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1  | INTRODUCTION

The connection between the lateral habenula (LHb) and the serotoner-
gic system has been studied for several years.1,2 The reciprocal inter-
action is believed to play an important role in mood disorders1,2 while 
serotonin-2A receptor (5-HT2AR) and 5-HT2CR subtypes are thought 
to play a role in the mechanism of action of antidepressant drugs and 
drug of abuse.3-5 Nonetheless, the control exerted by these receptors 
on the activity of LHb neurons has been poorly investigated.

The LHb receives dense serotonergic innervation from the me-
dian and dorsal raphe nuclei (DRN)1 and expresses several 5-HTR 
subtypes.1,2 Early evidence showed that 5-HT2CR mRNA and pro-
tein were densely expressed in the LHb, while 5-HT2AR mRNA was 
virtually absent.6,7 Therefore, successive work has focused on the 
expression of 5-HT2CR within the LHb and shown that the distribu-
tion of the 5-HT2CR mRNA exhibits heterogeneous distribution in 
correlation to the heterogeneous cytoarchitecture of the LHb.8 In 
agreement with this evidence, a recent microarray study confirmed 
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Abstract
Aims: Serotonergic (5-HT) modulation of the lateral habenula (LHb) activity is central 
in normal and pathologic conditions such as mood disorders. Among the multiple 5-
HT receptors (5-HTRs) involved, the 5-HT2CR seems to play a pivotal role. Yet, the 
role of 5-HT2ARs in the control of the LHb neuronal activity is completely unknown.
Methods: Single-cell extracellular recording of the LHb neurons was used in rats to 
study the effect of the general activation and blockade of the 5-HT2CR and 5-HT2AR 
with Ro 60-0175 and SB242084, TCB-2 and MDL11939, respectively. The expres-
sion of both receptors in the LHb was confirmed using immunohistochemistry.
Results: Cumulative doses (5-640 μg/kg, iv) of Ro 60-0175 and TCB-2 affected the 
activity of 34% and 63% of the LHb recorded neurons, respectively. LHb neurons 
were either inhibited at low doses or excited at higher doses of the 5-HT2A/CR ago-
nists. SB242084 or MDL11939 (both at 200 μg/kg, iv) did not modify neuronal firing 
when injected alone, but reverted the bidirectional effects of Ro 60-0175 or TCB-2, 
respectively. 5-HT2CRs and 5-HT2ARs are expressed in less than the 20% of the LHb 
neurons, and they neither colocalize nor make heterodimers. Strikingly, only 5-HT2ARs 
are expressed by the majority of LHb astrocyte cells.
Conclusions: Peripheral administration of 5-HT2AR agonist promotes a heterogene-
ous pattern of neuronal responses in the LHb, and these effects are more prominent 
than those induced by the 5-HT2CR activation.
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a preferential enriched HT2C gene expression in the LHb compared 
to the MHb and also showed an unexpected high expression of 
HT2A in the LHb.9 Nevertheless, the anatomical distribution of the 
5-HT2AR protein remains obscure. It is therefore likely that the LHb 
5-HT2A/2CRs might play an important role in modulating the activity 
of this epithalamic nucleus. In addition, 5-HT2A/2CR modulation of 
the LHb might be indirect via other brain regions innervating the 
LHb that are rich in 5-HT2C and 5-HT2ARs, such as raphe nuclei, ven-
tral tegmental area (VTA) and medial prefrontal cortex (mPFC).1 LHb 
5-HT2A/2CRs may also be important in the postsynaptic 5-HT long-
feedback modulating the activity of serotonergic neurons.10

Limited recent data indicate that 5-HT modulates the activity of 
the LHb neurons. It is noteworthy that the high-frequency electri-
cal stimulation of the subthalamic nucleus, presumably via actions 
on serotonergic neurons, induced heterogeneous responses com-
posed by excitation, inhibition or no effect on the LHb neurons.11 
Conversely, mainly excitatory modulations have been described 
by electrophysiological in vivo and in vitro studies using 5-HT and 
different 5-HT2R ligands. It has been reported in vitro, on slices 
containing the LHb, that the application ofexogenous 5-HT depolar-
izes LHb neurons postsynaptically, an effect mimicked by the non-
selective 5-HT2CR agonist m-CPP.12 The pharmacology employed 
would suggest a 5-HT2CR-mediated mechanism. Consistently, the 
preferential 5-HT2B/2CR agonist Ro 60-0175 enhanced the firing rate 
of several neurons and promoted burst mode of discharge upon its 
local injection into the LHb in vivo.13 To the best of our knowledge, 
no studies have specifically looked at the resulting effect of systemic 
injection of 5-HT2R agonists on the LHb neuron activity, despite its 
clear translational significance.

In this study, to fill this gap, we studied the effect of the intra-
venous (iv) administration of the 5-HT2CR agonist Ro 60-017514 and 
the 5-HT2AR agonist TCB-215 on the activity of LHb neurons using 
extracellular single-cell recordings in vivo. The use of SB24208416 
and MDL11939,17 two selective antagonists at 5-HT2CR and 5-
HT2AR, respectively, furthered the role of 5-HT2CR and 5-HT2AR 
in the LHb neuronal responses. The electrophysiological approach 
was extended with an immunohistochemical study and a proximity 
ligation assay to determine the distribution of 5-HT2A/2CRs and the 
presence of 5-HT2AR protein and eventual heterodimers within the 
LHb, respectively.

