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Summary

Calorie restriction (CR) is a dietary regimen that supports healthy aging. In this

study, we investigated the systemic and liver-specific responses caused by a diet

switch to a medium-fat (MF) diet in 24-month-old lifelong, CR-exposed mice. This

study aimed to increase the knowledge base on dietary alterations of gerontological

relevance. Nine-week-old C57BL/6J mice were exposed either to a control, CR, or

MF diet. At the age of 24 months, a subset of mice of the CR group was trans-

ferred to ad libitum MF feeding (CR-MF). The mice were sacrificed at the age of

28 months, and then, biochemical and molecular analyses were performed. Our

results showed that, despite the long-term exposure to the CR regimen, mice in the

CR-MF group displayed hyperphagia, rapid weight gain, and hepatic steatosis. How-

ever, no hepatic fibrosis/injury or alteration in CR-improved survival was observed

in the diet switch group. The liver transcriptomic profile of CR-MF mice largely

shifted to a profile similar to the MF-fed animals but leaving ~22% of the 1,578 dif-

ferentially regulated genes between the CR and MF diet groups comparable with

the expression of the lifelong CR group. Therefore, although the diet switch was

performed at an old age, the CR-MF-exposed mice showed plasticity in coping with

the challenge of a MF diet without developing severe liver pathologies.
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1 | INTRODUCTION

Aging has been described as an important risk factor for most

chronic diseases, largely due to the impaired capacity to maintain

homeostasis and resilience against environmental stress or damage

at old age. For the liver, aging has been associated with an increas-

ing risk to develop nonalcoholic fatty disease (NAFLD) (Argo,

Northup, Al-Osaimi, & Caldwell, 2009; Frith, Day, Henderson, Burt,

& Newton, 2009). NAFLD covers a spectrum of liver diseases

ranging from simple steatosis to nonalcoholic steatohepatitis (NASH),

fibrosis, and cirrhosis. While hepatic steatosis is considered to be

benign, NASH is the more severe condition that is characterized by

inflammation and possibly, fibrosis. Aging has been linked to NAFLD

development through a number of commonly shared molecular

mechanisms associated with both the NAFLD/NASH development

and hallmarks of aging, for example, reactive oxygen species forma-

tion, DNA damage, and hepatocyte senescence (L�opez-Ot�ın, Blasco,

Partridge, Serrano, & Kroemer, 2013). Aging and NAFLD are also
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intertwined with the modern obesogenic environment. The preva-

lence of obesity has been shown to increase at older age (Ford,

Giles, & Dietz, 2002). Commonly observed consequences of obesity

are elevated plasma insulin and free fatty acid levels. Due to these

changes, free fatty acid uptake and triglyceride production in the

liver increase, leading to the development of NAFLD (Karpe,

Dickmann, & Frayn, 2011).

Calorie restriction (CR), a diet regimen of reduced energy intake

without malnutrition, has been shown in numerous animal studies as

by far the most effective approach to extend lifespan and to prevent

age-related and metabolic diseases (De Cabo, Carmona-Gutierrez,

Bernier, Hall Michael, & Madeo, 2014; Fontana & Partridge, 2015).

Research on CR in humans has not been conclusive, but provides

clues that beneficial metabolic adaptations observed in model spe-

cies also occur in humans (Fontana, Partridge, & Longo, 2010; Mer-

cken et al., 2013). The application of CR has been reported to be

beneficial for liver health, by improving insulin sensitivity and reduc-

ing triglyceride accumulation in the liver (Eckard et al., 2013; Kirk

et al., 2009).

To obtain health benefits of CR, a lifelong application of CR is

required. In practice though, permanently reducing calorie intake is

challenging for most individual, especially in an obesogenic environ-

ment prone to overfeeding. Only a very few individuals take up a

CR regimen voluntarily, and even then, the feasibility of adhering to

a CR diet is questionable. It has been shown in human intervention

studies that adherence to CR decreases over time (Racette, 2006)

and even a 5-day-a-month CR regimen showed a dropout rate of

25% (Wei, 2017). This implies that people that have undertaken a

CR regimen often return to an obesogenic diet. Studies concerning

the response of long-term calorie-restricted subjects to ad libitum

feeding are still limited, in particular the liver-specific responses and

NAFLD development at metabolic and transcriptomic level. A few

mice studies were performed to model the long-term CR situation.

Giller and coworkers showed that the effects of 6-month CR on adi-

posity, lipid profile in plasma and liver, and gene expression level

completely diminish within 2 weeks of control diet feeding in

C57BL/6JRj mice (Giller et al., 2013). Furthermore, a liver transcrip-

tomic study by Dhahbi and colleagues reported that in 34-month-old

B6C3F1 mice exposed to a CR diet for 21 months, 90% of the CR-

induced changes in gene expression in the liver disappear within

8 weeks of control diet feeding (Dhahbi, Kim, Mote, Beaver, &

Spindler, 2004).

In this study, we investigate the consequences of 4-month expo-

sure to a Western diet after lifelong acquaintance to a CR diet. The

CR regimen started at young age (2 months) and continued till old

age (24 months), in order to model lifelong exposure to a CR diet.

