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Abstract: The slowing down equation for elastic scattering of neutrons in an infinite homogeneous
medium is solved analytically by decomposing the neutron energy spectrum into collision intervals.
Since scattering physically smooths energy distributions by redistributing neutron energy uniformly,
it is informative to observe how mathematics accommodates the scattering process, which increases
entropy through disorder.
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1. Introduction

Neutron slowing down in an infinite homogeneous medium [1] is a classic problem in neutron
transport theory. Neutrons (test particles) collide elastically with nuclei (field particles) and thereby
lose energy to nuclear recoil. Thus, we have a common collisional process as described by a balance in
energy phase space between a neutron source and neutrons scattering into and out of an infinitesimal
energy increment, leading to the slowing down equation. One can analytically solve this equation for
the neutron collision density distribution as it tends toward its equilibrium state. In addition, neutron
loss is possible through radiative capture but will not be considered. Limiting our investigation to an
infinite medium has naturally eliminated spatial and directional variation. While the slowing down
equation is deterministic, it nevertheless describes the statistical scattering process, as illustrated by
the associated mathematics.

In the following, we argue that the solution to the neutron slowing down equation characterizes
the evolution of disorder associated with neutron–nucleus collisions. While it is not strictly correct
to attribute disorder to entropy [2], in our case, starting from monoenergetic neutrons representing
complete order, subsequent scattering creates disorder by uniformly redistributing neutron energy
and recoil energy transfer to field particles. The nucleus scattering model conserves kinetic energy;
however, it should be noted that the slowing down process assumes background nuclei are at rest.
This considerably simplifies the scattering kernel and allows an analytical solution. Beginning
with oscillations of the collision density in lethargy (logarithm of energy), called Placzek transients,
neutron slowing down demonstrates increasing entropy with increasing lethargy. The oscillations
originate from the discontinuity of derivatives submerged further into the solution at collision interval
boundaries. As will be shown, the initially sharp discontinuity from the singular delta function source
embeds itself in higher-order derivatives. Hence, with increasing lethargy, the solution becomes
smoother, which is a tendency toward increased randomness and equilibrium. Therefore, neutron
slowing down is a physical example of the mathematical representation of increasing disorder since
one begins with a source of zero entropy (certainty), and, with an ever-increasing number of collision
intervals, smoothing (uncertainty) of the energy distribution follows.
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2. Solution

2.1. The Slowing Down Equation

The neutron slowing down equation in a purely scatter material in the fast neutron regime is

F(E) =

E+
0∫

0

dE′P
(
E′ → E

)
F
(
E′
)
+ δ(E− E0) (1a)

for the collision (energy) density
F(E) ≡ Σs(E)φ(E), (1b)

where Σs(E) is the scattering cross section and φ(E) is the neutron scalar flux. The neutron scatters
elastically from a nucleus uniformly to the energy interval αE′ ≤ E ≤ E′ with probability of scattering
into dE given by

P
(
E′ → E

)
dE =

dE
(1− α)E′

; (1c)

otherwise, the probability is zero. The scattering parameter is

α ≡
(

A− 1
A + 1

)2
, (1d)

where A is the mass number of the nucleus, and a monoenergetic source emits neutrons at energy E0.
Therefore, Equation (1a) becomes

F(E) =
1

1− α

min(E+
0 ,E/α)∫

E

dE′

E′
F
(
E′
)
+ δ(E− E0). (2)

Note that to include source neutrons, the upper limit in the scattering integral must come from just
above E0.

Change to Lethargy Variable

With the change of energy to the lethargy variable,

u ≡ ln
(

E0

E

)
,

Equation (2) becomes

F(u) =
1

1− α

u∫
max(0− , u−q)

due−(u−u′)F
(
u′
)
+ δ(u), (3a)

where

q ≡ ln
(

1
α

)
; (3b)

and with the further transformation
F(u) ≡ e−ug(u), (4a)

there results,

g(u) =
1

1− α

u∫
max(0− ,u−q)

du′g
(
u′
)
+ δ(u). (4b)
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2.2. Determination of g(u) by Collision Interval

A natural decomposition of lethargy into scattering collision intervals (n), shown in Figure 1,
enables an explicit solution. The lethargy interval q is the maximum lethargy gain a neutron experiences
after a single collision.

