy efficiency is to

adapt the supply voltage of the architecture according to
the performance requirements of the application. However,
the potential of this approach is limited by the presence of

SoP ImgBank FilterBank ImgMem Others
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A
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a
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Fig. 6. Area Breakdown for fixed-point and several binary architectures.

SRAMs for implementation of image memory, which bounds
the voltage scalability to 0.8 V (in 65nm CMOS technology).
To overcome this limitation, we replace the SRAM-based
image memory with a latch-based SCMs taking advantage of
the area savings achieved through adoption of binary SoPs.

Indeed, although SCMs are more expensive in terms of area
(Figure 6), they are able to operate in the whole operating
range of the technology (0.6 V - 1.2 V) and they also feature
significantly smaller read/write energy [26] at the same volt-
age. To reduce the area overhead of the SCMs and improve
routability we propose a multi-banked implementation, where
the image memory consists of a latch array organized in
6×8 blocks of 128 rows of 12-bit values, as described in
Fig 7. A pre-decoding logic, driven by the controller of the
convolutional accelerator addresses the proper bank of the
array every cycle, generating the local write and read enable
signals, the related address fields, and propagating the input
pixels to the banks and the current pixels to the SoP unit.
During a typical CNN execution, every cycle, 6 SCMs banks
are read, and one is written, according to the image memory
access pattern described in Fig 5.

The SCMs are designed with a hierarchical clock gating
and address/data silencing mechanisms as shown in Figure 8,
so that when a bank is not accessed the whole latch array
consumes no dynamic power. Every SCM block consists of a
12 bit × 128 rows array of latches, a data-in write path, and a
read-out path. To meet the requirements of the application, the
SCM banks are implemented with a two-ported, single-cycle
latency architecture with input data and read address sampling.
The write path includes data-in sampling registers, and a two-
level clock gating scheme for minimizing the dynamic power
of the clock path to the storage latches. The array write
enable port drives the global clock gating cell, while the row
clock gating cells are driven by the write address one-hot
decoder. The readout path is implemented with a read address
register with clock gating driven by a read enable signal, and
a static multiplexer tree, which provides robust and low power
operation, and enables dense and low congestion layout.

Thanks to this optimized architecture based on SCMs, only
up to 7 out of 48 banks of SCM banks consume dynamic
power in every cycle, reducing power consumption of the
memory by 3.25× at 1.2 V with respect to a solution based
on SRAMs [15], while extending the functional range of the
whole convolutional engine down to 0.6 V which is the voltage
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limit of the standard cells in UMC 65nm technology chosen
for implementation [50].

D. Considering I/O Power in Energy Efficiency

I/O power is a primary concern of convolutional acceler-
ators, consuming even more than 30% of the overall chip
power [51]. As we decrease the computational complexity by
the binary approach, the I/O power gets even more critical.
Fortunately, if the number of output channels is increased,
more operations can be executed on the same data, which
reduces the needed bandwidth and pad power consumption.
The other advantage with having more SoP units on-chip is
throughput which is formulated in (6):

Θ = 2 · (n2filt · nch) · f (6)

With this in mind, we increased the number of input and output
channels from 8 × 8 to 16 × 16 and 32 × 32 which provides
an ideal speed-up of throughput by 2× and 4×, respectively.

E. Support for Different Filter Sizes, Zero-Padding, Scaling
and Biasing

Adapting filter size to the problem provides an effective
way to improve the flexibility and energy efficiency of the
accelerator when executing CNNs with different requirements.
Although the simplest approach is to zero-pad the filters, this
is not feasible in the presented binary connect architecture,
as the value 0 is mapped to −1. A more energy-efficient
approach tries to re-use parts of the architecture. We present
an architecture where we re-use the binary multipliers for two
3 × 3, two 5 × 5 or one 7 × 7 filters. In this work we limit
the number of output channels per SoP unit to two as we
are limited in output bandwidth. With respect to our baseline
architecture, supporting only 7×7 filters, the number of binary
operators and the weights per filter is increased from 49 to 50,
such that two 5×5 or one 7×7 filter fits into one SoP unit. In
case a filter size of 3× 3 or 5× 5 is used, the image from the
image bank is mapped to the first 25 input image pixels, and
the latter 25 and are finally accumulated in the adjusted adder
tree, which is drawn in Figure 9. With this scheme, nch×2nch
channels for 3 × 3 and 5 × 5 filters can be calculated, which
improves the maximum bandwidth and energy efficiency for
these two cases. The unused 2’s complement-and-multiplex
operands (binary multipliers) and the related part of the adder
tree are silenced and clock-gated to reduce switching, therefore
keeping the power dissipation as low as possible.

