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Abstract: We study a simple exogeneity test in count data models with possibly endogenous multinomial 
treatment. The test is based on Two Stage Residual Inclusion (2SRI), an estimation method which has been 
proved to be consistent for a general class of nonlinear parametric models. Results from a broad set of simu-
lation experiments provide novel evidence on important features of this approach. We find differences in 
the finite sample performance of various likelihood-based tests, analyze their robustness to misspecification 
arising from neglected over-dispersion or from incorrect specification of the first stage model, and uncover 
that standardizing the variance of the first stage residuals leads to better results. An original application to 
testing the endogeneity status of insurance in a model of healthcare demand corroborates our Monte Carlo 
findings.
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1  Introduction
Instrumental variables (IV) methods are the established solution to address endogeneity of regressors in 
linear models. However, it is well known that IV estimators imply an efficiency loss that might be substan-
tial with respect to OLS estimators. This explains the great attention received by the Hausman (1978) test for 
endogeneity. Its regression-based form is a computationally simple two-stage procedure: first stage residuals 
are computed from reduced form estimation and then inserted as additional regressors in the second stage 
equation for the outcome of interest. The method, known as two-stage residual inclusion (2SRI), tests the null 
hypothesis of exogeneity of a subset of regressors by way of a variable addition test, i.e. checking whether the 
coefficients of the first stage residuals are equal to zero in the second stage structural equation.

Accounting for endogeneity in non linear models is more challenging. Terza, Basu, and Rathouz (2008), 
Wooldridge (2010), and Wooldridge (2014) point out that the application of IV methods in this context is not 
straightforward. Plugging in the structural equation fitted values of the endogenous variables obtained from 
first stage regression does not generally lead to consistent estimation for the parameters of interest.1 On the 
contrary, 2SRI is recognized to be a consistent procedure for many non linear parametric models. Terza, Basu, 
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1 The same conclusion is reached by Bhattacharya, Goldman, and McCaffrey (2006), who show by way of a Monte Carlo exercise 
that in a binary probit with a binary endogenous treatment the two step procedure – based either on probit or linear probability 
model – is not consistent.
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2      A. Geraci et al.: Testing Exogeneity of Multinomial Regressors in Count Data Models

and Rathouz (2008) prove that in a general parametric framework this procedure leads to consistent estima-
tors and valid exogeneity tests, provided the first stage model is consistently estimated.2 In his textbook Wool-
dridge (2010) points to addition of first stage estimated residuals as a valid procedure for testing exogeneity of 
binary regressors when the structural equation is a binary response model, a Tobit model, or an exponential 
regression model. Conceptual and computational simplicity makes the two step approach extremely appeal-
ing for the applied researcher aiming at testing exogeneity in non linear models. Apart from recent contribu-
tions suggesting distribution free semiparametric approaches [see Abrevaya, Hausman, and Khan (2010) and 
the references cited there], the most common practice to handle endogeneity in the nonlinear framework 
relies upon some parametric distributional assumptions on both the endogenous regressors and the outcome 
variable. Inference is performed through Maximum Likelihood (ML) methods. In this context, joint maximum 
likelihood estimation of the two parts of the model is likely to be computationally cumbersome and to require 
ad hoc routines, while the two-stage approach is available within most statistical/econometric packages.

We consider here the problem of endogeneity in count data models. The empirical microeconometrics 
literature devoted much attention to this class of non linear models. For instance they are extensively used in 
applied health economics to represent healthcare demand through the counts of doctor visits where endoge-
neity is likely to arise due to unobserved individual frailty. Deb and Trivedi (1997), Kenkel and Terza (2001), 
Mullahy (1997), Windmeijer and Santos Silva (1997), Fabbri and Monfardini (2009), Cheng and Vahid (2011), 
Bratti and Miranda (2011) are some examples dealing with endogenous binary regressors. Some attention has 
been recently devoted to count data models with multinomial endogenous regressors. Deb and Trivedi (2006) 
propose a simulation based full maximum likelihood method for single equation count data models (general-
ized to the case of multivariate counts by Fabbri and Monfardini 2016). Zimmer (2010) adopts instead a 2SRI 
procedure, following the suggestion by Terza, Basu, and Rathouz (2008).

In this paper our aim is to establish whether 2SRI represents a viable alternative to detect endogeneity in 
count data models with multinomial endogenous regressors. This is one of the cases in which 2SRI tests are 
much easier to implement than maximum likelihood approaches, that require simulation-based inference 
methods. We develop a broad Monte Carlo Study to assess the finite sample properties of 2SRI exogeneity 
tests and to compare the performance of alternative testing procedures. We represent endogeneity by alterna-
tive specific latent factors entering both the count outcome equation and the multinomial treatment model. 
This formalization of endogeneity is germane to Terza, Basu, and Rathouz (2008) – based on 2SRI – and Deb 
and Trivedi (2006) – based on FIML estimation.

Our Monte Carlo experiments produce novel evidence on the 2SRI procedure for count models with mul-
tinomial regressors, enhancing existing simulation studies conducted by Terza, Basu, and Rathouz (2008) for 
duration models with multinomial regressors and Staub (2009) for count models with dichotomous endog-
enous explanatory variable.3 We start by evaluating the performance of different likelihood based tests, 
namely Wald, Lagrange Multiplier and Likelihood Ratio, under correct specification and their robustness to 
various forms of misspecification, ranging from neglecting over-dispersion to incorrect specification of the 
first stage model. Then, we compare alternative 2SRI tests, adopting alternative definitions for the first stage 
residuals. We find that standardizing the variance of the first stage residuals improves the finite sample per-
formance of the tests and reduces the bias of the treatment coefficients estimators. This is a relevant aspect, 
since the first stage estimation involves multinomial discrete choice models, where no consensus exists on 
the definition of the error term (see Pagan and Vella 1989). Finally, we bring our findings to real data, and 
apply the 2SRI procedure to an original case study in health economics. We use data from an important 
French Survey to model the individual annual number of doctor visits allowing for healthcare insurance 
status to be endogenously determined. The results of this application are coherent with the main finding of 

2 In this paper we focus on 2SRI, i.e. inclusion in the second stage equation of a linear function of the first stage residuals rather 
than a more flexible function (that would be considered in the so called Control Function approach).
3 Two related works are Kapetanios (2010) and Garrido et al. (2012). The first stydy analyzes through a Monte Carlo study the 
peformance of some new Hausman-type tests for exogeneity in nonlinear threshold model. The second consider a case study 
with a linear outcome (healthcare costs) and study how estimation of the effect of a binary treatment varies according to different 
approaches used to deal with endogeneity, including Control Function and 2SRI.
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our Monte Carlo investigation and show that ignoring endogeneity of insurance or accounting for it by way of 
non-standardized residuals leads to misleading results.