Figure 1. Scattering collision intervals (n = 1, 2, 3, 4).

2.2.1. Collision Interval (1)

In the first collision interval (1), Equation (4b) is

g1(u) =
1

1− α

u∫
0

du′g1
(
u′
)
+ δ(u). (5a)

For
g(u) ≡ g1(u), 0 ≤ u ≤ q, (5b)

a convenient solution is
g1(u) = g0(u) + g1c(u). (6a)

The source, emitting uncollided neutrons, defines

g0(u) ≡ δ(u), (6b)

and introducing Equation (6a) into Equation (5a) gives

g1c(u) =
1

1− α

u∫
0

du′g1c
(
u′
)
+

1
1− α

(6c)

for neutrons experiencing at least one collision. Therefore, upon differentiation

dg1c(u)
du

=
1

1− α
g1c(u), (7a)

and solving, with initial condition

g1c(0) =
1

1− α
, (7b)

from Equation (6c)

g1c(u) =
1

1− α
eu/(1−α). (7c)

The solution in interval (1) is

g1(u) = δ(u) +
1

1− α
eu/(1−α), (8)

exhibiting the delta function source discontinuity at u = 0 with no disorder and source neutrons
scattering to the end of interval (1).
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2.2.2. Collision Interval (2)

For the second collision interval, q ≤ u ≤ 2q, Equation (4b) becomes

g(u) =
1

1− α

u∫
u−q

du′g
(
u′
)
;

and, if
g(u) ≡ g2(u), q ≤ u ≤ 2q, (9a)

then

g2(u) =
1

1− α

q∫
u−q

du′g1
(
u′
)
+

1
1− α

u∫
q

du′g2
(
u′
)
, (9b)

where scattering from interval (1) contributes to interval (2). Differentiating gives

dg2(u)
du

=
1

1− α
g2(u)−

1

(1− α)2 e(u−q)/(1−α) − 1
1− α

δ(u− q). (9c)

Before solving Equation (9c), we note the delta function source singularity, originally at u = 0, has
moved to the derivative of g2(u) at u = q, and continues on to higher derivatives in subsequent collision
intervals, as will be shown.

From Equation (9b),

g2
(
q+
)
= lim

ε→0
g2(q + ε) =

1
1− α

q∫
0+

du′g1
(
u′
)
=

1
1− α

[
eq/(1−α) − 1

]
; (9d)

and on solving Equation (9c) as a sum of the solution to the homogeneous equation and the particular
solution gives

g2(u) =

[
g2
(
q+
)
− (u− q)

(1− α)2

]
e(u−q)/(1−α) +

1
1− α

[1−Θ(u− q)], (9e)

or, since from Equation (8),

g1
(
0+
)
=

1
1− α

,

g2(u) =
[

g2
(
q+
)
− (u− q)

(1− α)
g1
(
0+
)]

e(u−q)/(1−α) +
1

1− α
[1−Θ(u− q)]. (9f)

Though the last term vanishes in interval (2), it is theoretically necessary to give the delta function
discontinuity in the derivative.

Note that since Equation (8) evaluated at q− is

g1
(
q−
)
=

1
1− α

eq/(1−α), (10a)

across the boundary of intervals (1) and (2), one observes a finite discontinuity in g(u),

∆g2(q) ≡ g2
(
q+
)
− g1

(
q−
)
= − 1

1− α
; (10b)

hence, the delta function in Equation (9c) at u = q in the derivative of g2(u).
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2.2.3. Collision Interval (3)

To establish a pattern, we continue to interval (3) with Equation (4b) for n = 3:

g3(u) =
1

1− α

2q∫
u−q

du′g2
(
u′
)
+

1
1− α

u∫
2q

du′g3
(
u′
)
, (11a)

where
g(u) ≡ g3(u), 2q ≤ u ≤ 3q. (11b)

On differentiation of Equation (11a):

dg3(u)
du

=
1

1− α
g3(u)−

1
1− α

g2(u− q) (11c)

and solving

g3(u) = g3
(
2q+

)
e(u−2q)/(1−α) − 1

1− α

u∫
2q

du′e(u−u′)/(1−α)g2
(
u′ − q

)
.