To support also different kernel sizes, we provide the
functionality to zero-pad the unused columns from the image
memory and the rows from the image bank instead of zeroing
the weights which does not make sense with binary weights..
This allows us to support kernels of size 1×1, 2×2, 4×4 and
6 × 6 as well. The zero-padding is also used to add zeros to
image borders: e.g. for a 7×7 convolution the first 3 columns
and first 3 rows of the 4th column is preloaded. The 3 columns
right to the initial pixel and the 3 rows on top of the pixel are
zeroed the same way as described before and thus have not to
be loaded onto the chip.

Finally, the system supports channel scaling and biasing
which are common operations (e.g. in batch normalization
layer) in neural networks which can be calculated efficiently.
As described in the previous section up to two output channels
are calculated in parallel in every SoP unit, therefore the
SoP saves also two scaling and two biasing values for these
different output channels. As the feature maps are kept in
maximum precision on-chip, the channel summers’ output
Q7.9 fixed-point values, which are than multiplied with the
Q2.9 formatted scaling factor and added to the Q2.9 bias
and finally the Q10.18 output is resized with saturation and
truncation to the initial Q2.9 format. With the interleaved data
streaming, these operations are just needed once per cycle or
twice when the number of output channels are doubled (e.g.
k = 3× 3).

IV. RESULTS

A. Computational Complexity and Energy Efficiency Measure
Research in the field of deep learning is done on a large va-

riety of systems, such that platform-independent performance
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metrics are needed. For computational complexity analysis the
total number of multiplications and additions has been used in
other publications [13, 16, 42, 52]. For a CNN layer with nin
input channels and nout output channels, a filter kernel size of
hk × wk, and an input size of him × wim, the computational
complexity to process one frame can be calculated as follows:

#Op = 2noutninhkwk(hin − hk + 1)(win − hk + 1) (7)

The factor of 2 considers additions and multiplications as
separate arithmetic operations (Op), while the rest of the
equation calculates the number of multiply-accumulate op-
erations MACs. The two latter factors (hin − hk + 1) and
(win−hk +1) are the height and width of the output channels
including the reduction at the border in case no zero-padding
was applied. Memory accesses are not counted as additional
operations. The formula does not take into account the amount
of operations executed when applying zero-padding. In the
following evaluation, we will use the following metrics:
• Throughput Θ = (#Op based on (7))/t [GOp/s]
• Peak Throughput: Theoretically reachable throughput.

This does not take into account idling, cache misses,
etc.

• Energy Efficiency HE = Θ/P [TOp/s/W]
• Area Efficiency HA = Θ/A [GOp/s/MGE]

Furthermore, we will introduce some efficiency metrics to
allow for realistic performance estimates, as CNN layers have
varying numbers of input and output channels and image sizes
vary from layer to layer.

Θreal = Θpeak ·
∏
i

ηi (8)

Tiling: The number of rows are limited by the image
window memory, which accommodates hmax · nch,in words
of wk · 12 bit, storing a maximum of hmax rows per input

channel. In case the full image height does not fit into the
memory, it can be split into several image tiles which are then
processed consecutively. The penalty are the (hk−1) rows by
which the tiles need to vertically overlap and thus are loaded
twice. The impact on throughput can be determined by the
tiling efficiency

ηtile =
him

him +
(⌈

him

hmax

⌉
− 1
)
(hk − 1)

. (9)

(Input) Channel Idling: The number of output and input
channels usually does not correspond to the number of output
and input channels processed in parallel by this core. The out-
put and input channels are partitioned into blocks of nch×nch.
Then the outputs of these blocks have to be summed up pixel-
wise outside the accelerator.