2  | METHODS

2.1 | Animals

Male Sprague-Dawley rats, obtained from Charles River Laboratories 
in Margate, UK, and maintained at the Department of Physiology and 
Biochemistry at the University of Malta, were housed at 21 ± 1°C, 
with 60 ± 5% humidity, and a 12-hour light/dark cycle (lights on at 
7 am and off at 7 pm). Food and water were provided ad libitum. Adult 
rats that weighed 270 g-320 g on the day of surgery or brain extrac-
tion were used. All procedures were carried out in accordance with 
institutional guidelines (Institutional Animal Use and Care Committee 

(IAUCC) of the University of Malta), the ARRIVE guidelines and the 
EU Directive 2010/63/EU for animal experiments. Utmost care was 
taken to limit the number of rats used and their suffering.

2.2 | Extracellular single-­unit recordings

Standard extracellular recording in vivo was performed. After the 
first injection of chloral hydrate (400 mg/kg, ip, Sigma-Aldrich, UK), 
rats, placed on a homoeothermic blanket (37 ± 0.5°C) received an iv 
infusion of chloral hydrate (8% w/v; 8 mL/h). Borosilicate glass mi-
cropipettes (4-7 MΩ resistance), filled with 2% pontamine sky blue 
solution in 0.5 mol/L sodium acetate, were positioned in the LHb (3.4-
3.8 mm AP from bregma; 1.4-1.8 mm ML from midline; 4-5 mm DV 
from surface of cortex; electrode set at a 10°angle18 using a one-axis 
hydraulic micromanipulator (MO-10, Narishige, Japan). Signal acquisi-
tion was performed with a micro1401 CED laboratory interface con-
nected to Spike2 v7.4 (Cambridge Electronic Design, Cambridge, UK) 
and a Neurolog amplifier and filtering system (Digitimer Ltd. UK; 10k 
amplification, band-pass filter set at 0.5-5 kHz). A postmortem histo-
logical analysis was performed to locate the recorded area (Figure 2, 
inset)19,20 (see Data S1 for signal analysis).

2.3 | Drugs and pharmacological treatments

TCB-2, Ro 60-0175, MDL11939, and SB242084 were purchased 
from Tocris Biosciences, UK and dissolved according to our previ-
ous study20 (see Data S1). The doses have been chosen on the basis 
of previous experiments reporting their efficacy and selectivity.20-23 
All laboratory reagents were purchased from Sigma-Aldrich, UK.

Once a stable neuron was detected using the procedure described 
previously, the rat was given, through the lateral tail vein, cumulative 
doses (640 μg/kg, iv) of 1 drug or its own vehicle. A total of 8 doses 
(5, 5, 10, 20, 40, 80, 160, and 320 μg/kg), each dissolved in 100 μL 
of vehicle, were given at 2-minute intervals. Combined injections of 
antagonists and agonists and appropriate vehicle were performed. 
Post-treatment of SB242084 (200 μg/kg, iv) was given 2 min after Ro 
60-0175 (5-640 μg/kg). A post-treatment was used instead of a pre-
treatment as less than 50% of neurons were responsive to Ro 60-0175 
cumulative treatment. Pretreatment with MDL11939 (200 μg/kg, iv) 
was given 5 min before TCB-2 (5-640 μg/kg).

2.4 | Statistical analysis

Individual responses of neurons to Ro 60-0175, TCB-2, SB242084, 
MDL11939 (all at cumulative doses of 5-640 μg/kg) and their re-
spective vehicles were expressed in % change in basal firing rate. 
The data report the mean ± SEM for each group, if any. One-way 
ANOVA with repeated-measures was performed separately for each 
treatment group compared to their respective controls. It was fol-
lowed by Tukey’s post hoc test (if required).

The interaction of Ro 60-0175 (5-640 μg/kg) with SB242084 
(200 μg/kg) was analyzed using a paired t-test which compared the 
firing rate at 3 different periods: (i) predrug (the 2-min period before 
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Ro 60-0175 administration); (ii) max-dose (the 2 min following Ro 
60-0175 administration); and (iii) postblock (the 2-min period fol-
lowing SB242084 administration). This was performed separately 
for the different neuronal response groups.

In the case of the interaction of the factors for TCB-2 (5-640 μg/kg)  
and MDL11939 (200 μg/kg) pretreatment, a one-way ANOVA with 
repeated-measures was performed including the TCB-2 excitation 
group, and the TCB-2 inhibition group. A post-Tukey test was per-
formed for each time point. Significant difference was considered 
when P < 0.05.

2.5 | Histological procedures and 
Immunocytochemistry

Eight rats were used for the immunocytochemistry. Procedures of 
anesthesia, fixation, and slicing have been already reported19 (see 
Data S1 for Immunoperoxidase experiments, Double immunofluo-
rescence experiments, Specificity of antibodies, Thionin staining, 
and Analysis of sections details).

The following antibodies were used: (i) Rabbit anti-5-HT2AR poly-
clonal antibody (diluted 1:300; code 24288; ImmunoStar, WI, USA; 
(ii) mouse anti-5-HT2CR monoclonal antibody (diluted 1:100; code 
sc-17797; Santa Cruz, CA, USA). The following secondary antibodies 
were used for immunoperoxidase experiments: (i) goat biotinylated 
anti-rabbit (diluted 1:200, Vector, Burlingame, CA, BA-1000); (ii) 
goat biotinylated anti-mouse (diluted 1:200, Vector, Burlingame, CA, 
BA-9200).