After integration of the last term, we find

g3(u) =

[
g3
(
2q+

)
− (u− 2q)

(1− α)
g2
(
q+
)
+

1
2
(u− 2q)2

(1− α)3

]
e(u−2q)/(1−α), (11d)

which is also

g3(u) =

[
g3
(
2q+

)
− (u− 2q)

(1− α)
g2
(
q+
)
+

1
2
(u− 2q)2

(1− α)2 g1
(
0+
)]

e(u−2q)/(1−α). (11e)

The initial condition, g3(2q+), for interval (3) is approached from within the interval and is given by
Equation (11a) as

g3
(
2q+

)
= lim

ε→0
g3(2q + ε) =

1
1− α

2q∫
q

du′g2
(
u′
)
.

However, from Equation (9b), we also find

g2
(
2q−

)
=

1
1− α

2q∫
q

du′g2
(
u′
)
, (11f)

demonstrating the continuity of g(2q) across intervals (2) and (3), and completing the solution for
collision interval (3).

2.2.4. Collision Interval (n)

Continuity for u > 2q+

In general, defining the solution gn(u) for interval (n),

g(u) = gn(u), (n− 1)q ≤ u ≤ nq, (12a)
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and partitioning the scattering integral in Equation (4b) into current and previous intervals gives

gn(u) =
1

1− α

(n−1)q∫
u−q

du′gn−1
(
u′
)
+

1
1− α

u∫
(n−1)q

du′gn
(
u′
)
. (12b)

The interpretation of this expression is shown in Figure 2, and, as already mentioned, includes a
contribution to interval (n) from scatter in the previous interval.

Figure 2. Contribution from previous collision interval-.

For n ≥ 3, from Equation (12b) with n decremented by unity and u = (n− 1)q− ε→ (n− 1)q− ,
in the limit as ε→ 0 :

gn−1
(
(n− 1)q−

)
= lim

ε→0
gn−1((n− 1)q− ε) =

1
1− α

(n−1)q∫
(n−2)q

du′gn−1
(
u′
)
. (13a)

Similarly, for u = (n− 1)q + ε→ (n− 1)q+ in Equation (12b),

gn
(
(n− 1)q+

)
= lim

ε→0
gn((n− 1)q + ε) =

1
1− α

(n−1)q∫
(n−2)q

du′gn−1
(
u′
)

(13b)

and therefore, comparing to Equation (13a),

∆gn((n− 1)q) = gn
(
(n− 1)q+

)
− gn−1

(
(n− 1)q−

)
= 0. (13c)

Thus, g(u) is a continuous function with the exception of the delta function singularity at u = 0 and the
finite discontinuity at u = q.

2.2.5. General Solution

From gn(u), n = 2, 3, the following pattern emerges:

gn(u) = e(u−(n−1)q)/(1−α)
n−1

∑
k=0

γn,k(u− (n− 1)q)k +
1

1− α
[1−Θ(u− q)]δn,2, (14)

where for n = 2
γ2,0 = g2(q+)

γ2,1 = − 1
(1−α)

g1(0+),

and n = 3
γ3,0 = g3(2q)

γ3,1 = − 1
(1−α)

g2(q+)
γ3,2 = 1

2
1

(1−α)2 g1(0+).
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We now confirm the pattern by constructive inductive reasoning.
For n ≥ 4, assume the form of the solution, Equation (14), is true for n − 1

gn−1(u) = e(u−(n−2)q)/(1−α)
n−2

∑
k=0

γn−1,k(u− (n− 2)q)k. (15a)

Differentiating Equation (12b) gives the ODE:

dgn(u)
du

=
1

1− α
gn(u)−

1
1− α

gn−1(u− q), (15b)

with the following solution over the interval ((n− 1)q+ , nq−):

gn(u) = gn((n− 1)q+)e(u−(n−1)q)/(1−α)

− 1
1−α

u∫
(n−1)q+

du′e(u−u′)/(1−α)e(u
′−(n−1)q)/(1−α)

n−2
∑

k=0
γn−1,k(u′ − (n− 1)q)k. (15c)

Performing the integration:

gn(u) =

[
gn
(
(n− 1)q+

)
− 1

1− α

n−2

∑
k=0

γn−1,k

k + 1
(u− (n− 1)q)k+1

]
e(u−(n−1)q)/(1−α), (15d)

and decrementing index k by unity gives

gn(u) =

[
gn
(
(n− 1)q+

)
− 1

1− α

n−1

∑
k=1

γn−1,k−1

k
(u− (n− 1)q)k

]
e(u−(n−1)q)/(1−α). (15e)

Hence, on comparison to Equation (14), for k = 0:

γn,0 = gn
(
(n− 1)q+

)
, (16a)

and for k = 1, 2, . . .

