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Abstract 

In order to better understand the pathogenesis of Parkinson’s Disease (PD) it is mandatory to “put it 

into the aging process”, as aging is the most important risk factor for such a neurodegenerative 

pathology. Accordingly, we argue that a major mechanism underlying PD is inflammaging, i.e. the 

chronic inflammatory process characterized by an unbalance between pro- and anti-inflammatory 

stimuli, which is recognized a major component of most age-related diseases, including 

neurodegenerative diseases. A recent conceptualization suggests that inflammaging is part of the 

complex adaptive mechanisms (“remodelling”) that continuously occurs lifelong to neutralize the 

endogenously-produced danger signals (molecular “self-garbage”, including compounds/bacteria from 

gut microbiota) which fuel inflammaging, and can propagate inflammation locally (from cell to cell) 

and systemically (via exosomes and other molecules present in the blood of old subjects). Overall, this 

scenario is compatible with the hypothesis that inflammaging is an hormetic adaptation which is 

fundamental for survival but become detrimental in the post-reproductive period of life. Within this 

perspective, new treatments of PD can be envisaged, based on compounds capable of exerting hormetic 

effects switching the above-mentioned balance toward anti-inflammatory responses, including 

strategies capable of modulating the gut microbiota.   

 

Aging, inflammaging and neuroinflammation 	

The phenotype of old people is the result of the body to respond/adapt to cellular and molecular insults 

continuously in all tissues and organs (damaging stimuli) we are exposed to lifelong, which are sensed 

as danger signals recognized by a limited number of evolutionary conserved receptors. This 

phenomenon has been conceptualized as “remodelling”, which can be considered a general theory of 

aging [1,2]. 
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 The exposure to danger signals is a physiological phenomen (occurring in all organisms, 

including the young), which stimulates concomitant local and systemic responses, including the 

activation of the innate immune system, which can be conceptualized as “physiological inflammation”, 

a concept first proposed by E. Metchnikof more than a century ago. Such an inflammatory response, 

which we can reformulate as “inflammatory tone”, is highly conserved in evolution and critical for 

survival. Within this theoretical framework, the progressive increase with age of the inflammatory tone, 

resulting from a global increase in the sources/production of danger signals was conceptualized as an 

important example of remodeling and was dubbed “inflammaging” [3,4].  

Recently it was established that both systemic inflammation and neuroinflammation are current 

in the prodromal phase and sustained in the development of PD. Scientific data report that the 

peripheral immune system is activated and aggravates the brain inflammatory response, which may 

begin or increase neurodegenerative processes. In the central nervous system (CNS) an acute insult 

stimulates activation of microglial that increased and promote the recruitment of peripheral leukocytes 

to the CNS. This inflammatory process showed two different peculiarities; it is beneficial for neuronal 

tissue, since it stimulates clearance of cell debris and secretion of several neurotrophic factors; but 

conversely, inflammatory mediators modulate immune cells and act on neurons and contribute to 

neurodegenerative alterations [5]. In this contex the activation of inflammatory responses is 

fundamental for tissue homeostasis but can contribute to neuronal injury in particular when it is not 

monitored or it is in a chronic state. The CNS is composed of neural tissues with a regenerative 

capacity and for this reason it is particularly vulnerable to uncontrolled immune and inflammatory 

alterations [6]. Primarily the CNS was considered a privileged immunologically organ, a property that 

has been assigned to the presence of the blood-brain barrier (BBB), the low expression of major 

histocompatibility complex class II (MHCII) and the lack of brain lymphatic vessels; this point of view 
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changed after identification of inflammatory and immune mediators in patients with neurodegenerative 

diseases.  