Between 24 and 28 months of age, we exposed a subset of mice in

the CR group to an ad libitum medium-fat (MF) diet, thereby gener-

ating a CR-MF diet switch group. In the sacrificed 28-month-old

mice, we investigated the systemic responses and NAFLD develop-

ment following the diet switch at a physiological, metabolic, and

molecular level. We explored both the plasticity of the mice at old

age and the persistency of the effects caused by a lifelong CR diet.

2 | RESULTS

2.1 | Switching from a CR to MF diet at old age
caused increasing body adiposity without affecting
survival

Nine-week-old C57BL/6J mice were randomly divided over three

intervention groups and exposed to a control (C), calorie restriction

(CR), or medium-fat (MF) diet. At the age of 24 months, we replaced

the diet of a subset of the CR intervention group by ad libitum expo-

sure to the MF diet (CR-MF diet switch) (Figure 1a). All mice were

sacrificed at the age of 28 months. Figure 1b shows that, at the time

point of the diet switch, the body weights of the C and MF-exposed

mice were substantially higher than those of the CR-exposed mice.

Following the transfer to the MF diet, the body weight of the CR

mice dramatically increased (Figure 1b), reaching a new plateau at

27 months of age. At sacrifice, the body weight of the CR-MF diet

switch group was significantly higher than that of the lifelong CR-

fed mice, comparable to that of the C group, but still significantly

lower than that of the MF-exposed mice.

Food intake was recorded bimonthly and revealed that, transfer-

ring mice from the CR intervention group to ad libitum MF feeding,

resulted in severe hyperphagia. Food intake of the CR-MF group at

the age of 26 months was even slightly higher than that of the life-

long MF intervention group (Figure 1c), although the difference was

not significant (Fig. S1a). However, at the age of 28 months, when

the body weight gain was stabilized at a new plateau, food intake of

the CR-MF mice decreased to similar amounts as consumed by the

C intervention group.

Weight measurement of the epididymal white adipose tissue

(eWAT) and liver revealed significant increases in the CR-MF group

compared with the lifelong CR-exposed mice (Fig. S1b). However,

after normalization to body weight, a significant increase was

observed in the CR-MF group only in relative eWAT weight, while

no significant difference was found for the relative liver weight

(Figure 1d).

As CR is known to protect against aging-related low-grade sys-

temic inflammation, which is also called inflammaging (Franceschi

et al., 2000), a panel of 16 inflammatory markers, including inter-

feron gamma (IFNc), tumor necrosis factor (TNF), interleukin-1a

(IL-1a), IL-1b, IL-2, IL-6, IL-7, IL-10, IL-15, chemokine (C-C motif)

ligand 2 (CCL2 or MCP1), CCL3 (MIP-1a), CCL4 (MIP-1b), CCL5

(RANTES), chemokine (C-X-C motif) ligand 1 (CXCL1 or KC), CXCL9

(MIG), and CXCL10 (IP-10), was measured in plasma to characterize

the inflammatory status following the exposure to MF diet. The prin-

cipal component analysis (PCA) plot presented in Figure 1e revealed

that the plasma inflammatory profile of the CR-MF switched animals

had shifted into the direction of the C-fed mice.

The survival rate recorded between 24 and 28 months revealed

that mortality of the CR-MF diet switch group was equivalent to the

lifelong CR-exposed mice and strongly different from the C and MF

intervention groups (Figure 1f). Therefore, despite the changes in

whole-body adiposity, the improved survival gained in the CR period
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was successfully maintained during the 4-month exposure to the MF

diet.

2.2 | The liver transcriptome of the CR-MF diet
switch mice strongly shifted to the MF profile

To investigate the diet switch effect on the liver transcriptome of

the CR-MF diet group, a microarray analysis was performed. A PCA

was carried out, using the C diet group as the reference. The results

presented in Figure 2a show a remarkable shift in the transcriptome

profile of the CR-MF diet switch group from the CR toward the MF-

exposed mice. Notably, the interindividual variability in the MF diet

group and in particular the CR-MF group was much higher than in

the CR group.

Although a pronounced switch in the transcriptomic profile of

the CR-MF-exposed animals from the lifelong CR group was

detected, the diet switch did not result in a complete overlap with

the expression profile of the MF-exposed group. To investigate

which genes in the CR-MF expression profile remained similarly

expressed with that of the lifelong CR-exposed mice, we applied the

following gene screening (Figures 2b and S2a). We first identified

the differentially expressed genes between the lifelong CR and MF

groups (p < .01), which resulted in a list of 1,578 genes. Then, to

determine which of these 1,578 genes remained comparable to the

CR-exposed mice after the CR-MF switch and significantly different

to those of the MF diet group, we screened for the genes (i) display-

ing no differential expression between the CR-MF and CR groups

(p ≥ .05) and (ii) displaying significant (p < .01) difference in expres-

sion between the CR-MF and MF intervention groups. The direction

of the fold change was also checked to confirm that the CR-MF and

CR groups show the same direction of change in comparison to the

MF group. A subset of 354 “CR-associated genes” were identified,

exhibiting similar expression in the CR and CR-MF groups.

Figure S2b visualizes the expression levels of the 354 CR-associated

genes in the individual CR-, CR-MF- and MF-exposed mice. Overall,

we showed that, following the CR-MF diet switch, 354 genes

remained similarly expressed with the lifelong CR-exposed mice

(~22% of the 1,578 genes), while the majority (~78% of the 1,578

genes) adapted to the MF expression profile.