The remainder of the paper is structured as follows. Section 2 provides a general parametric repre-
sentation of endogeneity in nonlinear models. Section 3 describes the count regression with multinomial 
endogenous treatment. Section 4 presents the 2SRI estimator/test we study. The design of the Monte Carlo 
experiment is illustrated in Section 5, together with the simulation results. Section 6 is devoted to the appli-
cation of the procedure to a model of healthcare demand with endogenous insurance. Section 7 concludes.

2  A parametric Representation of Endogeneity in Nonlinear Models
We consider the non linear conditional mean of the outcome y:

	 [ | , , ] ( )i i ei i i ei e iE y M β β λ= + +x x q x x q � (1)

	 1 1

S S

i s eis s is
s s

M x qβ γ λ
= =

 
= + +  

∑ ∑x
�

(2)

where M(·) is a non-linear function, xi is a set of K exogenous regressors, xei is a set of S covariates (either 
discrete or continuous) possibly correlated with a set of S unobservable confounders qi, hence endogenous. 
Following Terza, Basu, and Rathouz (2008), we represent endogeneity of regressors xei by an idiosyncratic 
influence of the same latent factors qi on both yi and xei in possibly non linear reduced form regressions:

	 ( )    1, , esi s i s six r q s Sα= + = …z � (3)

where zi = [xi wi], and wi is a set of at least S instrumental variables satisfying all the necessary assumptions.
In this setting, the hypothesis of exogeneity of regressors xesi, s = 1, …, S can be formulated as:

0 1 2: 0SH λ λ λ= =…= =

Taking a fully parametric approach to inference, let the density of the outcome conditionally to endog-
enous regressors, exogenous covariates and latent factors be:

( | , , )i i ei if y x x q

and the marginal density of endogenous regressors conditionally to exogenous covariates xi, identifying 
instruments wi and latent factors qi be denoted as:

( | , , )ei i i ig x x w q

The two above distributions can be combined into a joint distribution of the type:

	 ( , | , , ) ( | , , ) ( |, , , )i ei i i i i i ei i ei i i iPr y f y g= ×x x w q x x q x x w q � (4)

Unobservability of qi can be handled by way of some parametric distributional assumptions, taking them as 
i.i.d draws from density h(qi). Their distribution is integrated out via simulation, obtaining the joint density 
of the observable variables:

	 ( , | , ) ( , | , , ) ( )i ei i i i ei i i i i iPr y f y h d= ∫x x w x x w q q q � (5)

Estimation is performed maximizing a simulated log-likelihood function. Provided that the factor loading 
parameters λ1, λ2, …, λS are identified, a test for exogeneity of the vector xei can be carried out with the usual 
maximum likelihood-based tests. This is a full information maximum likelihood (FIML) procedure since all 
equations are jointly estimated, and it is well known to achieve asymptotic efficiency properties under correct 
distributional assumptions. Notice, however, that efficiency comes with an heavy computational cost.
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An easier test for exogeneity of xei can be carried out resorting to the so called two-stage residual inclu-
sion procedure (2SRI). Two-stage residual inclusion and two-stage prediction substitution (2SPS) are the 
non-linear counterparts of the linear Two-Stage Least Squares (2SLS) approach. While 2SPS substitutes the 
endogenous regressors in the structural equation with their consistent estimates obtained in the first stage 
(mimicking 2SLS in the nonlinear case), 2SRI keeps the endogenous regressors in the outcome equation and 
substitutes the unobservable confounders with residuals obtained from the reduced equation. Wooldridge 
(2010) and Terza, Basu, and Rathouz (2008) emphasize that, when the conditional expectation is nonlin-
ear, 2SPS is generally an inconsistent procedure, while 2SRI allows one to obtain consistent estimates of 
the structural equation parameters.4 In our case of full parametric assumptions the 2SRI approach involves 
separate maximum likelihood estimation of both the first and the second stage equations (and it corresponds 
to limited information maximum likelihood, cf. Wooldridge 2014).

After estimation of the reduced form equations, predictors of the endogenous regressors are obtained as:

	 ˆ ˆ( )esi s i sx r α= z � (6)

Residuals, which estimate qsi, are computed as follows:

	 ˆ ˆ( )si esi s i sq x r α= − z � (7)

and are plugged inside the structural equation. The parameters λs s = 1, …, S are the coefficients associated to 
the estimated residuals ˆ ,siq  so that the exogeneity test amounts to a variable addition test in the second stage 
equation, which can be easily performed with likelihood-based tests.

When the functions M(·)and rs(·) in (1) and (3) are linear, 2SRI coincides with the regression-based exo-
geneity test proposed by Hausman (1978), so that the 2SRI procedure can be seen as an extension of the 
Hausman test to the non-linear framework. Notice that the non linear function rs(·) allows for endogenous 
regressors of different nature in xei, including multivariate or multinomial treatments. In this case (3) will 
describe the generation of a set of binary dummies and their relationship with the unobservable confound-
ers. We focus hereafter on the case of a multinomial process, since there are results in the literature showing 
that a multinomial model is more general than a multivariate one.5

Testing exogeneity of a multinomial treatment with 2SRI is a more practical alternative with respect to 
FIML approaches. However, little is known about its properties in finite samples. Is the two step procedure 
reliable, so that practitioners can exploit its computational advantages? Are there ways to conduct 2SRI out-
performing alternative possibilities? In the following sections we answer to these questions. Despite the fact 
that we analyze the specific case of a count outcome, some results of ours might also be informative for other 
nonlinear models with potentially endogenous multinomial regressors.

3  A Count Data Model with Endogenous Multinomial Treatment
In the data generating processes we will specify in the next section, the multinomial treatment affects the 
count outcome equation trough di, a set of J dummies for the J + 1 mutually exclusive alternatives in the choice 
set. Endogeneity is pinned down using the same alternative specific latent factors ijq∗ , in the treatment and 
the outcome equations. This formulation adapts the proposal of Deb and Trivedi (2006) to the general repre-
sentation of endogeneity presented in the previous section.