The BBB is a cellular barrier between CNS capillaries and extracellular fluid of neurons and 

glial cells. The main function of the BBB is to provide a stable microenvironment for neural function, 

by providing optimal concentrations of ions for neural communication, due to the functional 

combination of channels and transporters of specific ions; furthermore, while the peripheral nervous 

system and CNS utilize the same neurotransmitters, the BBB prevents their free flow and sustains the 

optimized concentrations to avoid excitotoxicity phenomena. CNS pathologies and neurodegenerative 

diseases enhance BBB dysfunction (Fig.1). An increased BBB permeability promotes entry of 

macromolecules into the CNS and changes in blood vessels. This conclusion indicates that several 

neurodegenerative diseases are affected by the breakdown of the blood-brain barrier, leading to 

infiltration of inflammatory and immune mediators from the periphery. Recently, in this context, 

Louveau and colleagues demonstrated the presence in mouse brain of lymphatic vessels [7]. These data 

support the possibility of a new mechanism of entry and exit of immune cells from the CNS into the 

periphery aside from blood-brain barrier breakdown with implications in human neurodegenerative 

diseases. With the study of immune defense mechanisms from invertebrates to vertebrates, including 

humans, emerged the macrophage as the central player in this evolutionary scenario, not only for its 

role in inflammatory response and innate immunity but also in the stress response [8]. Indeed, on the 

basis of findings on the common evolution of immune and neuro-endocrine responses, we proposed the 

unifying term “stressors” to embrace all types of danger stimuli, including “antigens” and cell debris, 

capable of stimulating/activate the macrophage. Recently, inflammaging was recognized as one of the 

seven pillars underpinning the aging process [9] and shared by the all-major age-related diseases [4]. 

Moreover, the involvement of the immune system in neurodegenerative diseases has become obvious 

over the past few decades as reported by the activated microglia and astrocytes in patients’ brains. In 
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2007, it was proposed that inflammaging was an example of remodeling where the increased activation 

of with age of pro-inflammatory pathways stimulates the adaptive activation of anti- inflammatory 

networks [10].  

 An example of the complex regulation between pro- and anti-inflammatory pathways/products 

is represented by centenarians, who have largely escaped or postponed the major age-related diseases. 

These individuals are apparently capable of achieving an optimal balance between pro- and anti- 

inflammatory mechanisms, which likely allowed them to reach the extreme limit of human lifespan. 

Studies on centenarians have revealed augmented plasma levels of inflammatory molecules such as 

interleukin (IL)-6, interleukin (IL)-18, interleukin (IL)- 15, C reactive protein (CRP), serum-amyloid 

A, fibrinogen, Von Willebrand factor, resistin and leukotrienes [10-12]. However, this was 

counterbalanced by a concomitant large quantity of anti- inflammatory molecules (i.e. adiponectin, 

Transforming Growth Factor (TGF)-b1, interleukin (IL)-1 receptor antagonist (IL-1RA), cortisol, anti- 

inflammatory arachidonic acid compounds, such as HETE and EET) [13-17] for a detailed review on 

inflammaging and longevity please refer to Monti et al., [18]. 

Preclinical and clinical studies reported a link between neurodegenerative diseases, 

neuroinflammation and activation of immune system [19]. The common neuroinflammatory aspects in 

PD are represented by their reactive astrocytes and activated microglia;, involvement of the adaptive 

immune system, over expression of immune molecules such as chemokines and cytokines and 

increased oxygen and nitrogen reactive species concentration (ROS/RNS). Important cellular players in 

this scenario are glial cells, as microglia and astroglia that are considered a common denominator in 

both patients and animal models of PD. 

 

Brain-immune cells response: Microglia 

 

Microglia represents the resident immune cells in the brain, accounting for about 20% of total 

glial cells that derive from a myeloid-lineage progenitor in the yolk sac [20]. As CNS-resident 

macrophages, microglia are classified as the first line of immune response defense to CNS insults 
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and/or pathological conditions. After CNS damage, microglia switch from a surveillant to a reactive 

state, displaying changes in cell morphology and adopting an insult dependent phenotype. In the 

healthy brain, microglia showed small cell body morphology with several thin and long processes, 

although discrepancies in morphology have been described between brain area [21]. Reactive microglia 

suffer cytoskeletal rearrangement acquiring an ameboid shape accompained by shorter processes and 

larger cell bodies. Furthermore, activation of microglia through pattern recognition receptors, such as 