2.3 | Functional characterization of the CR-
associated genes in the liver

Ingenuity pathway analysis (IPA) was applied to explore which

canonical pathways were represented by the 1,578 genes displaying

differentially expression between the CR and MF intervention
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F IGURE 1 Physiological changes during the CR-MF diet switch. (a) Experimental design. (b) Body weight development from 24 to
28 months of age following the diet switch. (c) Food intake measurement at 24, 26, and 28 months. (d) eWAT and liver weight. (e) Principle
component analysis of 16 plasma inflammatory cytokines. (f) Kaplan–Meier survival curve, statistical difference was assessed by log-rank
analysis. *p < .05; **p < .01; ***p < .001
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groups. The 10 most significantly different canonical pathways listed

in Table S1 revealed highly significant regulation of various pathways

commonly acknowledged to be affected by CR, including mitochon-

drial dysfunction, oxidative phosphorylation, and apoptosis signaling.

Next, we assigned the gene members in each pathway as a CR-asso-

ciated or MF-adapted gene, according to the above-explained crite-

ria. The results presented in Figure 2c show that the pathways

containing a relative high percentage of CR-associated genes were

found to be related to disease progression, for example, sphingosine-

1-phosphate signaling, apoptosis, hepatic fibrosis/hepatic stellate cell

activation. Meanwhile, oxidative phosphorylation and mitochondrial

dysfunction, both of which are pathways related to energy utiliza-

tion, only contained a small fraction of the CR-associated genes (4%

and 6%, respectively). This suggests that, following the CR-MF diet

switch, pathways related to energy utilization largely adapted to the

expression profile of the MF diet group. In addition, these results

suggest that the CR-associated genes in the CR-MF diet switch

group are not confined to a specific pathway. We extended the anal-

ysis to CR-regulated key metabolic pathways, which are known to

be energy/nutrient sensing-dependent (Anderson & Weindruch,

2010). PCA performed on AMPK, PI3K/AKT and insulin-IGF (Fig. S3)

signaling gene sets revealed that the expression profile of the CR-

MF diet switch mice again strongly shifted from the CR profile

toward the lifelong MF cluster.

2.4 | Identification of upstream regulators of the
CR-associated genes in the liver

Next, by applying IPA, we searched for predicted upstream regula-

tors of the 354 CR-associated genes. This analysis corroborates

expression changes from multiple genes, which decreases the likeli-

hood that any one that might be rendered insignificant by post-tran-

scriptional regulation would lead to a misleading biochemical/

physiological surmise. The results presented in Table 1 show the top

10 predicted upstream regulators revealing highly significant p-values

(10�10–10�3). We observed that the regulators related to hepatic
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F IGURE 2 Liver transcriptomic profile of the CR-MF diet switch largely altered toward the direction of the lifelong MF diet group. (a)
Principle component analysis plot for individual animals showing the CR-MF animals shifted to the cluster of MF diet group. The expression
values of all three dietary interventions were normalized to the C group. (b) Analysis scheme for investigating the status of the CR-
differentially expressed genes after CR-MF diet switch. A smaller proportion of differentially expressed genes remained similar to the
expression of the lifelong CR, while most of the genes shifted toward the profile of MF’s. (c) The fraction of the CR-associated and not CR-
associated genes in the top 10 differentially regulated pathways between the lifelong CR and MF diet groups

TABLE 1 Upstream regulators of the 354 CR-associated genes

Top 10
upstream
regulator

Target
genes (n) p-value*

Activation
z-scorea

Predicted
activation
statea

ACOX1 17 1.32 9 10�10 3.153 Activated

TGFb1 59 1.40 9 10�9 �3.581 Inhibited

AHR 19 1.04 9 10�6 2.523 Activated

IL-1b 32 3.82 9 10�6 �2.774 Inhibited

COMMD1 5 1.56 9 10�5 2.236 Activated

Alpha-catenin 10 1.94 9 10�5 2.618 Activated

BTNL2 8 2.61 9 10�5 �2.121 Inhibited

HIF1a 16 2.04 9 10�4 �2.140 Inhibited

ERK 11 9.71 9 10�4 �2.121 Inhibited

CD44 9 1.06 9 10�3 �2.449 Inhibited

*Based on previous knowledge of expected effects between upstream reg-

ulators and their target genes in the IPA database, upstream regulator anal-

ysis was performed. Top 10 predicted upstream regulators are presented.
aAnother standard statistical measure in upstream regulator analysis in

IPA is activation z-score. The known effect (activation or inhibition) of an

upstream regulator was compared with observed changes in gene

expression. Based on the concordance between the two, an activation

z-score was determined, showing whether the predicted upstream regu-

lator was activated (z-score >2), inhibited (z-score <�2) or uncertain.
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fibrosis including transforming growth factor b1 (TGFb1), interleukin-

1b (IL-1b), and hypoxia-inducible factor 1-a (HIF1a) were inhibited

(activation z-score <�2.000). Two of these regulators, IL-1b and

HIF1a, are also related to inflammation. Furthermore, acyl-CoA oxi-

dase 1 (ACOX1), which has been previously linked to NAFLD for its

role in lipid metabolism, was predicted to be activated. ACOX1 activ-

ity represents fat oxidation, which helps to prevent the accumulation

of fat in the liver.