Let the density for the count outcome conditionally to exogenous variables, treatment and latent factors 
be written as:

	 ( | , , ) ( , )i i i i if y f µ θ=x d q � (8)

4 The proof of consistency is carried out by Terza, Basu, and Rathouz (2008) using the theory of two-stage optimization estima-
tors, of which 2SRI can be seen as a special case.
5 Weeks and Orne (1999) show that the multivariate probit model can be obtained as a special case of the multinomial probit one, 
after imposing specific restrictions on the covariance pattern of the error terms.
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In order to accomodate for overdispersion in the data, f(·) is assumed as a Negative Binomial type-2 density 
function with rate parameter μ. Thus, (8) can be re-written as:

	

ψψ µψ
ψ µ ψ µ ψ

 Γ +  
=     Γ Γ + + +   

( )
( | ,  ,  )

( ) ( 1)

iy

i i
i i i i

i i i

y
f y

y
x d q

�
(9)

where ψ is the overdispersion parameter, and the conditional mean for the outcome takes the usual expo-
nential form:

	
µ β γ λ ∗

= =

 
= = + +   

∑ ∑
1 1

( | ,  ,  )
J J

i i i i i j ij j ij
j j

E y exp d qix d q x
�

(10)

In the above equation xi is a vector of exogenous observable characteristics of individual i which do not vary 
among alternatives, and β is the conformable vector of coefficients. The multinomial treatment enters the 
model trough di, the set of J dummies, dij indicating the treatment alternatives. qi is a vector of J unobservable 
latent factors ijq∗ , with associated factor loadings λj, which potentially affect both the outcome and the treat-
ment, generating endogeneity in the outcome model.

The equation for the multinomial treatment is derived from a random utility model, according to which 
each individual chooses the treatment which maximizes her indirect utility. Indirect utility for individual i 
from alternative j can be expressed as follows:

	 ij j ijV qα∗ ∗= +iz � (11)

where zi is a vector including the exogenous covariates in xi in (10) plus a set of instruments, and αj is the 
vector of associated parameters for the alternative j. Alternative j is chosen by individual i iff , .ij ikV V k j∗ ∗≥ ∀ ≠  
The dummy dij in (10) takes value 1 if alternative j is chosen, 0 otherwise. Utility from alternative j = 0 is nor-
malized so that 0 0.iV ∗ =

We specify ijq∗  as i.i.d logistic errors after normalization. This amounts to assume a Multinomial Logit 
(MNL) representation for the probability of the treatment, which can be written as follows:

	 1

( )
( | ) for 0, 1, ,  

1 ( )

j
ij i J

k
k

exp
Pr d j J

exp

α

α
=

= = …
+ ∑

i

i

z
z

z
�

(12)

[Correction added after online publication 8 November 2016: For consistency, qij was changed to ijq∗  on p. 4, 
line 35 and p. 5, line 10. Also, the formatting of qi was corrected from italics to bold in eqs. 9 and 10.]

4  The 2SRI Estimator

4.1  First Stage

In multinomial discrete choice models there is no consensus about the definition of errors and residuals. With 
our notation, let �( | )ij iPr d z  be the predicted probability of choosing alternative j, obtained after estimation of 
a multinomial response model. The most obvious definition of residuals is what we name, following Cameron 
and Windmeijer (1996), raw residuals (adopted for example by Terza, Basu, and Rathouz 2008, and Staub 2009):

	 �ˆ ( | )   for   0, 1, , R
ij ij ij iq d Pr d j J= − = …z � (13)

In a multinomial logit model such as the one we consider in the first stage, it can be easily shown that the raw 
residuals above coincides with the generalized residuals of Gourieroux et al. (1987).
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6      A. Geraci et al.: Testing Exogeneity of Multinomial Regressors in Count Data Models

Alternatively, Pagan and Vella (1989) suggest a standardized version of the residuals, with unit variance, 
we call standardized residuals, also named Pearson residuals in the literature.

	 � � �1/2 1/2ˆ ( | ) (1 ( | )) ( ( | ))   for   0, 1, , S
ij ij i ij i ij ij iq Pr d Pr d d Pr d j J− −= − − = …z z z � (14)

In the absence of any guidance on the choice between these two alternatives, in our Monte Carlo study we will 
compare them, to find out whether standardization improves the performance of the exogeneity test.

4.2  Second Stage

Once the MNL for treatment is estimated, we have available two types of residuals for each alternative (raw, 
R, and standardized, S) based on expressions (13) and (14), say:

�ˆ ( | )   for   0, 1, ,    , r
ij ij ij iq d Pr d j J r R S= − = … =z

4.2.1  Correct Specification

Our main analysis will consider a correctly specified model, based on the conditional NB2 distribution (9). 
The first stage residuals are added to the structural equation for the outcome, substituting for the unobserv-
able latent factors, so that equation (10), describing the conditional mean for y, can be re-written as follows

	 1 1

ˆ ˆ( | , , )    , 
J J

r r
i i i i i j ij j ij

j j
E y q exp d q r R Sβ γ λ

= =

 
= + + =′  

∑ ∑x d x
�

(15)

This second stage model is estimated via maximum likelihood and the exogeneity test for the hypothesis 
H0:λ1 = … = λJ = 0 is carried out through Wald, Likelihood ratio and Lagrange Multiplier tests.

4.2.2  Misspecification

After assessing the finite sample properties of the 2SRI test under correct specification, we will allow for two 
different kinds of misspecification: in the second stage and in the first stage model, respectively.

In the first misspecified scenario we neglect over-dispersion in the second stage count data model. The 
conditional density used for estimation is a Poisson distribution, which incorrectly sets ψ = 0 in the NB2 distri-
bution generating the data (9), while maintaining the same formulation (10) for the conditional mean. Despite 
the fact that this specification does not allow for the existing overdispersion of the data, it is well known that 
the Poisson PML estimator is still consistent for the conditional mean of the outcome, which remains the same. 
Therefore, it is interesting to investigate if the Poisson 2SRI exhibits some robustness properties.

In the second misspecified scenario we look for the potential consequences of adopting a wrong func-
tional form for the first stage discrete choice model: the treatment dummies are now generated by a multi-
nomial probit process, while the residuals are still evaluated after estimation of a multinomial logit model.

5  The Monte Carlo Study
In order to investigate the finite sample properties of the 2SRI exogeneity tests, we run simulations under dif-
ferent data generating processes (dgp) described below.6

6 The study has been conducted using STATA 14. Programming code and user-written routines are available on request.
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5.1  Experimental Design

Random utilities are computed by way of a discrete choice model; the j-th status dummy assumes value 1 if 
its utility has the highest value among the J + 1 alternatives, 0 otherwise. After having generated the dummies 
representing the multinomial treatment, the conditional expectation of the count dependent variable, y, is 
obtained by random sampling from a Negative Binomial type-2 distribution. This is obtained as a Poisson-
Gamma mixture with parameter λi = μiνi, where μi is the conditional mean of a Poisson random variable, taking 
the usual exponential form, and νi is a random draw from a Gamma distribution. The number of alternatives 
in the multinomial treatment model, J + 1, is set to three: j = 0, 1, 2, so that only two dummies are included 
inside the conditional mean for the outcome.

In order to evaluate size and power properties of the exogeneity tests, we build two different dgps under 
endogeneity and exogeneity of the multinomial treatment. Both dgps we analyze include logistic latent 
factors, but they differ for the degree of overdispersion. Under dgp2 the count variable is set to be much less 
overdispersed – i.e. its variance is closer to its mean, compared to the count variable generated under dgp1.7 
The sample size, N, is set to 5.000 observations, which is a realistic size for application of count data models 
to microeconometric data. The size and power properties of the 2SRI exogeneity tests are evaluated on 5.000 
replications of the test statistics.