Toll-like receptors (TLRs), stimulates the synthesis of different chemokines, cytokines, inflammatory 

mediators and cell surface molecules, which are able to confer to microglia macrophagic and antigen-

presenting cell functions. Recently it was assumed that microglia engage several phenotypes depending 

on the nature and intensity of the noxious stimulus and functions [22]. It is recognized that the first 

definition of microglia as ‘activated’ is not adequate to qualify the full range of heterogeneous 

functions that activated microglia may execute. When microglia is in the activated form release pro-

inflammatory factors, such as the cytokines tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), 

interleukin-1b (IL-1b), neuronal nitric oxide synthase nNOS and inducible nitric oxide synthase (iNOS), 

it assumes a pro-inflammatory phenotype. Moreover, microglia adopt functions of tissue remodeling, 

inflammation suppression and repair due to its ability to increase anti-inflammatory cytokines such as 

interleukin-10 (IL-10) and transforming growth factor-b (TGF-b), and markers such as peroxisome 

proliferator-activated receptors-c (PPARc) and mannose receptor C type 1(MRC1). As reported by 

recent interpretations, the microglia cells represent an integral and important part in the architecture of 

neuronal circuitry and also is a an strong player in CNS remodeling and plasticity in both physiological 

and pathological states [23]. The ability of microglia to enhance communication amongst neurons and 

astrocytes is due to the release of cytokines and chemokines;  these properties give to the microglia 

cells the peculiarity to “speak” with several brain cells and be a cell population with a dual 

physiological and immune functions, in the healthy and diseased brain [24].  

While, James Parkinson, clarified the clinical and pathological description of the disease in the 

early nineteenth century [25], later in the twentieth century several authors reported direct evidence 

from post-mortem analysis ofthe brain of PD patients [26]. Initial studies, based on morphological 

alterations and immunohistochemical staining against HLA-DR, human glycoprotein of theMHC-II 

group expressed on the surface of immunocompetent cells, reported an important over expression of 

reactive microglia in the substantia nigra of PD patients. However, but microglia activated cells were 

also detected in the hippocampus of PD patients who also presented dementia [26]. Since the first 

observations of reactive microglia in postmortem brain samples of PD patients, several researchers 



	 8	

have proposed a role of microglia in the neuropathological processes leading to the dopaminergic 

degeneration that occurs in this disease [27]. Elevated expression of pro-inflammatory TNF-a, 

cytokines IL-6,  IL-1b and NOS, detected in the SN, putamen, as well as in the cerebrospinal fluid 

(CSF) and serum of PD patients suggest that microglia may induce a pro-inflammatory phenotype in 

this pathology [28]. Conversely, the presence of anti-inflammatory molecules such as TGF-b, detected 

in CSF of PD patients, showed that pro- and anti-inflammatory microglia may coexist at some stage of 

the disease, raising the possibility that multiple phenotypes may affect variable functions during disease 

progression. In the substantia nigra dopaminergic neurons are vulnerable to microglial mediated 

neurotoxicity [29]. It was demonstrated that elevated microglial activation in the substantia nigra of 

patients affected by  PD showed an increased expression of CR3/43 and EBM11, that is considered as 

marker for activated microglia [30]. The activated microglia cells, espressed as MHC-II, ICAM-1 and 

LFA-1 positive cells, in both putamen and substantia nigra of PD patients increased with neuronal 

degeneration in these areas. Futhermore, the activated microglial cells persisted regardless of the 

presence or absence of Lewy bodies and was often associated with neuritis and damaged neurons [27]. 

Moreover, autopsy brain tissue obtained substantia nigra and basal ganglia of PD patients showed that 

α–synuclein is detected in regions of brain where microglial activation is known to be also present. 

Furthermore, an in vitro stimulation of murine microglia with aggregated and nitrated α-synuclein shift 

microglial morphology to an amoeboid shape and aroused dopaminergic neurotoxicity. 