2.5 | Development of hepatic steatosis, but no
hepatic fibrosis/injury, in the CR-MF diet switch group

Next, we explored the CR-MF diet switch effect on NAFLD develop-

ment in more detail. Firstly, the measurement of plasma insulin level,

one of important factors in the pathogenesis of NAFLD, revealed

that the level increased in the CR-MF mice in response to the diet

switch, but did not reach the level of the lifelong MF-exposed ani-

mals (Figure 3a). Plasma glucose levels of the animals in CR-MF diet

switch did not significantly differ from other groups (Fig. S4a). The

plasma alanine transaminase (ALT) level, a marker for liver injury,

was markedly elevated only in the lifelong MF diet group but not in

any of the other intervention groups (Figure 3b). The measurement

of hepatic steatosis, which is represented by intrahepatic triglyceride

(IHTG) content, revealed that after the diet switch the level of fat

accumulation in the liver of the CR-MF diet group significantly

increased to a level comparable to the lifelong MF-exposed mice

(Figure 3c). The measurement of liver 4-hydroxyproline content, a

marker for hepatic fibrosis, showed elevated levels in the lifelong

MF-exposed animals, but not in the CR-MF group (Figure 3d). This

result was confirmed by collagen staining of liver sections (Fig-

ures 3e and S4b). To summarize, the 4 months exposure to MF diet

resulted in elevated insulin and IHTG levels, but did not induce the

progression of NALFD to liver fibrosis and injury.

2.6 | CR-MF diet switch shifted plasma N-glycomics
profile without altering the gene expression level of
Fut8, one of the major glycosyltransferase

Previous studies have shown that plasma N-glycosylation profiles are

associated with chronic liver diseases (Blomme et al., 2011). The

results presented in Figure 4a show that all three major N-glycan

structures previously identified (Vanhooren et al., 2011), bigalactosy-

lated, biantennary glycan (NA2), agalactosylated, core-a-1,6-fucosy-

lated biantennary glycan (NGA2F) and bigalactosylated, core-a-1,6-

fucosylated biantennary glycan (NA2F), were significantly different

between the lifelong CR and MF diet groups. The levels of NA2,

NGA2F, and NA2F in the CR-MF diet group were in between those

of the CR- and MF-fed animals, but did not differ significantly from

either of the two intervention groups. Previous research has shown

that expression and activity of a-1,6-fucosyltransferase (Fut8) in the

liver were strongly associated with the plasma profiles of the three

N-glycan structures (Vanhooren et al., 2011). In our study, Fut8

expression differed significantly between CR and MF-exposed mice

(Figure 4b; confirmed by qPCR analysis in Fig. S5). However, Fut8

was one of the 354 CR-associated genes of which the expression did

not alter in response to the diet switch. We further explored other

genes involved in glycosylation biosynthesis and degradation

(Table S2) and found that a number of genes in these processes were

strongly correlated with the three N-glycan structures. Notably,

NGA2F was correlated with ribophorin I (Rpn1), NA2 with mannosyl-

oligosaccharide glucosidase (Mogs) and hexosaminidase B (Hexb), and

(b)(a)

(e)

(d)(c)

C

CR/MF MF

CR

C

C
R

C
R

-M
F

M
F

0

1

2

3

4 ***
***

***

P
la

sm
a 

in
su

lin
(n

g 
m

L–
1)

 

C

C
R

C
R

-M
F

M
F

0

10

20

30
**

*

n.s.

P
la

sm
a 

A
LT

 (U
 L

–1
)

C

C
R

C
R

-M
F

M
F

0

50

100

150

200
**

*
n.s.

IH
TG

 (m
g 

g–
1  

liv
er

)

C

C
R

C
R

-M
F

M
F

0.0

0.1

0.2

0.3 **
*

n.s.

4-
hy

dr
ox

yp
ro

lin
e

(u
g 

m
g–

1  
liv

er
)

F IGURE 3 The CR-MF diet switch group demonstrated elevated
insulin and IHTG levels, but comparable plasma ALT and liver
hydroxyproline compared to the CR group. (a) Fasting plasma insulin
level. (b) Plasma ALT. (c) IHTG content. (d) Liver 4-hydroxyproline
content. Statistical difference was determined by one-way ANOVA
followed by Tukey post-test. *p < .05; **p < .01; ***p < .001. (e)
Collagen staining on liver sections (original magnification 2009)

RUSLI ET AL. | 5 of 12



NA2F with ribophorin II (Rpn2) and UDP-glucose glycoprotein gluco-

syltransferase 1 (Uggt1). Rpn1 and Rpn2 are genes in transferring gly-

cans to asparagine residues, Mogs supports the trimming of N-glycan

in endoplasmic reticulum (ER), Hexb is involved in N-glycans degrada-

tion, and Uggt1 contributes to the regulation of N-glycan quality con-

trol (Clarke, Novak, Lake, Hardwick, & Cherrington, 2017).

Interestingly, expression levels of Rpn2 and Uggt1 differed signifi-

cantly between CR and MF-exposed mice, and the CR-MF diet group

showed similar expression levels to those of the MF group (Fig-

ure 4c). Therefore, this indicates that although Fut8 did not change

following the CR to MF diet switch, the altered glycosylation was

influenced by other mechanisms involved in N-glycan biosynthesis.