The following table describes the distribution of the pseudo random variables and the parameter values 
in our experimental setting.

Description of the Experimental Design.

d1i = 1 if ∗ ∗ ∗ ∗=1 0 1 2max( , , );i i i iV V V V  0 otherwise
d2i = 1 if ∗ ∗ ∗ ∗

2 0 1 2=max( , , );i i i iV V V V  0 otherwise
∗

0iV = 0
∗

1iV ∗= + + − + 10.025 0.5 0.5 1 0.25 2i i i iobs inst inst q
∗

2iV ∗= + + + + 20.25 0.1 0.5 1 0.5 2i i i iobs inst inst q
inst1i = 1[N(0, 1) < 0.5] – first instrument
inst2i = N(0, 1) – second instrument
∗ ∗
1 2, i iq q i.i.d draws from a Bivariate Logistic distribution in dgp1 and dgp2a

i.i.d draws from a Bivariate Normal Distribution in dgp3b

f(yi, |xi, di, qi)
ψ

ψ µψ
ψ µ ψ µ ψ

 Γ +  
=   Γ Γ + + +   

( )
( ) ( 1)

yi
i i

i i i

y
y

Mixing distribution vi ψ
ψ

 
Γ  

1, , with ψ = 1 in dgp1, ψ = 3 in dgp2

μi = exp(k + βobsobsi + γd1d1i + γd2d2i + λ1 1iq∗  + λ2 2iq∗ )
k = 1 in dgp1; k = −1 in dgp2
βobs = 0.5
γd1 = 0.4
γd2 = 0.8
λ1 = −0.1 if treatment is endogenous; 0 otherwise
λ2 = −0.5 if treatment is endogenous; 0 otherwise

aThe bivariate logistic distribution of differenced errors (q1i − qoi), (q2i − qoi) is obtained by postulating an i.i.d. type 1 extreme 
values distribution for the original errors (qoi, q1i, q2i).
bThe bivariate normal distribution of differenced errors (q1i − qoi), (q2i − qoi) is obtained by postulating an i.i.d. trivariate normal 
distribution with zero mean and variance covariance matrix equal to the identity matrix for the original errors (qoi, q1i, q2i).

In Table A1 of Appendix 1 we report basic descriptives of the treatment dummy variables and of the count 
variables under the different dgps. Notice that the marginal probability distribution of the dummies is kept 

7 We obtain these pattern by increasing the scale parameter of the mixing gamma distribution and by lowering the constant 
inside the conditional mean of the count, as detailed in the table describing the experimental design.
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8      A. Geraci et al.: Testing Exogeneity of Multinomial Regressors in Count Data Models

constant over the different data generation processes. dgp2 involves a much lower degree of overdispersion 
than in dgp1, as it can be observed comparing the variance and the mean of the two count variables. Con-
comitantly, under dgp2 the count variable displays the “excess of zeros” pattern wich is often encountered in 
applications.

5.2  Results

5.2.1  Exogeneity Test

In Table 1 we report rejection frequencies over the 5000 Monte Carlo replications of the three asymptotycally 
equivalent Wald, Likelihood Ratio (LR) and Lagrange Multplier (LM) tests under correct specification of the 
estimated model, i.e. when the estimated model is NB2. We present two versions of the Wald test, the first 
of which is based on a Murphy-Topel corrected Variance-Covariance Matrix. This is evaluated taking into 
account that the model estimated in the second stage involves generated regressors, namely the first stage 
estimated residuals. We have derived the correction when the first stage model is multinomial adapting the 
procedure suggested by Hole (2006).8 The Table reveals a general very good performance of all 2SRI tests, 
in terms of both size and power for both analyzed dgps. If we compare the test performance among the two 
definitions of residuals we notice an improvement of power properties of Wald corrected test when switch-
ing from “raw” to “standardized” version. A very slight power gain is associated to the use of standardized 
residuals also for the non corrected version of the Wald test and for the LM test. The improved general per-
formance with standardized residuals is an interesting pattern we discover here and in the following results, 
and to which we will devote further attention later.

Table 1: dgp1/dgp2 – NB2 Estimator: Rejection Frequencies of Exogeneity Tests.

Nom. size 
 
 

dgp1 
 
 

dgp2

Raw residuals 
 

Standardized residuals Raw residuals 
 

Standardized residuals

Emp. size  Emp. power Emp. size  Emp. power Emp. size  Emp. power Emp. size  Emp. power

Wald test (Murphy Topel correction)
 0.01   0.0070  0.9164  0.0058  0.9602  0.0082  0.9084  0.0094  0.9540
 0.05   0.0404  0.9496  0.0408  0.9774  0.0490  0.9504  0.0496  0.9716
 0.10   0.0922  0.9618  0.0904  0.9838  0.0912  0.9642  0.1028  0.9792
Wald test (no correction)
 0.01   0.0088  0.9952  0.0074  0.9974  0.0110  0.9862  0.0112  0.9918
 0.05   0.0462  0.9976  0.0426  0.9992  0.0554  0.9926  0.0544  0.9966
 0.10   0.1010  0.9980  0.0942  0.9996  0.0986  0.9950  0.1080  0.9972
Likelihood ratio test
 0.01   0.0090  0.9952  0.0074  0.9974  0.0110  0.9862  0.0118  0.9920
 0.05   0.0462  0.9976  0.0434  0.9992  0.0552  0.9926  0.0554  0.9966
 0.10   0.1010  0.9980  0.0956  0.9996  0.0986  0.9950  0.1072  0.9972
Lagrange multiplier test
 0.01   0.0094  0.9850  0.0086  0.9948  0.0112  0.9666  0.0124  0.9868
 0.05   0.0482  0.9928  0.0474  0.9982  0.0568  0.9870  0.0568  0.9954
 0.10   0.1046  0.9956  0.0968  0.9990  0.1004  0.9916  0.1102  0.9974

N. of replications of the Monte Carlo experiment (R) = 5.000; Saple size for each replication (N) = 5.000. Raw residuals and 
Standardized residuals are computed after estimation of the first stage equations using, respectively: = −ˆ ˆ( ),ij ij ijq d q   
for j = 0, 1, 2 and − −= − −1/2 1/2ˆ ˆ ˆ ˆ(1 ) ( ),ij ij ij ij ijq p p d p  for j = 0, 1, 2.