γn,k = −
1

(1− α)k
γn−1,k−1 (16b)

On solving the recurrence of Equations (16):

γn,k =
(−1)k

(1− α)kk!
γn−k,0 =

(−1)k

(1− α)kk!
gn−k

(
(n− (k + 1))q+

)
, (16c)

we have the conjectured solution of the form of Equation (14) for intervals n ≥ 3:

gn(u) = e(u−(n−1)q)/(1−α)
n−1

∑
k=0

(−1)k

k!

[
u− (n− 1)q

1− α

]k
gn−k

(
(n− (k + 1))q+

)
. (16d)

Or, from the continuity of g(u) (Equation (13c)),

gn(u) = e(u−(n−1)q)/(1−α)

 gn−1((n− 1)q̃)

+
n−1
∑

k=1

(−1)k

k!

[
u−(n−1)q

1−α

]k
gn−k((n− (k + 1))q̃)

, (17a)

where

(n− (k + 1))q̃ =


0+, k = n− 1

2q+, k = n− 2
(n− (k + 1))q, 1 ≤ k ≤ n− 3.

(17b)
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From Equation (4a), the collision density by collision interval is therefore

Fn(u) = e(αu−(n−1)q)/(1−α)

 gn−1((n− 1)q̃)

+
n−1
∑

k=1

(−1)k

k!

[
u−(n−1)q

1−α

]k
gn−k((n− (k + 1))q̃)

, (18a)

For future use, the jth derivative (using Leibnitz’s rule) is:

F(j)
n (u)

= e(αu−(n−1)q)/(1−α)

 gn−1((n− 1)q̃)δj0 +
n−1
∑

k=1

(−1)k

k!

[
1

1−α

]k
gn−k((n− (k + 1))q̃)

•
j

∑
l=0

j!
l!(j−l)!

[
α

1−α

]j−l
[u− (n− 1)q]k−l

.
(18b)

We now investigate the singularities of derivatives of g(u).

3. Continuity/Singularities

So far, we have identified the singularities given in Table 1. In this section, all the relevant
singularities starting at interval (n) will also be identified. To do so, we require several conjectures
concerning the continuity of the collision density.

Table 1. Singularities identified.

Interval u Derivative (j) Type

1 0 0 Infinite *
2 q 0 Finite
2 q 1 Infinite *

* Delta function.

Conjecture 1. The jth derivatives of gn−1 and gn at u = (n − 1)q for n ≥ j + 3 are continuous.

Symbolically, Conjecture 1 is

∆g(j)
n ((n− 1)q) ≡ g(j)

n
(
(n− 1)q+

)
− g(j)

n−1
(
(n− 1)q−

)
= 0, n ≥ j + 3, (C1.1)

which has already been shown for j = 0 above (Equation (13c)).
Assuming the conjecture true for j − 1 gives

∆g(j−1)
n ((n− 1)q) = g(j−1)

n
(
(n− 1)q+

)
− g(j−1)

n−1
(
(n− 1)q−

)
= 0, n ≥ j + 2. (C1.2)

We next apply j − 1 derivatives to the differentiation of Equation (15b) to give

g(j)
n (u) =

1
1− α

[
g(j−1)

n (u)− g(j−1)
n−1 (u− q)

]
; (C1.3)

moreover, if we reduce n by unity, then

g(j)
n−1(u) =

1
1− α

[
g(j−1)

n−1 (u)− g(j−1)
n−2 (u− q)

]
. (C1.4)

Evaluating Equations (C1.3) and (C1.4) at (n − 1)q+ and (n − 1)q−, respectively,

g(j)
n
(
(n− 1)q+

)
=

1
1− α

[
g(j−1)

n
(
(n− 1)q+

)
− g(j−1)

n−1
(
(n− 2)q+

)]
(C1.5)
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g(j)
n−1
(
(n− 1)q−