2.7 | The relationship between physiological and
gene expression level in hepatic steatosis
development following the CR-MF diet switch

While IHTG levels were significantly increased in the CR-MF diet

switch group, cluster of differentiation 36 (Cd36), a key fatty acid

transporter in the development of hepatic steatosis (Sheedfar et al.,

2014), did not follow the same pattern. As one of the 354 CR-asso-

ciated genes which expression did not alter in response to the diet

switch, Cd36 displayed significant difference between the CR and MF

intervention groups but its expression did not adapt to the MF diet

after the diet switch (Figure 5a; confirmed by qPCR analysis in Fig. S5).

Other fatty acid uptake/transporter genes were explored (Fig. S6 for

genes without significant alteration), and we found that the expression

levels of caveolin 1 (Cav1) (Figure 5b; confirmed by qPCR analysis in

Fig. S4) and fatty acid binding protein 4 (Fabp4) (Figure 5b) were ele-

vated in the CR-MF diet group, implying that, while the Cd36 expres-

sion was repressed, there were alternatives for fatty acid uptake.

2.8 | Differentially methylated enhancer region was
found in the intergenic region adjacent to Cd36

As Cd36 plays an important role in the development of NAFLD, the

mechanism behind its gene repression in the CR-MF diet switch is

of biological interest. A possible mechanism underlying the Cd36

repression is by altering the DNA methylation of regions of the gene

involved in transcription regulation. To explore this possibility, we

analyzed the DNA methylation level of the promoter and enhancer

region of Cd36. Promoter and weak enhancer regions were obtained

from the mouse ChromHMM track (Ernst & Kellis, 2012) and identi-

fied to be present in the gene body and a distant upstream region,

respectively (Figures 5c and S7 for detailed chromosomal position

and epigenetic features). As shown in Figure 5d, we did not find a

significant difference for the methylation level in the promoter

region. However, the methylation levels of all 4 CpG sites analyzed

in the enhancer region were significantly higher in the MF diet group

compared to the levels in CR group (Figure 5e). Interestingly,
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F IGURE 4 Plasma N-glycosylation
profile and expression levels of
glycosylation modifying genes Fut8, Rpn2,
and Uggt1. (a) Plasma levels of three N-
glycans, NGA2F (peak 1), NA2 (peak 5),
and NA2F (peak 6) had shifted following
the CR-MF diet switch. Statistical
significance was assessed by one-way
ANOVA followed by Tukey post-test
analysis. (b) The expression levels of CR-
associated gene Fut8 in the CR-MF diet
switch group remained similar to those of
CR and significantly differed from the
expression levels of MF’s. (c) Following the
diet switch, gene expression levels of Rpn2
and Uggt1 in the CR-MF group decreased.
Statistical difference for the gene
expression data was determined by
intensity-based moderated t-statistic
(IBMT) p-value. *p < .05; **p < .01;
***p < .001
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although the methylation levels of the CR-MF diet switch group

were slightly increased compared to the lifelong CR mice, the methy-

lation percentage of each of the CpGs was markedly lower com-

pared to the lifelong MF-exposed animals.

3 | DISCUSSION

In this study, we aimed to investigate the systemic and liver-specific

responses of 24-month-old, lifelong CR-exposed mice to 4 months

of MF intervention. Our data revealed that in the diet switch group,

most of the CR-related features shifted to the MF profile: (i) whole-

body adiposity, (ii) hepatic steatosis, (iii) global transcriptome, and (iv)

CR-specific molecular features including IGF-1/insulin signaling,

oxidative phosphorylation, and AMPK signaling. These results show

that the CR-MF-exposed animals have great plasticity in coping with

the challenge of the MF diet. We also show that a number of CR-

related features were maintained in the CR-MF group: (i) the preven-

tion of hepatic fibrosis and injury, (ii) the improved survival, and (iii)

the expression levels of a subset of CR-related genes that were not
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F IGURE 5 The gene expression levels
of fatty acid uptake-related genes Cd36,
Cav1, and Fabp4 and DNA methylation
levels of Cd36. (a) The gene expression
levels of CR-associated gene Cd36. (b) The
gene expression levels of Cav1 and Fabp4.
Statistical significance of the gene
expression data was determined by
intensity-based moderated t-statistic
(IBMT) p-value. (c) The location of
promoter and enhancer region upstream of
Cd36. (d) DNA methylation levels of CR,
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enhancer region. Differences on
methylation levels were analyzed using
two-way ANOVA followed by post hoc
Bonferroni test. *p < .05; **p < .01;
***p < .001
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altered by 4-month exposure to the MF diet. Expanding the late-life

MF diet exposure period or challenging the mice with a high-fat diet

or acute liver injury would be of interest to further explore the pro-

tective effect induced by the CR diet.