The following primary antibodies were used for colocalization 
studies: (i) rabbit anti-5-HT2AR polyclonal antibody (diluted 1:300; 
code 24288; ImmunoStar, WI, USA) together with mouse anti-HuC/
Dmonoclonal antibody (diluted 1:200; code A21271; Molecular 
Probes, Leiden, the Netherlands); (ii) mouse anti-5-HT2CR monoclo-
nal antibody (diluted 1:100; code sc-17797; Santa Cruz, CA, USA) 
together with rabbit anti-Protein Gene Product 9.5 (PGP 9.5) poly-
clonal antibody (diluted 1:100, AB1761, Millipore, Temecula, CA, 
USA); (iii) rabbit anti-5-HT2AR polyclonal antibody (diluted 1:300; 
code 24288; ImmunoStar, WI, USA) together with chicken anti-GFAP 
(diluted 1:1000; code Ab4674; Abcam, UK); (iv) mouse anti-5-HT2CR 
monoclonal antibody (diluted 1:100; code sc-17797; Santa Cruz, CA, 
USA) together with rabbit anti-GFAP (diluted 1:500; code 20334; 
DAKO, Denmark). The following secondary antibodies were used for 
double immunofluorescence experiments: Alexa 488-conjugated 
goat anti-mouse IgG (1:400, #A11029, Molecular Probes, Leiden, 
the Netherlands) and Alexa 594-conjugated goat anti-rabbit IgG 
(1:400, #A11012, Molecular Probes, Leiden, the Netherlands); Alexa 
488-conjugated goat anti-mouse IgG (1:400, #A11029, Molecular 
Probes, Leiden, the Netherlands); and TRITC-conjugated donkey 
anti-chicken (1:200; code 703-025-155, Jackson, PA, USA).

2.6 | Proximity ligation assay experiments

Proximity ligation assay (PLA) experiments were carried out using 
Duolink kits supplied by Sigma-Aldrich. The following antibodies 

were used: (i) primaries goat anti-5-HT2CR (diluted 1:1000; code 
ab32887; Abcam, Cambridge, UK) and (ii) rabbit anti-5-HT2AR (di-
luted 1:1000; code ab66049; Abcam, Cambridge, UK).

Briefly, 4% paraformaldehyde fixed coronal brain sections con-
taining the LHb were exposed to antigen retrieval with citrate buffer, 
pH 6, and microwave heating for a total of 10 min. After an over-
night exposure to primary antibodies chicken anti-MAP2 (diluted 
1:2000; code AB15452; Millipore, Massachusetts, USA) and mouse 
anti-GAD67 (diluted 1:500, code ab26116; Abcam, Cambridge, 
UK), as neuronal markers, the immunofluorescence assay was com-
pleted with fluorescently labeled secondary antibodies MAP2 and 
GAD67. The samples were successively incubated overnight with 5-
HT2CR and 5-HT2AR primary antibodies for PLA-based detection of 
5-HT2C:5-HT2AR interaction. PLA was performed as previously de-
scribed24 according to the manufacturer’s instructions.

3  | RESULTS

3.1 | Electrophysiological characteristics of 
spontaneously active LHb neurons

We recorded 210 spontaneously active neurons in the LHb ex-
tracellularly. In accordance with previous evidence,13,25 the re-
corded neurons fired at 11.9 ± 0.67 Hz with a waveform duration 
of 1.1 ± 0.01 ms. The LHb neurons recorded had a predominantly 
(82.9%) biphasic waveform and 3 distinct firing patterns; the major-
ity were irregular (82.9%), while regular and bursty neurons contrib-
uted to less than 10% of total (Figure 1). The average coefficient of 
variation (CV) was 0.74 ± 0.03.

3.1.1 | Effect of systemic administration of 
5-­HT2CR agonist Ro 60-­0175 and 5-­HT2CR antagonist 
SB242084 on the firing rate and pattern of 
LHb neurons

The intravenous administration of Ro 60-0175 (5-640 μg/kg, iv) in-
duced a mixed response in the LHb neuronal firing (Figure 2A). The 
majority of the neurons (66%; 33 of 50) were not affected by Ro 60-
0175 administration. The most represented effect (24%; n = 12) was 
a dose-dependent decrease in firing rate, which took effect from 
160 μg/kg (1-way ANOVA, F (3,56) = 20.922, P < 0.01) and reached 
the maximum inhibition (50% below baseline) at the highest dose 
(Figure 2 A, B). The dose-dependent increase in firing rate was ob-
served only in 10% (n = 5) of recorded neurons, starting at 40 μg/kg 
Ro 60-0175 (one-way ANOVA, F (3,56) = 7.855, P < 0.01) and reach-
ing a maximal increase (45% over baseline) at 320 μg/kg, iv. (Figure 2 
A, B). Qualitatively, Ro 60-0175 was unable to alter the pattern of 
firing, as the CV remained unchanged in all the neurons recorded 
(n = 50) (paired t-test, t (56) = −2.181, P > 0.05).