In the first few layers, the number of input channels nin can
be smaller than the number of output channels nout. In this
case, the output bandwidth is limiting the input bandwidth by
a factor of ηchIdle,

ηchIdle =
nin
nout

. (10)

Note that this factor only impacts throughput, not energy
efficiency. Using less than the maximum available number of
input channels only results in more cycles being spent idling,
during which only a negligible amount of energy (mainly
leakage) is dissipated.

Border Considerations: To calculate one pixel of an output
channel, at least h2k pixels of each input channel are needed.
This leads to a reduction of 1

2 (hk − 1) pixels on each side.
While in some cases this is acceptable, many and particularly
deep CNNs perform zero-padding to keep a constant image
size, adding an all-zero halo around the image. In case of zero-
padding, hk−1

2 columns need to be pre-loaded, this introduces
latency, but does not increase idleness as the same number
of columns need to be processed after the last column where
in the meantime the first columns of the next image can be
preloaded to the image and therefore ηborder = 1. For non-zero
padded layers, the efficiency is reduced by the factor

ηborder,non-zero-padded =
hk − 1

wim
· hk − 1

him
. (11)

B. Experimental Setup
To evaluate the performance and energy metrics of the

proposed architecture and to verify the correctness of the
generated results, we developed a testbench, which generates
the control signals of the chip, reads the filters and the
input images from a raw file, and streams the data to the
chip. The output is monitored and compared to the expected
output feature maps which are read from a file, too. To
calculate the expected responses we have implemented a bit-
true quantized spatial convolution layer in Torch which acts as
a golden model. The power results are based on post place
& route results of the design. The design was synthesized
with Synopsys Design Compiler J-2014.09-SP4, while place
and route was performed with Cadence Innovus 15.2. The
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Fig. 10. Floorplan of YodaNN with a 9.2 KiB SCM memory computing 32
output channels in parallel.

UMC 65nm standard cell libraries used for implementation
were characterized using Cadence Liberate 12.14 in the voltage
range 0.6 V - 1.2 V, and in the typical process corner at the
temperature of 25 ◦C. The power simulations were performed
with Synopsys PrimePower 2012.12, based on Value Change
Dump (VCD) files extracted from simulations of real-life
workloads running on the post place and route netlist of the
design. These simulations were done with the neural network
presented in [51] on the Stanford backgrounds data set [53]
(715 images, 320 × 240 RGB, scene-labeling for various
outdoor scenes), where every pixel is assigned with one of
8 classes: sky, tree, road, grass, water, building, mountain and
foreground object. The I/O power was approximated by power
measurements on chips of the same technology [15] and scaled
to the actual operating frequency of YodaNN.

The final floorplan of YodaNN is shown in Figure 10. The
area is split mainly among the SCM memory with 480 kGE,
the binary weights filter bank with 333 kGE, the SoP units with
215 kGE, the image bank with 123 kGE and the area distribu-
tion is drawn in Figure 6. The core area is 1.3 MGE (1.9 mm2).
The chip runs at a maximum frequency of 480 MHz @ 1.2 V
and 27.5 MHz@0.6 V.

C. Fixed-Point vs. YodaNN

In this section, we compare a fixed-point baseline implemen-
tation with a binary version with fixed filter kernel size of 7×7
and 8×8 channels including an SRAM for input image storage.
The results are summarized in Table I. The reduced arithmetic
complexity and the replacement of the SRAM by a latch-based
memory shortened the critical path delay. Three pipeline stages
between the memory and the channel summers were used
in the fixed-point baseline version could be reduced to one
pipeline stage. The peak throughput could still be increased
from 348 GOp/s to 377 GOp/s at a core voltage of 1.2 V
and the core power was reduced by 79 % to 39 mW, which
leads to a 5.1× better core energy efficiency and 1.3× better
core area efficiency. As UMC 65nm technology SRAMs fail
below 0.8 V, we can get even better results by reducing the
supply voltage to 0.6 V thanks to our SCM implementation.
Although the peak throughput drops to 15 GOp/s, the core
power consumption is reduced to 260 µW, and core energy

efficiency rises to 59 TOp/s/W, which is an improvement of
11.6× compared to the fixed-point architecture at 0.8 V.