8 Terza (2016) shows how the computation can be simplified in the general case of two-stage optimization estimators. We experi-
mented his procedure and found very similar corrected standard errors, as expected. We are grateful to an anonymous referee for 
pointing this new paper to us.
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Notice that our approach is similar to the control function one in that the computed residuals, regardless 
they are variance standardized or not, are meant to be an approximation of the latent errors of the first stage 
multinomial process, which have type 1 extreme value distribution [cf Wooldridge (2014) and Garrido et al. 
2012]. In other words, the residuals are mis-specified by construction, being evaluated as a function of the 
observed binary dummies. In our intention, this is mimicking the situation faced by the applied econometri-
cian when she postulates a discrete choice model underlying the generation of the multinomial treatment. 
We also run a variation of this experiment, and generated the errors of the discrete choice model with the 
population counterpart of the raw residual definition given in Section 4.1: Pr( | ),R

ij ij ij iq d d z= −  as specified 
in Terza, Basu, and Rathouz (2008). The results, contained in Table A2 of Appendix 3, show that even in 
this setting, where the raw residuals are correctly specified by construction, the tests based on standardized 
version perform generally well, with empirical size close to nominal and limeted loss of empirical power with 
respect to the tests based on the correctly specified raw residuals.9

Table 2 presents the results concerning the effects on exogeneity tests of the first misspecification we 
study, which affects the second stage count data model. The tests are here obtained estimating a Poisson 
regression model while both dgps involve a NB2 process. As the count variable exhibits greater overdisper-
sion under dgp1 than under dgp2, the Poisson estimator, which assumes equidispersion, is “more misspeci-
fied” under dgp1. In this latter scheme, the bad consequences of misspecifying overdispersion are serious 
for all tests but for Lagrange Multiplier. More precisely, the empirical size of the Wald test evaluated without 
Murphy-Topel correction, and that of the Likelihood Ratio test are dramatically affected by misspecification 
of overdispersion, with rejection frequencies that imply huge probabilities of first type error (reject exogene-
ity when this is true). Moreover, the Wald test with corrected variance is found to loose any power of spotting 
true endogeneity. The robustness of LM test means that the quantities involved in its computation (score 
function of the unrestricted model, restricted estimator) are less affected by overdispersion parameter than 
the quantities involved in LR (restricted and unrestricted loglikelihood functions) or non-corrected Wald tests 

Table 2: dgp1/dgp2 – Poisson Estimator: Rejection Frequencies of Exogeneity Tests.

Nom. size 
 
 

dgp1 
 
 

dgp2

Raw residuals 
 

Standardized residuals Raw residuals 
 

Standardized residuals

Emp. size  Emp. power Emp. size  Emp. power Emp. size  Emp. power Emp. size  Emp. power

Wald test (Murphy Topel correction)
 0.01   0.0006  0.0000  0.0000  0.0000  0.0204  0.2842  0.0252  0.6040
 0.05   0.0352  0.0000  0.0236  0.0000  0.0846  0.4620  0.0988  0.7200
 0.10   0.1008  0.0000  0.1356  0.0000  0.1500  0.5564  0.1724  0.7742
Wald test (no correction)
 0.01   0.5466  0.9990  0.5572  0.9988  0.0346  0.9944  0.0324  0.9962
 0.05   0.6696  0.9992  0.6820  0.9996  0.1000  0.9964  0.1114  0.9976
 0.10   0.7360  0.9992  0.7448  0.9998  0.1696  0.9972  0.1816  0.9984
Likelihood ratio test
 0.01   0.5460  0.9990  0.5460  0.9990  0.0338  0.9944  0.0338  0.9944
 0.05   0.6694  0.9992  0.6694  0.9992  0.1000  0.9964  0.1000  0.9964
 0.10   0.7358  0.9992  0.7358  0.9992  0.1708  0.9972  0.1708  0.9972
Lagrange multiplier test
 0.01   0.0118  0.8536  0.0106  0.9264  0.0116  0.8926  0.0120  0.9508
 0.05   0.0516  0.9286  0.0520  0.9724  0.0574  0.9514  0.0572  0.9794
 0.10   0.1010  0.9552  0.1012  0.9826  0.1010  0.9694  0.1078  0.9874

N. of replications of the Monte Carlo experiment (R) = 5.000; Saple size for each replication (N) = 5.000. Raw residuals and 
Standardized residuals are computed after estimation of the first stage equations using, respectively: = −ˆ ˆ( ),ij ij ijq d q  for j = 0, 1, 
2 and − −= − −1/2 1/2ˆ ˆ ˆ ˆ(1 ) ( ),ij ij ij ij ijq p p d p  for j = 0, 1, 2.

9 We are grateful to an anonymous referee for suggesting us to analyze this case.
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(unrestricted estimator). Under dgp2, where overdispersion is “less misspecified,” the empirical sizes of the 
Wald and LR test are higher than nominal ones, but their magnitudes are more reasonable than their coun-
terparts under dgp1. Remarkably, the LM test is still found to be a robust testing procedure. Our results under 
dgp1 and dgp2 convey two main messages for the practitioners: first, the LM test is robust to misspecification 
of overdispersion in the count data model; second, the LM test displays higher power when evaluated with 
standardized residuals rather than raw residuals, confirming the pattern already spotted for all tests under 
correct specification of the count data model.

Table 3 reports the results obtained under misspecification of the first stage multinomial model. Here, 
the treatment is generated under dgp3, corresponding to a multinomial probit model, while the residuals are 
evaluated after estimation of a multinomial logit model. In this experiment we mantain correct specification 
of the count data model to isolate the potential consequences of misspecifying the discrete choice model 
functional form. We find evidence of robustness of all the considered 2SRI exogeneity tests, which show 
empirical size very close to nominal and very high empirical power.

5.2.2  Comparing Raw and Standardized First Stage Residuals

In this section we carefully analyze the different finite sample performance of the exogeneity tests obtained 
including in the second stage two alternative definitions of residuals, i.e. raw versus standardized. In 
Figures A1 and A2 of Appendix 2 the empirical power is plotted against the nominal size for different values 
of the latter. The interesting part of the plot is for small values of nominal size that will be chosen in practice 
(usually nominal size is set below 0.10). The higher power of the test obtained standardizing the first stage 
residuals is a clear pattern for all test statistics under both dgps, confirming that there is a gain in using the 
standardized residuals.

To get some insights on the source of this gain we exploit our simulation setting to compare the generated 
logistic errors of the discrete choice model and their two alternative estimates represented by raw and stand-
ardized residuals, respectively. To this purpose, we perform the following elaborations. First, we regress the 

Table 3: dgp3: Rejection Frequencies of Exogeneity Tests.