Due to the low proportion of neurons responding to Ro 60-
0175 (34%) with a change of their neuronal discharge, the 5-HT2CR 
antagonist SB242084 was administered at the end of the cumula-
tive injection of Ro 60-0175 as performed by Queree et al26 only 
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F IGURE  1 Firing pattern of recorded LHb neurons. The firing pattern of LHb neurons was classified as either regular, irregular or bursty, 
according to their interspike interval histograms (A), autocorrelorgrams (B) and scattergrams (C). Regular firing neurons were characterized 
by a narrow bell-shaped distribution of the interspike intervals histogram, multiple initial peaks in the autocorrelogram, and a well-defined 
cluster in the scattergrams. Neurons displaying an irregular firing pattern typically showed a skewed Poisson-like distribution in their 
interspike interval histograms, a flat distribution with no peaks in the autocorrelograms and a dispersed cluster in the scattergrams. Finally, 
bursty firing neurons showed interspike interval histograms with a bimodal or very skewed distribution with a long tail, autocorrelograms 
with an initial narrow peak and a scattergram with a “L”-shaped distribution along the 2 main axis. The raster plots (D) show the differences 
between the 3 patterns of firing, in which the interspike intervals were more constant in regular firing neurons, more erratic in irregular 
firing neurons, and clumped with periods of silence in bursty firing neurons. In the figure, interspike interval histograms, autocorrelograms, 
and scattergrams of representative neurons of each firing patterns are shown
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F IGURE  2 Effect of the systemic administration of the 5-HT2C R agonist Ro 60-0175 and 5-HT2CR antagonist SB242084 on LHb 
neuronal firing. (A) Dose–response curve of Ro 60-0175 (5-640 μg/kg, iv) showing the mean % change in firing rate ± SEM. About 10% 
of recorded neurons responded with an increase in firing rate, 24% with a decrease, while 66% showed no overall change in their firing 
frequency (not shown). One-way ANOVA for repeated-measures followed by Tukey’s post hoc test, *P < 0.05 vs Vehicle. (B) Representative 
rate histograms obtained from single neurons showing 2 of the 3 different neuronal responses observed: excitation (top), inhibition (bottom), 
and a control neuron (middle). (C) Dose–response curve of SB242084 (5-640 μg/kg, iv) showing the mean % change in firing rate ± SEM. 
Neurons showed no overall change compared to their basal firing activity (shown in green). A representative rate histogram of a recorded 
neuron is shown in the inset. (D) The involvement of the 5-HT2CRs in mediating Ro 60-0175-induced changes in LHb neuronal activity was 
confirmed through a single administration of SB242084 (200 μg/kg, iv) 2 min after the last dose of Ro 60-0175. SB242084, a selective 
5-HT2CR antagonist, was capable of reversing Ro 60-0175-induced changes in firing rate. iv: intravenous; predrug: the 2-min period before 
the administration of the first dose of Ro 60-0175; Ro 60-0175: the 2-min period following the administration of the last dose of Ro 60-
0175; SB242084: the 2-min period following SB242084 administration. (E) Representative rate histograms showing SB242084-induced 
reversal of both excitation (top) and inhibition (bottom) responses in firing rate induced by Ro 60-0175. Paired t-test, §P < 0.05 predrug vs 
Ro 60-0175, P < 0.05 Ro 60-0175 vs SB242084. The inset shows a microphotograph of a rat brain coronal section containing the neuron 
recorded on the right and the corresponding section taken from the atlas of Paxinos and Watson (2017). FR: fasciculus retroflexus; LHbL: 
lateral portion of the lateral habenula; LHbM: medial portion of the lateral habenula; MHb: medial habenula; SM: stria medularis
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to some responsive neurons. As shown in Figure 2 D, both Ro 
60-0175-induced excitation (n = 4; paired t-test: max dose vs post-
block, t(3) = 3.650, P = 0.035); and inhibition (n = 6; paired t-test: 
max dose vs postblock, t(5) = −4119, P = 0.009) were reversed by 
SB242084 (200 μg/kg, iv). Administration of SB242084 (5-640 μg/
kg, iv) on its own modified neither basal firing rate of LHb neurons 
(one-way ANOVA, F (1,14) = 2.055, P > 0.05) nor the CV (paired 
sample t-test, t (8) = −1.707, P > 0.05) (Figure 2C). Histological recon-
struction of electrode placement revealed that Ro 60-0175 effects 
on LHb neuronal discharges were not limited to one LHb subregion 
but were randomly distributed and intermixed throughout the nu-
cleus (not shown).

3.1.2 | Effect of systemic administration of 5-­HT2AR 
agonist TCB-­2 and 5-­HT2AR antagonist MDL11939 
on the firing rate and pattern of LHb neurons

Similar to the activation of 5-HT2CRs, the administration of TCB-2 in-
duced a mixed neuronal response in terms of LHb neuronal firing rate. 
In 37% of recorded neurons (11 of 30), TCB-2 (5-640 μg/kg, iv) did not 
induce any changes in the firing rate. Conversely, administration of 
TCB-2 induced a significant dose-dependent decrease in firing rate in 
37% (n = 11) of recorded neurons from the dose of 20 μg/kg (one-way 
ANOVA, F (3,36) = 19.949, P < 0.01) reaching the maximum inhibition 
(60% below baseline) at the highest dose (Figure 3A, B). On the other 