TABLE I. FIXED-POINT Q2.9 VS. BINARY ARCHITECTURE 8×8

Architecture Q2.9a Bin. Q2.9a Bin. Bin.
Supply (V) 1.2 1.2 0.8 0.8 0.6

Peak Throughput (GOp/s) 348 377 131 149 15
Avg. Power Core (mW) 185 39 31 5.1 0.26
Avg. Power Device (mW) 580 434 143 162 15.54
Core Area (MGE) 0.72 0.60 0.72 0.60 0.60

Efficiency metrics
Energy Core (TOp/s/W) 1.88 9.61 4.26 29.05 58.56
Energy Device (TOp/s/W) 0.60 0.87 0.89 0.92 0.98
Area Core (GOp/s/MGE) 487 631 183 247 25
Area Dev. (GOp/s/MGE) 161 175 61 69 7.0
a A fixed-point version with SRAM is used as baseline comparison and 8×8

channels and 7×7 filters.

0.6 0.7 0.8 0.9 1 1.1 1.2

25

50

75

Supply Voltage Vcore [V]

C
or

e
E

ne
rg

y
E

ffi
ci

en
cy

[T
O

p/
s/

W
]

500

1,000

1,500

T
hr

ou
gh

pu
t

[G
O

p/
s]

Core Energy Eff. Q2.9/8×8/SRAM ( ), Bin./32×32/SCM ( ),

Throughput Q2.9/8×8/SRAM ( ), Bin./32×32/SCM ( )

Fig. 11. Comparison of core energy efficiency and throughput for the baseline
architecture (fixed-point Q2.9, SRAM, 8×8 channels, fixed 7×7 filters) with
final YodaNN (binary, SCM, 32×32 channels, supporting several filters).

Figure 11 shows the throughput and energy efficiency of
YodaNN with respect to the baseline architecture for differ-
ent voltage supplies, while Figure 12 shows the breakdown
of the core power an the operating frequency of 400 MHz.
Comparing the two 8×8 channels variants (fixed-point and
binary weights), the power consumption was reduced from
185 mW to 39 mW, where the power could be reduced by
3.5× in the SCM, 4.8× in the SoP units and 31× in the filter
bank. Although the power consumption of the core increases
by 3.32× when moving from 8 × 8 to 32 × 32 channels,
the throughput increases by 4×, improving energy efficiency
by 20%. Moreover, taking advantage of more parallelism,
voltage and frequency scaling can be exploited to improve
energy efficiency for a target throughput. The support for
different kernel sizes significantly improves the flexibility of
the YodaNN architecture, but increases the core area by 11.2%,
and the core power by 38% with respect to a binary design
supporting 7×7 kernels only. The Scale-Bias unit occupies
another 2.5 kGE area and consumes 0.4 mW at a supply
voltage of 1.2 V and a operating frequency of 480 MHz. When
I/O power is considered, increasing the number of channels is
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more beneficial, since we can increase the throughput while
the total device power does not increase at the same rate. We
estimate a fixed contribution of 328 mW for the the I/O power
at 400 MHz. Table II provides an overview of the device energy
efficiency for different filter kernel sizes at 1.2 V core and
1.8 V pad supply. The device energy efficiency raises from
856 GOps/s/W in the 8×8 architecture to 1611 in the 16×16
and to 2756 in the 32×32.
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Fig. 12. Core power breakdown for fixed-point and several binary architec-
tures.