Nom. size 
 

Raw residuals 
 

Standardized residuals

Emp. size  Emp. power Emp. size  Emp. power

Wald test (Murphy Topel correction)
 0.01   0.0066  0.9998  0.0086  1.0000
 0.05   0.0452  1.0000  0.0492  1.0000
 0.10   0.0934  1.0000  0.0984  1.0000
Wald test (no correction)
 0.01   0.0104  1.0000  0.0098  1.0000
 0.05   0.0498  1.0000  0.0514  1.0000
 0.10   0.0974  1.0000  0.1016  1.0000
Likelihood ratio test
 0.01   0.0104  1.0000  0.0104  1.0000
 0.05   0.0498  1.0000  0.0518  1.0000
 0.10   0.0972  1.0000  0.1016  1.0000
Lagrange multiplier test
 0.01   0.0088  0.9998  0.0092  1.0000
 0.05   0.0516  1.0000  0.0554  1.0000
 0.10   0.0994  1.0000  0.1066  1.0000

N. of replications of the Monte Carlo experiment (R) = 5.000; Saple size for each replication (N) = 5.000. Raw residuals and 
Standardized residuals are computed after estimation of the first stage equations using, respectively: = −ˆ ˆ( ),ij ij ijq d q  for j = 0, 1, 
2 and − −= − −1/2 1/2ˆ ˆ ˆ ˆ(1 ) ( ),ij ij ij ij ijq p p d p  for j = 0, 1, 2.
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generated errors used to simulate the two random utilities attached to alternatives 1 and 2, named q1 and q2 in 
Figure A3 of Appendix 2, against the two alternative definitions of residuals. In the upper part of Figure A3 we 
plot the true latent errors versus the fitted latent errors obtained using as regressor the two alternative defini-
tions of residuals. The slope of the estimated regression line is found to be very close to one in the standard-
ized residual case, revealing that the latter is approximately equal to the conditional expectation of the latent 
error. In the bottom part of Figure A3 we plot together the densities of the true latent errors, the raw residuals 
and the standardized residuals. These plots reveal that standardizing the variance of the residuals allows for 
a better coverage of the range of possible values assumed by the latent error component. Indeed, standardi-
zation will always increase the variance, since the variance of raw residuals is equal to p(1 − p), and therefore 
lower than one. Taken together, these results reveal that standardized residuals are better predictors of the 
latent errors, and we inpute to this fact their better performance with respect to their raw counterpart when 
testing for exogeneity.

As a by-product of our analysis, we look at the performance of the endogenous dummy coefficients esti-
mators. We find that -across all estimated models and dgps- their overall finite sample bias is always lower 
when estimation involves the standardized version of the first sage residuals, and this corroborates the infer-
ence gain already spotted for the exogeneity test.10

6  �Supplemental Insurance and Healthcare Demand: New Evidence 
from a French Case Study

Count data models with possibly multinomial endogenous treatment arise quite frequently in the Health 
Economics literature. Here demand naturally comes as a count (for physician visits or hospital admissions) 
with polytomous health insurance status being the potentially endogenous treatment of interest. To provide 
a vivid example of how the two alternative 2SRI strategies perform in the applied econometrics practice we 
revisit and update a case study on the effect of complementary health insurance on health care utilization in 
France originally explored by Buchmueller et al. (2004).

6.1  Motivation and Background

In France, Sècuritè Sociale, the social security program financed out of personal income tax, covers most of 
individual healthcare expenditure for legal residents, i.e. about 78% as reported by Grignon and Kambia-
Chopin (2009). Copayments for visits for general practitioner or specialist visits, hospital stay, or prescrip-
tion drugs, are customarily levied to moderate moral hazard. To get rid of most of these copayments French 
citizens obtain complementary health insurance (CHI) on a voluntary basis (individually purchase) or within 
an employer-sponsored set-up (employer insured). CHI plans enroll 85% of the French population and fund 
about 13% of total health care expenditure, 9% of health care expenditure rests on individuals as out-of-
pocket payments. Similarly to Buchmueller et al. (2004) our exercise aims at assessing the impact of the CHI 
status on physician visits’ utilization in France. We differ in that we allow for heterogeneous impacts of the 
individually purchased and the employer provided CHI with respect to the benchmark case of no comple-
mentary coverage. Accounting for endogeneity of the trichotomous treatment and modeling the dependent 
variable as a count represent the biggest improvements on the previous study.

We use data from the 2006 wave of the Enquète sur la Santè et la Protection Sociale (ESPS), a national 
household survey conducted by IRDES. The full sample contains data for 22,725 individuals. We restrict our 
analysis to individuals aged between 25 and 75. After excluding those who have not completed the “health 
status” section of the questionnaire, have missing data on key regressors or declare their value unknown, 

10 Detailed results are available in the working paper version (Geraci, Fabbri, and Monfardini 2014).
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12      A. Geraci et al.: Testing Exogeneity of Multinomial Regressors in Count Data Models

we end up with a final estimation sample of 5989 observations. Table S1 in the online Appendix presents the 
distributions of our utilization measure, i.e. counts for visits to any physician in the 12 months before the 
interview,11 and the treatment variable, i.e. availability of a Complementary Health Insurance. On average, 
individuals consume 5.3 visits per year, sample variance being fivefold larger, a clear sign of overdispersion. 
56% of the sample receives CHI as part of work total compensation while 33% purchases it deliberately in the 
market. 10% of the sample does not obtain complementary insurance either as employer provided or as indi-
vidually purchased. However, more than half of these individuals (6% of our sample) is covered by CMU-C 
(Couverture Maladie Universelle Complementaire), a plan introduced in 2000 by the French Government to 
improve the non-elderly poor access to health care. CMU-C beneficiaries are asked no co-pay at the point of 
use. Eligible individuals are those with a household income below a given threshold (€587 per adult equiva-
lent per month in 2005, see Grignon, Perronnin, and Lavis 2008). Upon control for income per adult equiva-
lent we assume this complementary insurance status (being CMU-C beneficiary) as conditionally exogenous.

Descriptive statistics for the regressors we control for in our models are provided in Table S2 in the online 
Appendix. Their extended name is self-explanatory on their definition.

6.2  Estimation Results

The Complementary Health Insurance status may vary according to employer-based or individually pur-
chased vis-a-vis being either covered by CMU-C or not covered. We model it as a Multinomial Logit. Fol-
lowing Buchmueller et al. (2004), professional occupational variables and labor market status are used as 
instruments – and therefore excluded from the visit equation, to avoid identification being based only on 
non-linearity. The usual argument here is that different employment sectors offer different opportunities to 
enroll into complementary health insurance schemes and also attract individuals with different degrees of 
risk aversion (Fabbri and Monfardini 2016).