F IGURE  3 Effect of the systemic administration of the 5-HT2AR agonist TCB-2 and 5-HT2AR antagonist MDL11939 on LHb neuronal 
firing. (A) Dose–response curves of TCB-2 (5-640 μg/kg, iv) showing the mean % change in firing rate ± SEM (in blue). About 26% of recorded 
neurons increased, 37% decreased and 37% did not change (not shown) their baseline firing rates in response to TCB-2 administration. The 
role of the 5-HT2AR in mediating TCB-2 induced changes in LHb neuronal activity was confirmed through the pretreatment with MDL11939 
(200 μg/kg, iv, in orange). MDL11939 pretreatment blocked TCB-2 induced changes in firing rate, which accounted for 63% of neurons 
when TCB-2 was administered on its own. One-way ANOVA for repeated measures followed by Tukey’s post hoc test, *P < 0.05 vs Vehicle, 
°P < 0.05 vs MDL11939+ TCB-2. (B) Representative rate histograms obtained from single LHb neurons, showing TCB-2 induced excitation/
inhibition (top 2 traces, respectively) of neuronal activity, the lack of effect of MDL11939 pretreatment (third trace) and the effect of 
MDL11939 pretreatment on TCB-2 administration (fourth trace). (C) Dose–response curve of MDL11939 (5-640 μg/kg, iv) showing the mean 
% change in firing rate ± SEM. The neurons showed no overall significant change in firing rate (in green) when compared to its vehicle (in 
black). The inset shows a rate histogram illustrating the neuronal response of a single LHb cell to MDL11939 (5-640 μg/kg, iv) administration
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hand, TCB-2 induced a significant dose-dependent increase in firing 
rate in 26% (n = 8) of the neurons from the dose of 10 μg/kg (one-way 
ANOVA, F (3,36) = 5.011, P < 0.01). A sharp increase was observed 
from 10 to 40 μg/kg TCB-2 followed by a more progressive increase 
reaching a maximum of 125 ± 25.6% of baseline at the highest dose 
(Figure 3A, B). TCB-2 was unable to alter the pattern of firing in all the 
neurons recorded (n = 30), as the CV remained unchanged at the end 
of TCB-2, 640 μg/kg, iv (paired sample t-test, t (29) = −1.108, P > 0.05). 
Moreover, no correlation was found between the localization of the re-
corded neurons within the LHb and their response to TCB-2 treatment 
(not shown).

With a pre-treatment of MDL11939 (200 μg/kg, iv), TCB-2 (5-
640 μg/kg) no longer induced inhibition or excitation of firing rate in 
all the neurons tested, even at the highest cumulative dose (n = 16; 
one-way ANOVA, vehicle vs TCB-2 excitation vs TCB-2 inhibition vs 
MDL11939+ vehicle vs MDL11939+ TCB-2, followed by Tukey post-
hoc test, MDL11939+ TCB-2 vs MDL11939+ vehicle at 640 μg/kg, 
P > 0.05) (Figure 3A).

Similar to the 5-HT2CR antagonist, we found that MDL11939 
did not alter basal firing rate (one-way ANOVA, F (1,14) = 0.785, 
P > 0.05), CV and firing pattern (paired sample t-test, t (8) = 0.878, 
P > 0.05) of LHb neurons over a full cumulative dose response (5-
640 μg/kg, iv) (Figure 3C).

3.2 | Distribution of the 5-­HT2AR-­ and 5-­HT2C 
R-­immunoreactivity in the LHb

In the LHb, the 5-HT2AR-IR was found to be associated with soma-
todendritic profiles and neuropil (Figure 4A, B). The immunolabeling 
for the 5-HT2CR was found in somata and neuropil (Figure 4C, D) 
similarly to other structures.19 Immunoreactive neurons for both re-
ceptors had spherical, fusiform, or polygonal cell bodies of different 
sizes. Interestingly, 5-HT2AR-IR neurons appeared larger than those 
immunopositive for the 5-HT2CR. The LHb had a low/medium den-
sity of 5-HT2AR- and 5-HT2CR-immunopositive neurons. The density 
of immunostained somata and the average percentage of the image 
covered by immunostaining are reported in Figure 4E. The intensity 
of neuropil staining was similar for both receptors (Figure 4A-D,F). In 
the medial habenula, the intensity of the 5-HT2AR immunoreactivity 
decreased markedly, especially at neuropilar level (Figure 4A). On the 
contrary, the immunostaining obtained for the 5-HT2CR appeared sim-
ilar when comparing lateral with medial habenula (Figure 4C).

The morphology as well as the distribution of 5-HT2AR- and 
5-HT2CR-IR neurons observed in immunofluorescence experiments were 
identical to those observed employing immunoperoxidase. The double 
immunofluorescence analysis consisted of the colocalization of the 5-
HT2AR with HuC/D (panneuronal marker) (Figure 5A1-A3), the 5-HT2CR 

F IGURE  4 Brightfield 
photomicrographs of 5-HT2AR- and 
5-HT2CR- immunoreactivity in the rat 
LHb. Brightfield photomicrographs of 
coronal sections (A-D) and histogram 
(E, F) showing the distribution of 
5-HT2ARs (A, B) and 5-HT2CRs (C, D) 
immunoreactivity in the rat LHb. The 
density of immunostained neurons, 
as well as the intensity of neuropilar 
immunoreactivity, was similar compared 
to the immunostaining obtained for these 
2 receptors. Scale bar = 200 μm in C 
(applies to A and C); 20 μm in D (applies to 
B and D)

(A) (B)

(C) (D)

(E) (F)
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(A1) (A2) (A3)

(B1) (B2) (B3)

(C1) (C2) (C3)

(D1) (D2) (D3)

(E1) (E2) (E3)
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with PGP 9.5 (panneuronal marker) (Figure 5B1-B3), the 5-HT2AR with 5-
HT2CR (Figure 5C1-C3), the 5-HT2AR with GFAP (astrocyte cell marker) 
(Figure 5D1-D3), and 5-HT2CR with GFAP (Figure 5E1-E3). As panneu-
ronal markers stained every neuron, we estimated the percentage of 
5-HT2AR-IR and 5-HT2CR-IR somata distributed in the LHb. As reported 

in Table 1, the proportion of 5-HT2AR-IR and 5-HT2CR-IR neurons to the 
total neurons was low. Interestingly, in the LHb only the 5-HT2AR-IR 
was also found to be associated with astrocyte cells (Figure 5D1-D3). 5-
HT2AR and 5-HT2CR do not colocalize as the percentage of neurons that 
expressed both receptors was very low (1.5%; Table 1).