TABLE II. DEVICE ENERGY EFFICIENCY FOR DIFFERENT FILTERS
AND ARCHITECTURES

Archit. Q2.9 8×8 16×16 32×32 322 (fixed)

7×7 600 856 1611 2756 3001 [GOp/s/W]
5×5 611 1170 2107 [GOp/s/W]
3×3 230 452 859 [GOp/s/W]

D. Real Applications
For a comparison based on real-life CNNs, we have selected

several state-of-the-art networks which exploit binary weights.
This includes the CNNs from the BinaryConnect paper for
Cifar-10 and SVHN [22], and the well-known networks VGG-
13, VGG-19 [? ], ResNet-18, ResNet-34 [4], and AlexNet [2],
which were successfully implemented with binary weights by
Rastegari et al. [23] (not XNOR-net). The layer configurations
and the related metrics are summarized in Table III. As
described in Section III-A, the layers are split into blocks
of nin × nout = 32 × 32 channels in case of a kernel size
of h2k = 72 and nin × nout = 32 × 64 elsewhere. The
first layers have a high idle rate, but the silenced SoP units
consume roughly no power. To account for this we introduce
P̃real = Peff/Pmax which is calculated. The first layer of
AlexNet uses 11× 11 filters and needs to be split into smaller
kernels. We split them into 2 filters of 6× 6 (top-left, bottom-
right) and 2 filters of 5 × 5 (bottom-left, top-right), where
the center pixel is overlapped by both 6 × 6 kernels. By
choosing the value for the overlapping weight appropriately, it
is possible to prevent the need of additional 1×1 convolutions:
if the original weight is 1, the overlapping weight of both 6×6
kernels are chosen to be 1, otherwise −1 is assigned to one
of them and 1 to the other. Instead of 1 × 1 convolutions,
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Fig. 13. Core area efficiency vs. core energy efficiency for state-of-the-art
CNN accelerators.

just the sum of the identities of all input channels needs to be
subtracted. The summing of the contributions and subtracting
of the identities is done off-chip.

Table IV gives an overview of the energy efficiency,
throughput, actual frame rate and total energy consumption
for calculating the convolutions, including channel biasing and
scaling in the energy-optimal configuration (at 0.6 V). Table V
shows the same metrics and CNNs for the high-throughput
setting at 1.2 V. It can be noticed that in the energy-optimal
operating point, the achieved throughput is about half of the
maximum possible throughput of 55 GOp/s for most of the
listed CNNs. This can be attributed to the smaller-than-optimal
filter size of 3 × 3, which is frequently used and limits the
throughput to about 20 GOp/s. However, note that the impact
on peak energy-efficiency is only minimal with 59.20 instead
of 61.23 GOp/s/W.

The average energy efficiency of the different networks is
within the range from 48.1 to 56.7 TOp/s/W, except for
AlexNet which reaches 14.1 TOp/s/W due to the dominant
first layer which requires a high computational effort while
leaving the accelerator idling for a large share of the cycles
because of the small number of input channels. The fourth
column in tables IV and V shows the frame rate which
can be processed by YodaNN excluding the fully connected
layers and the chip configuration. In the throughput optimal
case, the achieved frame rate is between 13.3 (for VGG-
19) and 1428 FPS (for the BinaryConnect-SVHN network)
with a chip power of just 153 mW. In the maximum energy
efficiency corner YodaNN achieves a frame rate between 0.5
and 53.2 FPS at a power of 895 µW.

E. Comparison with State-of-the-Art
In Section II, the literature from several software and archi-

tectural approaches have been described. The 32× 32 channel
YodaNN is able to reach a peak throughput of 1.5 TOp/s
which outperforms NINEX [27] by a factor of 2.7. In core

2The 11×11 kernels are split into 2 6×6 and 2 5×5 kernels as described
in Section IV-D.
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TABLE III. EVALUATION ON SEVERAL WIDELY-KNOWN CONVOLUTIONAL NEURAL NETWORKS IN THE HIGH-EFFICIENCY CORNER

Network L hk w h nin nout × ηtile ηIdle P̃real Θreal EnEff t E
px px px GOp/s TOp/s/W #MOp ms µJ

BinaryConnect
Cifar-10 [22]