The estimation results of the multinomial model for insurance choice are displayed in Table S3 in the 
online Appendix. The Pseudo R square, the percent of correctly classified observations and the Wald test sta-
tistic for the significance of the regression support the overall goodness of fit of the estimated discrete choice 
model. We also obtain evidence on the relevance of our instruments, strongly rejecting the null hypothesis 
that their coefficients are jointly null. In this setting exclusion restrictions, hence exogeneity of instruments, 
can be questioned. The signs of the Average Marginal Effects (AME) are coherent with theoretical predictions 
and previous empirical research in the field. Being unemployed and self-employed significantly reduces the 
probability of receiving employer CHI by 31 and 16 percentage points, respectively, while increasing the prob-
ability of individually purchase a CHI by 20 and 14.5 percentage points, respectively. Occupation categories are 
almost all significant determinants of employer provided CHI, being less relevant for individually purchased 
ones. The effect of aging on the probability of receiving employer provided CHI is positive and declining until 
the individuals reaches his 50 years, being negative then after. The opposite pattern is found for individually 
purchased CHI. Income is a good predictor for the CHI status. The higher is individual’s income and the higher 
(lower) is the probability of receiving CHI coverage by employers (by individually purchased plans).

Coming to the count regression, we adopt the Negative Binomial type 2 (NB2) model which was the object 
of our Monte Carlo investigation and has been shown to provide good fit of overdispersed count data. Table 4 
reports the main estimation results. The significance of the overdispersion parameter ln(α) displayed in the 
bottom part of the table supports the NB2 specification against the Poisson. The values of observed versus 
estimated probabilities attached to the first ten count outcomes witness the good fit of both the exogenous 
and endogenous versions of the model (see Table S5 of the Appendix).

We first look at the outcome of the different exogeneity tests reported in Table 5. Opposite conclusions 
are implied by the alternative definitions of residuals. While exogeneity of health insurance is not rejected 

11 One year recall data guarantees to have enough variation in the dependent of interest. It allows to span the full range of count 
values from low to high users.
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Table 4: Supplemental Insurance and Healthcare Demand: II Stage NB2 Regressions for the Tot. Number of Doctor Visits 
(GP + Specialists).

Variables  
 

Exogenous 
 

Raw residuals 
 

Std. residuals

(NC s.e.)  (MT s.e.)  (Boot. s.e.) (NC s.e.)  (MT s.e.)  (Boot. s.e.)

Employer insured   0.2048***  0.3243  0.3243  0.3243  0.5630***  0.5630**  0.5630***
  [0.054]  [0.342]  [0.374]  [0.349]  [0.184]  [0.224]  [0.207]

Individually purchased  0.2398***  0.3018  0.3018  0.3018  0.4952**  0.4952  0.4952*
  [0.055]  [0.425]  [0.460]  [0.438]  [0.211]  [0.322]  [0.256]

Raw Res. – Emp. Ins.     −0.1296  −0.1296  −0.1296     
    [0.337]  [0.365]  [0.343]     

Raw Res. – Ind. Purch.     −0.0694  −0.0694  −0.0694     
    [0.421]  [0.452]  [0.434]     

Std Res. – Emp. Ins.           −0.1719**  −0.1719**  −0.1719**
          [0.072]  [0.086]  [0.083]

Std Res. – Ind. Purch.           −0.1224  −0.1224  −0.1224
          [0.089]  [0.154]  [0.109]

Additional controls   Yes  Yes  Yes  Yes  Yes  Yes  Yes
Constant   1.7910***  1.7755***  1.7755***  1.7755***  1.6659***  1.6659***  1.6659***

  [0.156]  [0.417]  [0.443]  [0.434]  [0.263]  [0.366]  [0.302]
ln(α)   −0.7211***  −0.7213***  −0.7213***  −0.7213***  −0.7228***  −0.7228***  −0.7228***

  [0.027]  [0.043]  [0.050]  [0.041]  [0.043]  [0.091]  [0.041]
Observations   5989  5989  5989  5989  5989  5989  5989
Log-Pseudologlik   −15428.080  −15427.820  −15427.820  −15427.820  −15424.609  −15427.820  −15427.820
LR test (all coeff.)   2022.460  2209.310  2209.310  2209.310  2213.075  2213.075  2213.075
(p-Value)   (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)

Dependent variable is the total number of consultations (GP and specialists) in the year before the interview. The coefficients 
are estimated using a 2SRI procedure. The table reports the second stage NB2 regressions. All regressions include the follow-
ing set of controls: Gender dummy; Age; Age squared; Married dummy; Children dummy; Family size; Education dummies (3); 
HH’s income quintiles dummies (4); Self-assessed health status dummies (2); Smoking habits dummies (3); Chronic condition 
dummy; Limitation with daily activities dummy; Exemptions dummies (2); Regime Genarale dummy; CMU complementaire 
dummy. Estimates of the first stage MNL model are available in the online appendix. Exclusion restrictions used in the first 
stage MNL: labor status dummies (2); labor sector dummies (2); type of occupation dummies (6); Joint significance of exclusion 
restrictions: Wald test statistic = 237.92 (0.000).

Table 5: Supplemental Insurance and Healthcare Demand: Exogeneity Tests for Insurance Dummies.

 
 

Raw residuals 
 

Std. residuals

(NC s.e.)  (MT s.e.)  (Boot. s.e.) (NC s.e.)  (MT s.e.)  (Boot. s.e.)

Wald test  0.341  0.311  0.365  5.730*  4.082  4.471
(p-Value)   (0.843)  (0.856)  (0.833)  (0.057)  (0.130)  (0.107)
LR test   0.520  0.520  0.520  6.942**  6.942**  6.942**
(p-Value)   (0.771)  (0.771)  (0.771)  (0.031)  (0.031)  (0.031)
LM test   0.406  0.406  0.406  6.516**  6.516**  6.942**
(p-Value)   (0.816)  (0.816)  (0.816)  (0.038)  (0.038)  (0.031)

λ λ= =0 1 2: 0,H  where λ1  and λ2  are the coefficients of the residuals.

according to raw residuals inclusion, irrespective of the test approach used, the opposite conclusion is 
reached by 7 out of 9 test statistics evaluated with the standardized version of the residuals.12 Since we have 
reasons to believe that health insurance is endogenous (on both theoretical grounds and existing empirical 

12 The exceptions are represented by the Wald test evaluated with corrected Murphy Topel and boostrapped variance-covariance 
matrix.
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evidence), we reconcile this result with the higher power displayed in the Monte Carlo study by the 2SRI tests 
using standardized residuals.