F IGURE  5 Photomicrographs of the colocalization of 5-HT2AR/HuC/D, 5-HT2CR/PGP 9.5, and 5-HT2AR/5-HT2CR in the rat lateral 
habenula. Photomicrographs of coronal sections showing the colocalization of the 5-HT2AR with HuC/D (A1-A3), the 5-HT2CR with PGP 9.5 
(B1-B3), and the 5-HT2AR with the 5-HT2CR (C1-C3) in the rat LHb. Arrowheads indicate double-immunolabeled neurons. The percentage of 
neurons that expressed 5-HT2ARs (A1-A3) and 5-HT2CRs (B1-B3) was very low. In addition, few neurons expressed both receptors (C1-C3). 
Arrows in C1-C3 indicate single-labeled neurons. (D-E) Photomicrographs of the colocalization of 5-HT2AR/GFAP and 5-HT2CR/GFAP in the 
rat LHb. Photomicrographs of coronal sections showing the colocalization of the 5-HT2AR with GFAP (D1-D3) and the 5-HT2CR with GFAP 
(E1-E3) in the rat LHb. Colocalization is indicated by yellow in merged. Note the strong 5-HT2AR immunoreactivity in astrocytes (D1-D3; 
see also boxed inset). Virtually, none of astrocyte cells expressed the 5-HT2CR (E1-E3; see also boxed inset). Arrows in D1 and D3 indicate 
a 5-HT2AR-immunoreactive neurons. Arrows in E1 and E3 indicate a 5-HT2CR-immunoreactive neurons. 5-HT2AR: serotonin-2A receptor; 
5-HT2CR: serotonin-2C receptor. Scale bar = 50 μm in E3 (applies to A1-E3)

TABLE  1 Colocalization of 5-HT2ARs and 5-HT2CRs in the rat LHb

HuC/D-­IR neurons 
single-­labeled neurons

HuC/D/5-­HT2AR-­IR 
double-labeled neurons

% of 5-­HT2AR-­IR 
double-labeled neurons

600 64 9.6% (64/664)

PGP 9.5-­IR neurons 
single-­labeled neurons

PGP 9.5/5-­HT2CR-­IR 
double-labeled neurons

% of 5-­HT2CR -­IR double 
labeled neurons

624 64 9.3% (64/688)

5-­HT2AR-­IR neurons 
single-­labeled neurons

5-­HT2CR-­IR neurons 
single-­labeled neurons

5-­HT2AR/5-­HT2CR-­IR 
double-labeled neurons

% of 5-­HT2AR -­IR 
double-labeled neurons

% of 5-­HT2CR -­IR 
double-labeled neurons

64 64 1 1.5% (1/65) 1.5% (1/65)

The table shows the colocalization of (i) HuC/D with 5-HT2AR, (ii) PGP 9.5 with 5-HT2CR, and (iii) 5-HT2AR with 5-HT2CR in the rat LHb. HuC/D: pan-
neuronal marker; IR: immunoreactive; PGP 9.5: Protein Gene Product 9.5, highly specific to neurons.

F IGURE  6 Assessing Proximity ligation assay (PLA)-based 5-HT2AR:5-HT2CR interaction. (A) PL for 5-HT2A:5-HT2CR interaction did not 
reveal signal in the LHb, suggesting that the 2 serotonin receptor isoforms are not represented in the same complex. (B) Positive PL control 
reporting signal of interaction between the 2 NMDA receptor subunits NR1:NR2A. (C) Quantification of absolute PL signal intensity for 
5-HT2A:5-HT2C and NR1:NR2A. Each dot represents the average of the analysis performed in a single animal (n = 6 for each experimental 
group). 5-HT2A: serotonin-2A; 5-HT2C: serotonin-2C; PL: proximity ligation; NMDA: N-methyl-d-aspartate
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3.3 | Proximity ligation assay of 5-­HT2A and 
5-­HT2CRs in the LHb

The lack of localization was confirmed by a proximity ligation assay 
which showed no 5-HT2CR:5-HT2AR interaction in the LHb (Figure 6). 
We also performed PLA for NMDA subunits NR1:NR2A as positive 
control (Figure 6B) to assess the accuracy of the method. As showed, 
PLA for NR1:NR2A provided a strong signal of interaction between 
the 2 NMDA receptor subunits that, in CNS, are widely represented 
in the same NMDARs tetramers. The result obtained therefore pro-
vides evidence of validation of the method.27,28

4  | DISCUSSION

We are the first to report that the peripheral administration of 
(i) 5-HT2AR agonist TCB-2 induces stronger bidirectional effects 
on the firing rate of LHb when compared to (ii) 5-HT2CR agonist 
Ro 60-0175. Our immunohistochemical study reveals that (iii) 5-
HT2AR and 5-HT2CR proteins are similarly expressed in the LHb, 
although by distinct LHb cell populations. Consistently (iv) we 
did not reveal any 5-HT2A-5-HT2CR heterodimers in this nucleus. 
Moreover, (v) only 5-HT2ARs are strongly expressed by astrocytes 
in the LHb. Our data revealed a more complex control than that 
shown so far due to the clear heterogeneous responses associated 
with 5-HT2AR and 5-HT2CR stimulation. Therefore, the present 
findings present a strong case for a reappraisal of the influence of 
5-HT2AR and 5-HT2CR in the control of the LHb neuronal activity.