Even after a long-term exposure to the CR diet until an old age

of 24 months, the mice were not adapted to the low energy intake

and displayed extreme hyperphagia. The lifelong CR-exposed mice in

our aging cohort demonstrated their anticipation to receiving their

daily food allotment by a burst in their activity level just prior to the

regularly scheduled feeding (Van Norren et al., 2015). The hyper-

phagic response is an indicator that hunger persists even after a

long-term CR (Hambly, Mercer, & Speakman, 2007) and is main-

tained until body weight reaches the level of the ad libitum-fed ani-

mals (Selman & Hempenstall, 2012). It is followed by a dramatic

weight gain, adipose tissue expansion, and hepatic steatosis. This

depicts a thrifty “catch-up fat” characteristic, in which metabolic pro-

cesses have evolved to be efficient in storing excessive energy once

an energy supply is available (Barnes & Ozanne, 2011). Therefore,

our experiment indicates that a lifelong application of the CR regi-

men is not able to acclimatize the mice to low energy intake and to

resist the thriftiness, when the food availability is no longer

restricted. The fact that the mice, even after lifelong exposure to a

CR diet, are still not adjusted to the low-calorie intake is something

to take into consideration with regard to the human situation. If a

constant hunger experience is the side effect of a CR diet, even at

the long run, it can be questioned whether this suffering is compen-

sated for by living a long and healthy life. Our results endorse the

search for alternatives to CR regimen, in which food restriction is

not continuously applied, for example, intermittent CR (Brandhorst

et al., 2015; Rusli et al., 2015, 2017); or CR-mimetics (Gillespie, Pick-

ering, & Eskiw, 2016; Ingram & Roth, 2015), compounds that pro-

duces CR-like effects on longevity without requiring the reduced

food intake.

Food intake measurements revealed an unanticipated increase in

MF diet group between 26 and 28 months of age, which was con-

trary to the typically decreasing intake at old age (Hamrick et al.,

2006). In a study that compares young and old mice, it was revealed

that the old mice drop significantly more food than the young ones,

which possibly contributed to age-related decline in oral motor func-

tion and/or dentition and/or joint impairment (Starr & Saito, 2012).

Therefore, the correction for small pieces of food pellets spoiled in

the cages could be crucial to avoid an overestimation of the food

intake at old age.

Following the CR-MF diet switch, the beneficial effects of a CR

diet on the liver transcriptomic profile changed dramatically, confirm-

ing the results of previous investigations (Dhahbi et al., 2004; Giller

et al., 2013). This could be explained by the dependence of a num-

ber of CR-mediated pathways (e.g., oxidative phosphorylation, AMPK

signaling) on energy depletion/stress (Burkewitz, Zhang, & Mair Wil-

liam, 2014). Despite the pronounced alteration of the transcriptomic

profile, in our study, we found a set of 354 CR-associated genes,

which expression remained to be comparable with the expression

levels of the lifelong CR intervention group. Possible explanations

for this difference include the experimental settings, that is, mouse

strains, the varying length of exposure to CR, severity of calorie

reduction, type of diets used, age of mice at time point of observa-

tion, the use of different microarray platforms with different

amounts of annotated genes (B6C3F1 mice, 44E% CR from 7 till

32 months, micronutrients supplementation to reach adequate level

was not specified, fed at the beginning of light phase, followed by

8 weeks of control AIN-93M diet, Affymetrix Mu11K sets A and B

oligonucleotide arrays in Dhahbi et al. (2004); C57BL/6JRj mice,

25E% CR with micronutrients supplementation from 6 to 8 weeks of

age for 6 months, followed by 6 months of Standard diet, Agilent

Sure Print G3 Mouse Gene Expression 8x60K Arrays in Giller et al.

(2013); C57BL/6J mice, 30E% CR with micronutrients supplementa-

tion from 2 till 24 months, followed by 4 months of MF diet, Affy-

metrix GeneChip Mouse Gene 1.1 ST arrays in this study).

One of the most intriguing findings in the current study emerged

when we investigated to what extent the CR-associated genes are

linked to their related phenotypes. Previous studies on Fut8 hepatic

expression and plasma glycosylation profile show the modulation of

Fut8 expression and NGA2F, NA2, and NA2F plasma levels during

aging and chronic liver diseases (Blomme et al., 2011; Vanhooren

et al., 2011). Expression of this gene did not alter during the 4-

month exposure to MF diet, but a slight shift in the fucosylated N-

glycan levels, NGA2F and NA2F, in the plasma was observed. We

found that other genes (Rpn1, Rpn2, Mogs, Hexb, Uggt1), which are

all involved in other key steps in N-glycan biosynthesis/processing,

might be responsible for the altered glycosylation profile in the CR-

MF diet switch group. As hepatic steatosis has been reported to dis-

turb the function of ER in hepatocytes (Baiceanu, Mesdom, Lagouge,

& Foufelle, 2016), the fact that the mice exposed to CR-MF diet

switch developed hepatic steatosis might contribute to ER stress and

stress responses which consequently affected N-glycan processing in

the ER. Another possibility is the presence of other fucosyltrans-

ferases, such as Fut2 and Fut3 in the gut (Drake et al., 2010), which

leads to plasma glycosylation profile modification by multiple tissues.

Another intriguing discrepancy in gene expression and physiolog-

ical outcome is the hepatic expression of Cd36, a fatty acid transport

gene which overexpression increases susceptibility to accumulate

liver fat (Koonen et al., 2007; Sheedfar et al., 2014). The deletion of

this gene has previously been shown to cause resistance to diet-

induced hepatic steatosis (Clugston et al., 2014). In our study, we

found that, despite of the development of hepatic steatosis, the

expression of Cd36 in the CR-MF group remains low, comparable to

the expression levels in the lifelong CR diet group. The role of fatty

acid transport was seemingly compensated by increased expression

of Cav1 and Fabp4. This demonstrates that, after lifelong exposure

to a CR diet, the system is still plastic and can adapt to a MF diet,

but that alternative genes might be used when a certain function

needs to be carried out.