)
=

1
1− α

[
g(j−1)

n−1
(
(n− 1)q−

)
− g(j−1)

n−2
(
(n− 2)q−

)]
(C1.6)

and subtracting

∆g(j)
n ((n− 1)q) =

1
1− α


[

g(j−1)
n ((n− 1)q+)− g(j−1)

n−1 ((n− 2)q+)
]
−

−
[

g(j−1)
n−1 ((n− 1)q−)− g(j−1)

n−2 ((n− 2)q−)
] . (C1.7)

On re-arrangement,

∆g(j)
n ((n− 1)q) =

1
1− α


[

g(j−1)
n ((n− 1)q+)− g(j−1)

n−1 ((n− 1)q−)
]
−

−
[

g(j−1)
n−1 ((n− 2)q+)− g(j−1)

n−2 ((n− 2)q−)
] , (C1.8)

which is
∆g(j)

n ((n− 1)q) =
1

1− α

{
∆g(j−1)

n ((n− 1)q)− ∆g(j−1)
n−1 ((n− 2)q)

}
. (C1.9)

Since, by assumption, the first term is

∆g(j−1)
n ((n− 1)q) = 0, n ≥ j + 2; (C1.10)

and with n replaced by n − 1, the second term is

∆g(j−1)
n−1 ((n− 2)q) = 0, n ≥ j + 3. (C1.11)

Thus, Equation (C1.9) vanishes and confirms Conjecture 1, which is therefore true by induction.

Conjecture 2. The n − 2 derivative at u = (n − 1)q is discontinuous for gn, n ≥ 2.

Symbolically, Conjecture 2 is

∆g(n−2)
n ((n− 1)q) 6= 0, n ≥ 2. (C2.1)

We have already shown for n = 2:

∆g(0)2 (q) = g2
(
q+
)
− g1

(
q−
)
= − 1

1− α
6= 0. (C2.2)

Assume conjecture is true for n−1:

∆g(n−3)
n−1 ((n− 2))q) 6= 0, n ≥ 3. (C2.3)

Introduce j = n − 2 into Equation (C1.9):

∆g(n−2)
n ((n− 1)q) =

1
1− α

{
∆g(n−3)

n ((n− 1)q)− ∆g(n−3)
n−1 ((n− 2)q)

}
. (C2.4)

However, from Conjecture 1, Equation (C1.1):

∆g(j)
n ((n− 1)q) = 0, n ≥ j + 3, (C2.5)

which implies for j = n− 3 ≥ 0
∆g(n−3)

n ((n− 1)q) = 0; (C2.6)
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and Equation (C2.4) by assumption becomes

∆g(n−2)
n ((n− 1)q) = −∆g(n−3)

n−1 ((n− 2)q) 6= 0, (C2.7)

which is Conjecture 2—again, proved by induction.
Solving the recurrence in Equation (C2.7) gives the discontinuity

∆g(n−2)
n ((n− 1)q) =

(−1)n−1

(1− α)n−1 . (C2.8)

Conjecture 3. The n − 1 derivative of gn at u = (n − 1)q contains a delta function singularity.

Symbolically, Conjecture 3 is

g(n−1)
n (u) = hn(u) + βnδ(u− (n− 1)q), n ≥ 1. (C3.1)

We have shown that Conjecture 3 is true for n = 1 (and n = 2)

g(0)1 (u) = h1(u) + β1δ(u) (C3.2)

in Equation (8) with
β1(u) = 1

h1 = 1
1−α eu/(1−α).

(C3.3)

Assuming the conjecture is true for n − 1:

g(n−2)
n−1 (u) = hn−1(u) + βn−1δ(u− (n− 2)q), n ≥ 2. (C3.4)

From Equation (C1.2) with j = n − 1:

g(n−1)
n (u) =

1
1− α

[
g(n−2)

n (u)− g(n−2)
n−1 (u− q)

]
(C3.5)

and Equation (C3.4) becomes

g(n−1)
n (u) = 1

1−α

[
g(n−2)

n (u)− hn−1(u− q)
]
− βn−1

1−α δ(u− q− (n− 2)q)

= hn(u) + βnδ(u− (n− 1)q),
(C3.6)

where
hn(u) ≡ 1

1−α

[
g(n−2)

n (u)− hn−1(u− q)
]

βn ≡ − βn−1
1−α ,

(C3.7)

which is Conjecture 3. In addition,

βn ≡
(−1)n−1

(1− α)n−1 . (C3.8)