 

Astrocytes 

Astrocytes cells, also named for its star-like shaped cells, are not only structural support cells, 

but also important cellular players in the development of neuroinflammatory processes. They represent 

around 20–40% of all glia cells and are the most heterogeneous group of cells. They and are defined as 

chemically excitable cells, expressing a plethora of receptors, drug transporters, and neurotransmitters 

that allow the detection of neuronal activity and induce second messenger signaling within these glial 

cells. In this respect, astrocytes can change their intracellular calcium concentration and produce 

calcium waves, that is, the propagation of transient increases in internal calcium concentration across 

connected cells [31]. Calcium waves can either promote or diminish nearby neuronal activity, being 

associated with modulation of synaptic strength Astrocytes cover the entire brain and offer vital trophic, 

active and homeostatic roles [33]. The role of astrocytes cells is closely correlated with subtype, 

location, developmental stage and disease condition. Both, cell body and major processes of astrocytes, 

are enriched with the intermediate filament protein glial fibrillary acidic protein (GFAP). Moreover, 
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adult astrocytes express markers as member L1, glutamine synthetase, vimentin, aldehyde 

dehydrogenase 1 family, brain lipid-binding protein [33], and calcium binding protein (S100b). The 

prevalent functions of astrocytes cells affect control of water distribution, metabolic control of neuron-

glia vascular integrity, maintenance of the blood–brain barrier (BBB) integrity, buffering ions Ca2+ 

and K+ ROS scavenging, trophic factors release, regulation of synaptogenesis, synapsises pruning, 

modulation of the tripartite synapse  and definition of brain microarchitecture [34]. The detection of 

reactive astrocytes in the brain of PD patients is one of the key features of the disease [35].  

Several models of brain degenerative diseases showed that astrocytes migrate to the site of injury and 

become reactive. The astrocytes change their properties in parallel with biochemical, morphological 

and functional alterations that occur during injury or disease. Astrogliosis is characterized by the 

hypertrophy of the main processes and by the upregulation of the intermediate filament proteins 

vimentin, GFAP, synemin and nestin [36]. Modifications are also correlated with astrogliosis ranging 

from reversible alterations in astrocyte gene expression and cell hypertrophy with preservation of tissue 

structure and cellular domains, to long-lasting scar formation that affects cell proliferation and 

rearrangement of tissue structure. Cellular and molecular mechanisms leading to astrogliosis are not 

completely clarified, but neuroinflammatory pathways appear to trigger a worsening of astrogliosis. 

Moreover, the activation of astrocytes is highly correlated with events triggering it and the 

consequences may have beneficial and detrimental effects on surrounding neural and non-neural cells 

[37]. In the brain, the number of dead DA neurons was inversely proportional with the number of 

GFAP-positive astrocytes. The analysis of GFAP density or morphology in PD patients brain indicates 

either no changes or mild to strong increase [38].  

 Recently emerging data reveal a prominent role of astrocytes in the regulation of 

neuroinflammationin PD [39]. In the field of beneficial effects, experiments conducted in primary cell 

cultures reported that astrocytes are important for both protection and survival of DA neurons [40]. 

Moreover, astrocytes provide neuroprotection to DA neurons either through the removal of toxic 

molecules from the extracellular space or through the release of antioxidant molecules and trophic 

factors [41]. Zhang & Barres [42] reported that inflammatory responses in microglia are amplified by 

astrocytes. Glial calcium-binding protein S100b, that acts as a cytokine or damage-associated 

molecular pattern protein [43] represents a potential marker to determine the progression of PD. S100b 

is overexpressed in post mortem substantia nigra of patients with PD compared with control tissue and 

it is able to upregulate the expression of the enzyme COX-2 in microglia and iNOS in astrocytes, both 

neuroinflammatory markers [44].  In particular the NO produced by astrocytes can be considered as a 
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contributing factor to the onset and progression of neurodegeneration due to the ability to activate 

astrocytes and mediate the disease progression [45].  It was reported that astrocytes localized in the 

substantia nigra pars compacta of PD patients and MPTP-treated mice, convey high levels of iNOS 