Furthermore, we found that the methylation status of the far

upstream enhancer (~40 kbp from the transcription start site), but

not of the promoter region of the Cd36 was affected by the MF

diet. Although this observation implies that changes in DNA
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methylation might be responsible for the altered expression levels of

the Cd36, our results remain inconclusive. First of all, the methyla-

tion levels of the CR-MF diet switch group are in between those of

the CR and MF groups, while the expression levels remain similar to

those of the lifelong CR-exposed mice. Secondly, in the MF inter-

vention group, both gene expression and methylation levels of the

enhancer region of Cd36 were significantly increased, compared to

the CR-fed mice. Decreased CD36 expression together with

decreased DNA methylation has recently been shown in response to

a hypocaloric diet-induced weight loss in female subjects (Do

Amaral, Milagro, Curi, & Mart�ınez, 2014). Similar to what we

observed, this study showed that gene expression and DNA methy-

lation levels are positively associated. However, the results pre-

sented in the study show differential methylation region close to the

transcription start site, while in our study, methylation of the enhan-

cer was altered. Further studies are required to unravel the relation

between gene expression and DNA methylation for the Cd36 gene.

To conclude, despite a long term of adulthood CR (22 months),

the CR-MF mice did not become metabolically or physiologically

implacably fixed in the state of functioning that CR engendered. The

CR-MF diet switch group developed hyperphagia causing weight

gain and hepatic steatosis. Furthermore, the liver transcriptomic pro-

file of CR-MF group largely shifted to a profile similar to the MF-fed

animals, leaving only ~22% of the 1,578 differentially regulated

genes between the CR and MF diet groups comparable with the

expression of the lifelong CR group. As illustrated by the analysis of

Cav1, Fabp4, and Cd36 expressions and their relations with hepatic

steatosis, the liver has a robust metabolic network that includes mul-

tiple regulators contributing its plasticity in coping with the challenge

of MF diet. Therefore, although the diet switch was performed at an

old age, the CR-MF-exposed mice showed plasticity in adapting to

the MF diet without developing severe liver pathologies, which likely

contributes to the maintenance of the CR-improved survival.

4 | MATERIAL AND METHODS

4.1 | Ethics statement

The institutional and national guidelines for the care and use of ani-

mals were followed and the Local Committee for Care and Use of

Laboratory Animals at Wageningen University approved the experi-

ment (code number: drs-2010151b).

4.2 | Animals and diets

The animal study was a part of a mice aging cohort (Rusli et al.,

2015, 2016). Male C57BL/6J mice (Janvier, Cedex, France) arrived at

7 weeks of age and allowed to acclimate for 2 weeks, receiving

standard AIN-93G (Research Diet Services, Wijk bij Duurstede, the

Netherlands) upon arrival. At the start of the diet intervention, the

mice were 9 weeks old and randomly distributed into three interven-

tion groups: (i) Control diet receiving AIN-93W diet ad libitum

(n = 89); (ii) CR diet receiving AIN-93W-CR in portions containing

70E% of the mean energy intake of the group of the control mice

were provided each day at 15.30 (n = 117); (iii) medium-fat diet

(MF) receiving AIN-93W-MF ad libitum (n = 127). AIN-93W-CR con-

tained increased concentration of vitamins and minerals content to

feed these mice the same concentrations of micronutrients as the

mice receiving AIN-93W diet and avoid malnutrition. Complete diet

composition is listed in Table S3 (Research Diet Services, Wijk bij

Duurstede, the Netherlands). All mice were provided with ad libitum

access to water. The mice were housed individually in the light and

temperature (20°C)-controlled animal facility of Wageningen Univer-

sity (12-h light/dark cycle, light on at 04.00).

The long-term dietary invention was continued until a sacrifice at

the age of 28 month, but in addition to the three diet groups, at

24 month, the animals in the CR diet group were randomly assigned

either to remain on the CR diet (n = 30) or undergo a diet switch to

the MF diet (n = 32). This resulted in a group of 25–32 animals in

each group at 24 months. Anticipating that the animals would not

be used to ad libitum feeding after exposure to CR for a long term,

the food intake was increased gradually, by addition of 10E% per

week. Therefore, it took 3 weeks for the animals to be allowed to

have MF ad libitum. Body weight of all mice was recorded weekly.

Food intake of 20 mice of each intervention group was measured

every 2 months. Portion sizes of the mice on the CR were based on

the mean food intake of the C-exposed mice measured for 7 days.

At the age of 28 months, 8–11 mice of each intervention group

were sacrificed between 14.00 and 17.00 on three consecutive

weeks. Prior to sacrifice, each mouse was first fasted for 4 hr after

which they received an intragastric gavage of either Wy-14,643

(Wy) substance solved in 0.5% carboxymethyl cellulose (CMC) or just

the 0.5% CMC solvent and then fasted again for another 6 hr. All

mice were used for the phenotypic measurements (bodyweight, food

intake, etc.). The aim of the Wy-treatment was to perform a PPARa

adaptive capacity analysis, which has been covered in a separate

publication (Rusli et al., 2016). As Wy-treatment causes an effect on

gene expression level, these animals were not included in the tran-

scriptomic analysis. After sedation with isoflurane (1.5%), in a mix-

ture of nitrous oxide (70%) and oxygen (30%), blood samples were

collected by cardiac puncture, then followed by neck dislocation.