An increase in neuronal firing rate and burst firing has been pre-
viously reported upon local application of Ro 60-0175 into the LHb 
in vivo.13 This excitation would result from a simultaneous post- and 
presynaptic effect in the LHb. Indeed, in vitro application of 5-HT 
induced postsynaptic depolarization and an increase in the firing 
rate of the majority of the LHb neurons,12 blocked by ritanserin and 
SB200646,29 antagonists of 5-HT2A/CRs and 5-HT2B/CRs, respec-
tively, and mimicked by the nonselective 5-HT2CR agonist m-CPP. 
Moreover, the application of the nonselective 5-HT2R agonist α-
methyl-5-HT enhanced presynaptic depolarization of the LHb neu-
rons at low concentrations, facilitating glutamate release.30 In our in 
vivo anesthetized conditions instead, the iv administration of Ro 60-
0175 did not induce an appreciable change in the neuronal discharge 
in the majority of the neurons recorded, while only 10% of them were 
excited and 24% inhibited. Possible explanations for the differences 
between our results and those shown by Han et al13 are (i) principally 
the different routes of administration (general vs local administration), 
therefore (ii) the involvement of other brain areas targeting the LHb 
and expressing the 5-HT2CRs, and (iii) the selection of the neurons 
recorded (they focused on those expressing the excitatory amino 
acid transporter-1 positive neurons,13 while we did not make any such 
distinction in our recordings). Nevertheless, the study by Han et al13 
must be interpreted with caution because, for example, the effects of 
local administration of Ro 60-0175 were apparent only 10 min follow-
ing its local injection and no vehicle control group was shown.

In further contrast to its local applications in vivo,13 Ro 60-0175 
had no effect on the majority of the LHb neurons recorded. The re-
maining neurons were principally inhibited at slightly higher doses 
and excited at lower doses instead. The excitatory and the inhibi-
tory effects induced by Ro 60-0175 seem to be 5-HT2CR-dependent 
as they were both reversed by the selective antagonist SB 242084. 
Indeed, pharmacological responses of Ro 60-0175 that are not 
blocked by 5-HT2CR antagonists have been described at relatively 
higher regimens.31,32 From our antagonism experiments, we can rule 
out the involvement of other receptors in the inhibition induced by 
Ro 60-0175, that is, the 5-HT1AR that was capable of hyperpolarizing 
some LHb neurons in vitro.12 Peripheral administration of the antag-
onist SB 242084 did not alter the LHb neuron basal activity as its 
local application did,13 suggesting that 5-HT2CRs do not exert tonic 
control over this nucleus. It is concluded that central 5-HT2CR acti-
vation exerts phasic inhibitory and excitatory responses in distinct 
small population of neurons of the LHb.

Considering the relative lack of interest in the 5-HT2AR in the 
LHb,2 one of the main and surprising findings of our study is that 
the 5-HT2AR agonist TCB-2 induced a strong dose-dependent ex-
citation or inhibition of the LHb neurons. The proportion of neu-
rons globally affected by TCB-2 was higher compared to Ro 60-0175 
(63% vs 34%) as was the magnitude of its maximum excitatory effect 
(125% vs 45%). On the other hand, like Ro 60-0175, the pattern of 
discharge was not modified by TCB-2. The pretreatment by the se-
lective 5-HT2AR antagonist MDL11939 reversed the excitatory and 
inhibitory effects of TCB-2. Moreover, MDL11939 post-treatment 
blocked both TCB-2-induced inhibitory and excitatory effects (G. Di 
Giovanni, unpublished observations). Although the pharmacological 
profile of TCB-2 is poorly known beyond its high affinity and efficacy 
toward 5-HT2AR,15 most pharmacological responses are blocked by 
5-HT2AR antagonists at low to moderate dosage,22 as in the pres-
ent study. MDL11939 did not alter basal activity suggesting that 
5-HT2AR-dependent controls, as for the 5-HT2CRs, are also phasic.

These data suggest that peripheral administration of the 5-HT2CR 
and 5-HT2AR agonists induces mixed excitatory/inhibitory effects 
on LHb neurons. 5-HT would preferentially excite LHb neurons via 
5-HT2ARs (higher magnitude compared to the 5-HT2CRs and affect-
ing a larger population of LHb neurons) and equally inhibit them via 
5-HT2CRs and/or 5-HT2ARs. The pharmacological responses to both 
the 5-HT2A/2CR agonists are quite similar: higher sensitivity to the 
dose of the excitatory response, no modification of the pattern of dis-
charge, and no biphasic dose-dependent effects for a neuron. These 
unexpected results prompted us to re-evaluate the expression of 
these 5-HT2R subtypes in the LHb and notably 5-HT2AR, using stan-
dard immunohistochemical approaches.19 Interestingly, we reported 
moderate 5-HT2AR-like immunolabeling in the LHb, a finding that was 
not expected based on the lack of 5-HT2AR mRNA reported in a pre-
vious study6 but now in agreement with recent microarray evidence.9 
The 5-HT2AR-labeling concerned only 9% of LHb neuronal cells and 
also it was highly associated with GFAP-labeled astrocytes and neu-
ropil. Accompanying these results, we confirm previous in situ hybrid-
ization, immunohistochemical, and quantitative autoradiography data 
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stating the presence of 5-HT2CR in the LHb.6-8 The 5-HT2CR-labeling 
was located at the level of cell bodies in few neurons (9% also) and 
mainly in the neuropil. Interestingly, 5-HT2CR-like immunostaining 
was never associated with astrocyte cells.