1 3 32 32 3 128 1 1.00 0.09 0.35 1.9 16.0 7 3.8 0.4
2 3 32 32 128 128 1 1.00 1.00 1.00 20.1 59.2 302 15.0 5.1
3 3 16 16 128 256 1 1.00 1.00 1.00 20.1 59.2 151 7.5 2.6
4 3 16 16 256 256 1 1.00 1.00 1.00 20.1 59.2 302 15.0 5.1
5 3 8 8 256 512 1 1.00 1.00 1.00 20.1 59.2 151 7.5 2.6
6 3 8 8 512 512 1 1.00 1.00 1.00 20.1 59.2 302 15 5.1
7 FC 4 4 512 1024 1 16
8 FC 1 1 1024 1024 1 2
9 SVM 1 1 1024 10 1 0.0

BinaryConnect
SVHN [22]

1 3 32 32 3 128 1 1.00 0.09 0.35 1.9 16.0 7 3.8 0.4
2 3 16 16 128 256 1 1.00 1.00 1.00 20.1 59.2 151 7.5 2.6
3 3 8 8 256 512 1 1.00 1.00 1.00 20.1 59.2 151 7.5 2.6
4 FC 4 4 512 1024 1 16

AlexNet
ImageNet[2]

1ab2 6 224 224 3 48 4 0.95 0.09 0.35 1.4 12.1 520 364.7 42.9
1cd2 5 224 224 3 48 4 0.9 0.07 0.35 3.55 11.8 361 101.7 30.5

2 5 55 55 48 128 2 0.93 0.75 1.00 39.1 45.2 929 23.8 20.6
3 3 27 27 128 192 2 1.00 1.00 1.00 20.1 59.2 322 16.0 5.4
4 3 13 13 192 192 2 1.00 1.00 1.00 20.1 59.2 112 5.6 1.9
5 3 13 13 192 128 2 1.00 1.00 1.00 20.1 59.2 75 3.7 1.3
7 FC 13 13 256 4096 1 354
8 FC 1 1 4096 4096 1 34
9 FC 1 1 4096 1000 1 8

ResNet-18/34
ImageNet[4]

1 7 224 224 3 64 1 0.86 0.09 0.35 4.4 15.1 236 53.3 15.7
2-5 3 56 56 64 64 4/6 0.95 1.00 1.00 19.1 56.2 231 11.9 4.0

6 3 28 28 64 128 1 0.97 1.00 1.00 19.4 57.2 116 5.7 2.0
7-9 3 28 28 128 128 3/7 0.97 1.00 1.00 19.4 57.2 231 11.5 3.9
10 3 14 14 128 256 1 1.00 1.00 1.00 20.1 59.2 116 5.7 2.0

11-13 3 14 14 256 256 3/11 1.00 1.00 1.00 20.1 59.2 231 11.5 3.9
14 3 7 7 256 512 1 1.00 1.00 1.00 20.1 59.2 116 5.7 2.0

15-17 3 7 7 512 512 3 1.00 1.00 1.00 20.1 59.2 231 11.5 3.9
18 FC 7 7 512 1000 1 200

VGG-13/19
ImageNet[32]

1 3 224 224 3 64 1 0.95 0.09 0.35 1.9 15.2 173 91.9 11.4
2 3 224 224 64 64 1 0.95 1.00 1.00 19.1 56.2 3699 193.6 65.8
3 3 112 112 64 128 1 0.95 1.00 1.00 19.1 56.2 1850 96.8 32.9
4 3 112 112 128 128 1 0.95 1.00 1.00 19.1 56.2 3699 193.6 65.8
5 3 56 56 128 256 1 0.97 1.00 1.00 19.4 57.2 1850 95.2 32.4
6 3 56 56 256 256 1/3 0.97 1.00 1.00 19.4 57.2 3699 190.3 64.7
7 3 28 28 256 512 1 1.00 1.00 1.00 20.1 59.2 1850 91.9 31.2
8 3 28 28 512 512 1/3 1.00 1.00 1.00 20.1 59.2 3699 183.8 62.5

9-10 3 14 14 512 512 2/4 1.00 1.00 1.00 20.1 59.2 925 45.9 15.6
11 FC 14 14 256 4096 1 411
12 FC 1 1 4096 4096 1 34
13 FC 1 1 4096 1000 1 8