In summary, from the three conjectures and the analytical solution of Equation (17), one concludes

(a) gn(u) is continuous at u = (n − 1)q for n ≥ 3 and within the interval

(n− 1)q ≤ u ≤ nq;

(b) g(n−2)
n (u) has a finite discontinuity at u = (n − 1)q for n ≥ 2 and is otherwise continuous;

(c) g(n−1)
n (u) has a delta function discontinuity at u = (n − 1)q for n ≥ 2 and is otherwise continuous.
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Finally, the derivatives of collision density F(u) inherit the continuity properties of g(u), since, by
Leibnitz’s rule,

F(j)
n (u) = dj

duj [e−ugn(u)]

= e−u
j

∑
l=0

(−1)l−j j!
l!(l−j)! g(l)n (u); (n− 1), q ≤ u ≤ nq.

(19)

4. Singularities and Smoothing

Table 2, displaying points of discontinuity of the collision density for scattering against 12C, is
based on the above continuity arguments. To the right is increasing lethargy and down the rows
increasing derivatives. As is apparent, with increasing lethargy (and disorder), discontinuities become
further embedded in the collision density derivatives, making F(u) ever smoother. Embedding of the
discontinuities is clearly observed in Figure 3a–c. As noted above, the finite discontinuity at u = q, from
integration over the delta function source emerges in the collision density itself, as shown in Figure 3a.

Table 2. Embedding of discontinuities in jth derivative of F(u) with collision interval n.

(n − 1)/(n)
j/u

0
0

(1)/(2)
q

(2)/(3)
2q

(3)/(4)
3q

(4)/(5)
4q

(5)/(6)
5q

. . .
. . .

0 DF F C C C C . . .
1 - DF F C C C . . .
2 - - DF F C C . . .
3 - - - DF F C . . .
4 - - - - DF F . . .
5 - - - - - DF . . .

. . . - - - - - - . . .

C: Continuous; F: Finite discontinuity; DF: Delta function.

Figure 3. Cont.
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Figure 3. (a) Collision density; (b) first two derivative of collision density and the collision density; (c)
15 derivatives of collision density.

As neutrons scatter to lower energy (higher lethargy), the memory of the singular source is
retained since a delta function (not shown) exists at the beginning of each scattering interval exactly
where the previous derivative has a finite discontinuity.

Figure 3b shows several derivatives, as given by Equation (18b). We observe Placzek oscillations
in F(u), including the finite discontinuity at u = q. The oscillations for increasing u obviously originate
from the submerged discontinuities and are indicative of increasing entropy (disorder) and smoothing
as the influence of the discontinuities becomes further submerged in the derivatives. Also observed is
the constant asymptotic collision density (1/E) equilibrium distribution, as shown in Table 3, where

F(∞) = 1/
[

α +
α

1− α
ln(α)

]
.

Figure 3c shows 15 derivatives normalized so that the finite discontinuity in each is the same, and
the derivatives are displaced downward for better viewing. The pattern is evident and visualizes how
increasing physical smoothing is mathematically linked to the submergence of the initial discontinuities
of the source distribution with lethargy.
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Table 3. Run-up to asymptotic collision density.

u F(u)

6 6.3383867546
8 6.3383811228

10 6.3383812067
12 6.3383812061
∞ 6.3383812061

5. Randomness of Collisions

Another statistical measure of the disorder in the collision density distribution is the randomness
of collisions. In the following analysis, we find an expression for the distribution of the collided density
in terms of the number of collisions.

As shown in [3], the Laplace transform of Equation (3a) gives the following transform of the
collision density:

F(p) =
1

1−Qs(p)
, (20a)

with

Qs(p) =
c

1− α

[
1− e−q(p+1)

p + 1

]
. (20b)

Here, c is the number of neutrons emitted in a scattering collision relative to the total possible
interactions including loss by absorption. In the analysis above, c is unity.

The geometric series representation of Equation (20a) is

F(p) =
∞

∑
n=0

Qs(p)n =
∞

∑
n=0

cn

(1− α)n

[
1− e−q(p+1)

p + 1

]n

, (21)

where convergence is guaranteed by choice of the complex variable p. Then, using the binomial
theorem for the term in brackets, Equation (21) becomes

F(p) =
∞

∑
n=0

cn

(1− α)n

n

∑
l=0

(−1)l n!
(n− l)!l!