[46]. This NOS isoform induces high amounts of NO and superoxide radicals, two reactive species 

which can either directly or indirectly facilitate neuronal death. DA neuron alteration is correlated with 

both expression of iNOS in astrocytes and the production of NO. Moreover, under pathological 

conditions expression of COX-2 in the brain can increase significantly, together with production of  

prostaglandin E2, which are responsible for several cytotoxic effects of inflammation. Lee and 

colleagues [47] reported that α-synuclein, considered as pathological marker of PD and released from 

neuronal cells, could be shifted  and stored in astrocytes and consequently induce expression of genes 

linked with immune functions. Actually, the role of astrocytes in PD is still debated, with both the 

excessive reaction of astrocytes and the loss of the normal activity of astrocytes being suggested as 

possible causes of the vulnerability of the DA neurons [48].  In this context, astrocytes are cells that are 

able to promote or prevent neuronal damage whereby, the loss of the balance between these opposing 

actions, could be critical for both onset and progression of PD. 

 

Peripheral immune cells 

The phagocytic cells such as macrophages are constitutively express MHCII, CD11b, and CD45, 

which can help distinguish the microglia since it has a low expression of CD45 in the inactivated state 

[49].In the healthy brain, the main function is immune surveillance, antigen capture, and presentation 

locally and in the cervical lymph nodes. After an insult or lesion, macrophages act in phagocytosis and 

secretion of proinflammatory cytokines such as TNFα, IFNγ and IL-12 and chemokines such as CCL2, 

CCL3, enhancing chemotaxis and inflammation [50]. Moreover, peripheral macrophages and microglia 

secrete inflammasome components such as IL-1β, IL-18-1and caspase, that stimulate neurotoxicity 

neurotoxicity [51].Conversely, macrophages also regulated the production of anti-inflammatory and 

neurotrophic factors [52]. Dendritic cells (DCs) have been detected in regions lacking BBB such as the 

circumventricular organs, in area of postnatal neurogenesis, in the perivascular space and even forming 

part of the glia limitans of the BBB [53].  The main grous of DC are lymphoid and myeloid and are 

placed into several subpopulations due to expressed markers. Their primary functions in the CNS are 

immune surveillance, antigen capture, delivery to the cervical lymphonodes and antigen presentation 

[54]. Moreover, they have a fundamental role in inflammation by stimulating cytokines (IL-1β, IL-23, 

IL-12, TNFα, IFNγ and IL-10) production [55].When the DC recognize inflammatory molecules or 
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damaged tissue or auto antigens, they move to sites of inflammation and to lymphonodes to stimulate T 

cells and thus link the innate immune response with the adaptive immune response. Actually few data 

showed the involvement of the DCs in the onset of PD, but they are enrolled from the blood to the 

brain where they prime T cells and contributing to the neuroinflammation development. A diminished 

number of peripheral DCs, in particular myeloid cells, are linked with the increased severity of both 

cognitive and motor symptoms of the disease [56] 

 

Lymphocytes 

The lymphocytes cells represent a subtypes of white blood cells in a vertebrate's immune 

system. They include natural killer cells (NK cells), T cells and B cells. Lymphocytes protects the brain 

from a an inflammatory phenomenon that could significantly compromise the homeostasis required for 

neural functions [57]. The cellular immune surveillance in brain of healthy human defers amongst CNS 

areas and the higher numbers of immune cells are situated in brain area where the tight junction barrier 

of the BBB is diminished, such as the circumventricular organs and the ventrorostral areas of the 

medulla oblongata [58] .Moreover, in the brains of healthy humans, activated central memory T cells 

that showed high levels of CXCR3,CCR7 and L-selectin are detected in the choroid plexus in the sub 

arachnoid space and also in the CSF [59]. 