Legend: L: layer, hk: kernel size, w: image width, h: image height, ni: input channels, no: output channels, ×: quantity of this kind of layer,
ηtile: tiling efficiency, ηchIdle: channel idling efficiency, P̃real Normalized Power consumption in respect to active convolving mode,

Θreal: actual throughput, EnEff: Actual Energy Efficiency, #MOp: Number of operations (additions or multiplications, in millions), t: time, E: needed
processing energy

energy efficiency the design outperforms k-Brain, NINEX by
5× and more. If the supply voltage is reduced to 0.6 V, the
throughput decreases to 55 GOp/s but the energy efficiency
rises to 61.2 TOp/s, which is more than an order-of-magnitude
improvement over the previously reported results [27, 28, 40].
The presented architecture also outperforms the compressed
neural network accelerator EIE in terms of energy efficiency
by 12× and in terms of area efficiency by 28×, even though
they assume a very high degree of sparsity with 97% zeros
[47]. Figure 13 gives a quantitative comparison of the state-of-
the-art in energy efficiency and area efficiency. For the sweep

of voltages between 1.2 V and 0.6 V, YodaNN builds a clear
pareto front over the state of the art.

V. CONCLUSION

We have presented a flexible, energy-efficient and perfor-
mance scalable CNN accelerator. The proposed architecture is
the first ASIC design exploiting recent results on binary-weight
CNNs, which greatly simplifies the complexity of the design
by replacing fixed-point MAC units with simpler complement
operations and multiplexers without negative impact on clas-
sification accuracy. To further improve energy efficiency and
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TABLE IV. OVERVIEW OF SEVERAL NETWORKS IN AN ENERGY
OPTIMAL USE CASE (VCORE = 0.6 V) ON A YODANN ACCELERATOR

Network img size Avg. EnEff Θ̄ Θ Energy
hin×win TOp/s/W GOp/s FPS µJ

BC-Cifar-10 32×32 56.7 19.1 15.8 21
BC-SVHN 32×32 50.6 16.5 53.2 6
AlexNet 224×224 14.1 3.3 0.5 352
ResNet-18 224×224 48.1 16.2 4.5 73
ResNet-34 224×224 52.5 17.8 2.5 136
VGG-13 224×224 54.3 18.2 0.8 398
VGG-19 224×224 55.9 18.9 0.5 684

TABLE V. OVERVIEW OF SEVERAL NETWORKS IN A THROUGHPUT
OPTIMAL USE CASE (VCORE = 1.2 V) ON A YODANN ACCELERATOR

Network img size Avg. EnEff Θ̄ Θ Energy
hin×win TOp/s/W GOp/s FPS µJ

BC-Cifar-10 32×32 8.6 525 435 137
BC-SVHN 32×32 7.7 454 1429 36
AlexNet 224×224 2.2 90 14 2244
ResNet-18 224×224 7.3 446 125 478
ResNet-34 224×224 8.0 495 68 889
VGG-13 224×224 8.3 502 22 2609
VGG-19 224×224 8.5 520 13 4482

extend the performance scalability of the accelerator, we have
implemented latch-based SCMs for on-chip data storage to be
able to scale down the operating voltage even further. To add
flexibility, we support seven different kernel sizes: 1×1, 2×2,
..., 7 × 7. This enables efficient evaluation of a large variety
of CNNs. Even though this added flexibility introduces a 29%
reduction in energy efficiency, an outstanding overall energy
efficiency of 61 TOp/s/W is achieved. The proposed accelera-
tor surpasses state-of-the-art CNN accelerators by 2.7× in peak
performance with 1.5 TOp/s, by 10× in peak area efficiency
with 1.1 TOp/s/MGE and by 32× peak energy efficiency
with 61.2 TOp/s/W. YodaNN’s power consumption at 0.6 V
is 895 µW with an average frame rate of 11 FPS for state-of-
the-art CNNs and 16.8 FPS for ResNet-34 at 1.2 V.
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