[
e−ql(p+1)

(p + 1)n

]
, (22a)

whose analytical inversion becomes

F(u) = δ(u) +
∞

∑
n=1

cn

[
e−u

[u/q]

∑
l=0

(−1)l n!
(n− l)!l!

(
u− lq
1− α

)n−1
]

. (22b)

The upper limit of the second summation [u/q] is the greatest integer contained in u/q. Note that n is
now the collision number, not to be confused with the collision interval.

The first term in Equation (22b) is the uncollided collision density at the source and the term in
brackets is the nth collided collision density after n collision:

F0(u) = δ(u) (23a)

Fn(u) ≡
e−u

(n− 1)!

[u/q]

∑
l=0

(−1)l n!
(n− l)!l!

(
u− lq
1− α

)n−1
; n = 1, 2, . . . , (23b)

where the subscript is the number of collisions and c is unity for purely scattering.
For lethargy less than 0.5, Figure 4a shows the variation of the collided density with n, where the

hint of a Gaussian distribution is observed. As lethargy increases, as anticipated, the development of the
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Gaussian distribution becomes evident in Figure 4b, verifying the randomness of the neutron–nucleus
collision. The numerical evaluation of Equation (23b) is highly sensitive to round-off error and requires
quadruple precision, which increases the computing time (normally under a minute) on a LENOVO
2.4 GHz YOGA platform by several seconds.

Figure 4. (a) Collided collision density to u = 0.5; (b) Collided collision density to u = 5.

How do we know that the distribution is indeed Gaussian? This can be shown relatively easily by
noting that a normalized Gaussian frequency is

f (x) =
1√

2πσ2
e(x−µ)2/2σ2

. (24a)

If each curve of Figure 4b is a Gaussian, then when, at each lethargy u, the distribution is normalized
by the area under the curve, which is F(u),

f̂ (x) =
Fx(u)

∞
∑

n=0
Fn(u)

, (24b)
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where x is now a continuous analogue of the collision number n. By equating Equations (24a) and
(24b) at their maxima µ:

1√
2πσ2

= f̂ (µ(u)), (24c)

where the collision number at maximum is

µ(u) =

∞
∑

n=0
nFn(u)

∞
∑

n=0
Fn(u)

, (24d)

there results
σ(u)2 =

1

2π f̂ (µ(u))2 . (24e)

With the parameters for the Gaussian now known, we can plot the two distributions as shown in
Figure 5. They are nearly graphically identical over u = [0.8, 12].

Figure 5. Comparison of calculated frequency of collision (a) and the corresponding Gaussian (b).
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6. Conclusions

Through a rather involved, rigorous mathematical derivation, verification of the obvious was
achieved. In particular, the connection between the increased physical smoothness of the collision
density distribution with lethargy and consequent singularities from monoenergetic source emission
was demonstrated. It was shown that, with increased collisions, the original source singularity becomes
submerged in the derivatives of the distribution function, resulting in smoothing of the distribution
function. In addition, the tendency of the collision frequency over the number of collisions to become
Gaussian with increased lethargy was also demonstrated.
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the lectures with D.M. given by V.M. on kinetic theory at the university of Bologna. We all discussed the
mathematics required to complete the manuscript as well as the figures. B.G. prepared the manuscript and gave
the presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Williams, M.M.R. Slowing Down and Thermalization of Neutrons; North-Holland Pub. Co.: Amsterdam,
The Netherlands, 1966.

2. Carson, E.M.; Watson, J.R. Undergraduate Students’ Understandings of Entropy and Gibbs Free Energy; University
Chemistry Education–2002 Papers; Royal Society of Chemistry: London, UK, 2002.

3. Ganapol, B.D. Analytical Benchmarks for Nuclear Engineering Applications; AEN/NEA: Paris, France, 2008;
ISBN 978-92-64-99056-2NEA/DB/DOC.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Solution 
	The Slowing Down Equation 
	Determination of g( u )  by Collision Interval 
	Collision Interval (1) 
	Collision Interval (2) 
	Collision Interval (3) 
	Collision Interval (n) 
	General Solution 


	Continuity/Singularities 
	Singularities and Smoothing 
	Randomness of Collisions 
	Conclusions 
	References