Weight of various organs was measured and snap-frozen and stored

at �80°C until further molecular/biochemical analysis.

4.3 | Plasma and liver markers analyses

Plasma IL-6 and CCL2 levels were measured using a Mouse Adipo-

kine (MADKMAG-71K) kit, while plasma IFNc, TNF, IL-1a, IL-1b, IL-

2, IL-7, IL-10, IL-15, CCL3, CCL4, CCL5, CXCL1, CXCL9 and CXCL10

from Mouse Cytokine (MCYTMAG-13K) kit (Millipore, Billerica, MA,

USA), according to the manufacturer’s instructions. Plasma glucose

was measured with Glucose GOD FS (DiaSys, Holzheim, Germany),

according to the manufacturer’s protocol. The insulin and ALT deter-

mination in the plasma, as well as the hepatic triglycerides and

hydroxyproline analysis, have been previously described (Rusli et al.,

2015, 2016).
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4.4 | Microarray hybridization

Prior to the microarray hybridization, total RNA was isolated and

checked for its quality (see Appendix S1 for details). Hybridization,

washing, and scanning of Affymetrix GeneChip Mouse Gene 1.1 ST

arrays were performed according to standard Affymetrix protocols.

Microarray analysis was performed in MADMAX, a pipeline for statis-

tical analysis of microarray data (Lin et al., 2011). Arrays were normal-

ized using the Robust Multiarray Average method (Bolstad, Irizarry,
�Astrand, & Speed, 2003; Irizarry et al., 2003). Probe sets were defined

according to Dai et al. (2005). In this method, probes are assigned to

unique gene identifiers, in this case Entrez IDs. The probes on the

Gene 1.1 ST arrays represent 21,225 Entrez IDs. For the analysis, only

genes having 1) an interquartile range of entire dataset (including all

of the groups) of >0.1 and 2) an intensity value of >20 on at least five

arrays were taken into account and subsequently investigated for sta-

tistical analyses on differences between groups, which resulted in

15,417 genes in the dataset. Array data have been submitted to the

Gene Expression Omnibus, with accession number GSE102593.

For the microarray data analysis, differentially expressed probe

sets were identified using linear models (library limma) and the inten-

sity-based moderated t-statistic (IBMT) method was applied. Result-

ing log2 intensities and p-values were used for further descriptive

bioinformatic analysis of the data. Heatmap and PCA plots were

constructed using MultiExperiment Viewer version 4.8.1 (Saeed

et al., 2006) and factomineR package in R, respectively. Pathway and

upstream regulator analyses were performed in ingenuity pathway

analysis (IPA; Ingenuity� Systems).

4.5 | Plasma glycomics analysis

N-glycans on the plasma glycoproteins were analyzed using DNA-

sequencer-Aided, Fluorophore-Assisted Carbohydrate Electrophore-

sis (DSA-FACE) technology. The same DSA-FACE protocol used in

(Borelli et al., 2015; Vanhooren, Laroy, Libert, & Chen, 2008) for the

analysis of the human plasma N-glycome was applied for the mouse

plasma. N-glycosylation was analyzed in 2 ll of total plasma (see

Appendix S1 for detailed procedure). Five major glycan peaks, which

had the same migration positions of the well-known human N-glycan

structures (Fig. S8), were measured using a DNA-sequencer ABI-

PRISM 3730xl (Applied Biosystem, Foster City, CA, USA).

4.6 | Bisulfite conversion and DNA methylation
analysis

Genomic DNA was isolated from the liver using the classical pro-

teinase K digestion and phenol: chloroform extraction (see

Appendix S1 for detailed preparation). Bisulfite conversion and DNA

methylation analysis by means of pyrosequencing were adapted from

a previous study (Steegenga et al., 2014). For each sample, 1,000 ng

of genomic DNA was bisulfite-treated using the EZ-96 DNA Methy-

lation™ Kit (Zymo Research, Irvine, CA, USA) and eluted in 60 ll of

TE. DNA methylation analysis was performed using PyroMark™

pyrosequencing technology (Biotage AB, Uppsala, Sweden). Primers

were designed using PyroMark software, and the sequences of the

primers used and their specific melting temperature are listed in

Table S4. The single-stranded PCR product (35 ll) is isolated and

allowed to hybridize with a sequencing primer, and pyrosequencing

was performed using the Q24 Pyrosequencing System (Qiagen,

Venlo, the Netherlands) (see Appendix S1 for detailed procedure).

CpG methylation was analyzed with the provided software.

4.7 | Statistical analysis

Statistical analysis, except for the microarray gene expression data,

was analyzed with GraphPad Prism 5.04 (Graphpad Software, La Jolla,

California, USA). Differences between dietary interventions were ana-

lyzed using one-way ANOVA followed by Tukey post-test analysis.

The alteration of DNA methylation levels in a specific region was

evaluated with two-way ANOVA followed by Bonferroni post-test

analysis. Results represented in bar graphs are shown as means �
standard deviation. For results plotted in box-and-whisker plots, the

box extends from 25th to 75th percentiles with a line at median value,

while the whiskers denote 5 and 95 percentiles. Pearson’s correlation

was used to determine the relationship between variables. Statistical

significance for the survival of groups was established by the log-rank

analysis of Kaplan–Meier plots.
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