Our main coefficients of interests are the treatment dummies coefficients (moral hazard effects) and 
the residuals’s coefficients (selection effect).13 The first column of Table 4 displays estimates obtained under 
exogeneity of health insurance, the following three columns account for endogeneity by inclusion of raw 
residuals, using variance matrix non corrected, corrected and bootstrapped, respectively, while the last three 
columns corresponds to inclusion of standardized residuals. Under exogeneity, significant moral hazard 
effects arise from either employer provided or individually purchased CHI. Both types of complementary 
coverage are associated to a a 22–27% increase in the conditional mean number of visits with respect to the 
baseline case of no complementary insurance. Once we allow for endogeneity of the insurance status, results 
on the treatment dummies coefficients and the residuals’ coefficients are largely affected by the definition of 
residuals adopted. If we rely upon 2SRI with raw residuals we obtain evidence of both CHI status dummies 
being exogenous and exerting no effect on healthcare consumption. Adopting standardized residuals, the 
procedure favored by our Monte Carlo Study, we find larger moral hazard effects, especially for employer 
provided CHI. Moreover, we find a statistically significant negative coefficient of standardized residual cor-
responding to employer provided CHI status. This evidence supports the view that individuals are favorably 
selected (see Fang, Keane, and Silverman 2008) into employer provided plans and engage in more moral 
hazard than expected according to observable characteristics only. On the contrary, we do not find evidence 
of statistically significant selection into individually purchased plans. Overall, the results of our application 
confirm that inference based upon raw residuals can be severely misleading on both the effects of insurance 
and its endogeneity status.14

7  Concluding Remarks
We study two-stage residuals inclusion (2SRI) approach exogeneity testing of multinomial treatment in count 
data models. The procedure involves estimating the residuals from a discrete choice model for the endog-
enous treatment status, and plugging them as additional variables in the structural count regression, where 
their joint significance can be tested with likelihood based inference.

The results of our Monte Carlo study show that 2SRI exogeneity tests using Wald, LR and LM approaches 
have good finite sample properties when the distribution of the outcome is correctly specified. In this case, 
all tests display proper empirical size and power. We then analyze the performance of 2SRI under misspeci-
fication of the first and second stage models and find that LM test is the only robust procedure when over-
dispersion in the data is ignored.

We investigate the properties of the testing procedure as for two alternative definitions of residuals: raw 
and standardized. We observe that the power of the test is generally higher using standardized residuals, 
which provide a better fit of the discrete choice model errors. Furthermore, resorting to standardized residu-
als leads to a smaller bias of the endogenous treatment dummies coefficients.

The patterns emerging from the Monte Carlo investigation are quite revealing when we bring the 2SRI 
method to real data on an important case study in health economics: the modeling of visits’ count with 

13 Full estimation results are contained in Table S4 of the online Appendix. Coefficients of other regressors exhibit the expected 
signs across all specifications. The most prominent are those related to health status: self-assessed health, suffering from chronic 
conditions or from some limitation in daily activities. All of them testify that worse health positively correlates with healthcare 
consumption. Notice, however, that these effects are likely biased by self-reporting (see Bago d’Uva et al. 2011). Consumption 
rises, as expected, as the individual ages. Moreover being highly educated is positively correlated with healthcare consumption, 
a common finding in the literature.
14 As a robustness check, we re-run the whole set of estimates dropping the regressors whose exogeneity is more questionable, 
such as self-assessed health and smoking habits dummies. Table S6 in the Online Appendix show that our main findings about 
exogeneity of health insurance are generally unaffected: exogeneity is still rejected only using standardized residuals, despite 
with a lower strength.
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endogenous health insurance choice. In our empirical analysis, the use of raw, non-standardized residuals 
leads to the – most likely wrong – conclusion that health insurance choice is exogenously determined, and it 
has limited to no effect on healthcare consumption. On the contrary, the specification based on standardized 
residuals is able to detect insurance endogeneity, i.e. favorable selection into employer provided complemen-
tary insurance, and to identify positive and significant treatment effects.

Appendix 1

Table A1: Summary Statistics of Dependent Variables Generated in Monte Carlo Study.

 
 
 

dgp1 
 
 

dgp2 
 
 

dgp3

Endog.  Exog. Endog.   Exog. Endog.  Exog.

% % % % %  %

Multinomial treatment dummies
 d0i   24.63  24.63  24.68  24.68  21.94  21.94
 d1i   34.18  34.18  34.38  34.38  34.12  34.12
 d2i   41.19  41.19  40.94  40.94  43.94  43.94

Count variable – yi

 Mean   7.622  5.224  1.021  0.678  5.756  5.058
 Variance   456.329  50.768  11.704  1.087  82.778  47.227

Value   %  %  %  %  %  %

0   22.30  20.48  55.60  58.28  21.84  20.90
1   14.72  14.86  24.04  25.80  16.26  15.22
2   10.98  11.16  10.54  9.88  10.38  11.28
3   8.16  9.00  3.80  3.72  8.80  9.60
4   6.28  7.28  2.32  1.32  5.74  7.60
5   4.84  5.60  1.20  0.64  5.32  5.64
6   4.20  4.54  0.60  0.14  4.30  4.52
7   3.66  4.18  0.40  0.12  3.60  3.32
8   2.68  3.14  0.38  0.04  3.48  3.02
9   2.36  2.78  0.30  0.04  2.26  2.64
10   1.94  2.32  0.18  0.02  2.00  2.12
> 10   17.88  14.46  0.64  0  16.02  14.14

Summary statistics are computed on the 5000 observations of the first replication of the experiment.
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Appendix 2
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Figure A1: Empirical Power Plot of Wald Tests using Raw and Standardized Residuals.
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Figure A2: Empirical Power Plot of LR and LM Tests using Raw and Standardized Residuals.
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Figure A3: True Latent Factors against Estimated Residuals.

Table A2: NB2 Estimator with Correctly Specified Residuals: Rejection Frequencies of Exogeneity Tests.

Nom. size 
 

Raw residuals 
 

Standardized residuals

Emp. size  Emp. power Emp. size  Emp. power

Wald test (Murphy Topel correction)
 0.01   0.0068  0.7760  0.0084  0.7344
 0.05   0.0468  0.9172  0.0468  0.8942
 0.10   0.0978  0.9564  0.0922  0.9410
Wald test (no correction)
 0.01   0.0102  0.7874  0.0110  0.7476
 0.05   0.0536  0.9204  0.0486  0.8980
 0.10   0.1066  0.9570  0.0954  0.9432
Likelihood ratio test
 0.01   0.0104  0.7876  0.0108  0.7452
 0.05   0.0532  0.9200  0.0490  0.8972
 0.10   0.1062  0.9572  0.0968  0.9426
Lagrange multiplier test
 0.01   0.0110  0.7902  0.0116  0.7482
 0.05   0.0542  0.9204  0.0520  0.8990
 0.10   0.1084  0.9572  0.1018  0.9434

No of replications of the Monte Carlo experiment (R) = 5.000; Saple size for each replication (N) = 5.000. Raw residuals and 
Standardized residuals are computed after estimation of the first stage equations using, respectively: = −ˆ ˆ( ),ij ij ijq d q for j = 0, 1, 2 
and − −= − −1/2 1/2ˆ ˆ ˆ ˆ(1 ) ( ),ij ij ij ij ijq p p d p  for j = 0, 1, 2.
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