Therefore, the stronger excitatory effects elicited by TCB-2 
compared to Ro 60-0175 might be dependent on a concomitant acti-
vation of astrocytic 5-HT2ARs. Indeed, 5-HT2AR activation is capable 
of transcriptionally activating astrocytes in the rat cortex33 and in-
creasing glial glutamate release via a calcium-dependent mechanism 
in both C6 glioma cells34 and primary culture from newborn rat ce-
rebral cortex.35 Strikingly, reactive astrocytes in different pathologi-
cal states present an upregulation of 5-HT2ARs in postmortem brain 
tissue36 including depression.37 Therefore, as a defective astrocytic 
uptake activity of extracellular glutamate has been shown to cause 
LHb hyperactivity and inducing depressive-like behaviors,38 it would 
be very important to understand whether a concurrent upregulation 
of the 5-HT2ARs occurs in the LHb of depressed patients.

Moreover, the different effects of 5-HT2ARs and 5-HT2CRs in 
LHb firing could be related to distinct cellular circuits in the LHb. 
Nevertheless, the protein of both receptors was not clustered in any 
specific LHb subnuclei, differently from their mRNA.8,9 Moreover, in 
addition to the distinct distribution of 5-HT2AR-IR and 5-HT2CR-IR, 
we provide evidence that 5-HT2CR and 5-HT2AR antibodies were not 
co-localized. In agreement, we did not find any 5-HT2C-5-HT2AR het-
erodimers in the LHb, which recently have been shown to be expressed 
instead in the locus coeruleus.39 The part of the local mechanisms 
relative to the whole effects of the agonists is presently unknown. It 
is tempting to speculate that the excitatory effects, which have been 
reported in vitro and in vivo upon local administration of Ro 60-
0175,12,13,40 would occur locally. It would match the small proportion 
of neurons expressing 5-HT2AR or 5-HT2CR, the small proportion of 
neurons exhibiting excitatory responses and the high sensitivity to the 
dose of either agonist. Nonetheless, 5-HT2AR and 5-HT2CR are dif-
fusely expressed in the brain6,7,41-44; ectopic and indirect effects can be 
numerous including projections from the basal ganglia and notably the 
substantia nigra pars reticulata, the VTA, the entopeduncular nucleus, 
the mPFC, the lateral hypothalamus, or the DRN, just to cite a few.1

Some overlapping responses triggered by Ro 60-0175 and TCB-2 
could also be envisioned, notably via their indirect inhibitory effects 
on DRN serotonergic neurons.26,45-47 Indeed, Sharp et al48 have 
shown that the LHb inhibits DRN activity, through LHb neurons ex-
pressing 5-HT2CRs (T. Sharp, personal communication), and the DRN 
also promotes a heterogeneous pattern of neuronal responses in the 
LHb,11 similar to the effects that we recorded here after 5-HT2A/2CR 
stimulation. Additional data are warranted to further the role of 
5-HT system in the LHb effects of 5-HT2A/2CR agonists.

5  | CONCLUSION

The data presented here are important in the context of 5-HT control 
of the LHb function in normal and pathological conditions. It can be 
suggested that the responses to 5-HT2 agonists are heterogeneous 

as they recruit distinct neuronal populations and possibly astrocytic 
cells too. This result is not surprising if we consider the complexity 
of the LHb, characterized by a heterogeneous expression of neuro-
peptides and proteins, delimitating numerous and distinct habenu-
lar neuronal subpopulations which could serve different biological 
functions.8,9

Our new findings on 5-HT2AR and 5-HT2CR are very interesting. 
Firstly, in consideration of the fact that these receptors play important 
roles in the mechanisms of action of antidepressant drugs and drug of 
abuse.3,4,21,49-51 Secondly, most of the published data on 5-HT2Rs in 
the LHb have been interpreted in light of 5-HT2CR subtypes, while our 
data would suggest a main role for 5-HT2ARs. Finally, our results sug-
gest that blocking 5-HT2ARs within the LHb might play an important 
role in the action of antidepressant drugs by normalizing the hyperex-
citability of the LHb observed in depressive states.38,52

Although no final conclusions can be drawn on the basis of 
the present findings due to some limitations, that is, the use of 
one agonist/antagonist ligand for each receptor and the route of 
drug administration, it appears clear that activation of either 5-
HT2AR or 5-HT2CR induces heterogeneous neuronal responses of 
LHb neurons, with 5-HT2ARs playing a more pivotal role in mod-
ulating this nucleus. Additional studies are warranted for a better 
understanding of the contribution of this heterogeneity to the 
central effects of 5-HT2AR and 5-HT2CR in normal and patholog-
ical conditions.
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