 

Cytokines and chemokines 

A growing body of clinical and experimental evidence has supported the role of oxidative stress 

and inflammatory mediators such as cytokines and chemokines, as events correlated with microglial 

reaction in PD patients [60]. In particular it was has demonstrated an a higher expression of the 

chemokine receptor CXCR4 and of its natural ligand CXCL12 in dopaminergic neurons of the 

substantia nigra of PD patients; this observation was also associated with an increase in microglial 

activation [61]. CXCL12/CXCR4 signaling can stimulate neurotoxic events such as activation of 

caspase-3. Cerebrospinal fluid (CSF) reflects metabolic and pathological alterations of the CNS more 

directly than any other body fluid; for this reason CSF represents a good source for neuroinflammation 

evaluation and PD biomarkers [62]. In this respect, several researchers have studied levels of 

inflammatory markers in the CSF of PD patients. Elevated levels expression of IL-6 and IL- 1 β were 

identified in the CSF of PD patients [63].Moreover, concentrations of IL-2, IL-4, IL-1 β and 

transforming growth factor- (TGF-α) in ventricular CSF were higher in juvenile PD patients than those 

reported in the controls [64]. Free TGF-α 1 and total TGF-α 2 levels were also elevated in post-mortem  
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ventricular CSF of PD patients in comparison with age and gender-matched controls [65]. Several 

scientific studies data supported the hypothesis that peripheral inflammatory/immune markers are 

correlated to inflammatory events in the onset of PD. Analyses of cytokines in serum or plasma showed 

elevated proinflammatory cytokines expression such as TNF-α [66] and its soluble receptors sTNFR1 

[67] ands TNFR2  and IL-1β in PD patients in comparisonwith controls [68]. Moreover elevated serum 

levels of macrophage migration inhibitory factor (MIF) were detected in PD patients in comparison 

with healthy subjects. In agreement, levels expression of IL-2[69], IL-6 [70], interferon (IFN)-γ [69] 

and the anti-inflammatory cytokine IL-10 were found to be increased in PD patients [71]. Furthermore 

IL-6 plasma concentrations were was linked with an increased risk of developing PD. Conflicting data 

were reported by several researchers that did not detected cytokine levels alterations in PD. Peripheral 

levels of the cytokines TNF-α, IL-6, IL1-β, IFN-γ, IL-2,IL-4, IL-10 [72] and IL-12 [73] were analogous 

in PD patients and age- and gender-matched controls. Circulating levels of the chemokines IL-8, MIP-

1α, [74], eotaxin, eotaxin-2, MCP-1 and IP-10, did not differ between PD patients and controls. These 

controversial findings could be explained, at least in part, by methodological differences between the 

studies, including heterogeneous PD samples and different techniques. Inflammation in PD patients 

affects also peripheral immune cells. In particular several studies reported alterations in the percentage 

of peripheral blood immune cells, such as lower total lymphocyte counts in comparison with controls 

[75]. Reduction in the number of lymphocytes may result from the decrease in the percentage of T 

(CD3+) and B (CD19+) cells in PD patients. Lower numbers of CD4+ cells could be demonstrated by 

the fact that in PD these cells showed both increased spontaneous apoptosis and activation-induced 

apoptosis [76]. Moreover, minimized ability of regulatory T cells (Treg) to suppress effector T cell 

function has been reported inPD patients [75]. Increased oxidative stress may also be linked with 

changes in lymphocyte profile in PD, since both whole cell and mitochondrial reactive oxygen species 

(ROS) in peripheral blood mononuclear cells are increased in PD [77]. 

 

Hormesis 

 We propose that inflammation can be considered as a type of hormetic stress, having the 

potential for positive outcomes at low levels  (physiological inflammation) at young and adult ages, and 

becoming detrimental later on, in the post-reproductive period (inflammaging), especially in those 

people who, as a result of genetic background and/or unhealthy lifestyle, can not maintain an optimal 

balance between inflammaging and anti-inflammaging (unsuccessful remodelling) (Figure 1).  
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 Strategies aimed at reducing inflammaging (systemic reduction of stress/antigenic burden, 

eradication of chronic infections, vaccinations and treatment with anti-inflammatory drugs) might 

prove effective in delaying the onset of age-related diseases. Another approach is that of reducing 

oxidative burden by nutritional modulation, intervention by free radical scavengers and other 

molecules, and hormetic strategies, which is based on the principle of stimulation of maintenance and 

repair pathways by repeated exposure to mild stress. 

 Hormesis in ageing is defined as “the life-supporting beneficial effects resulting from the 

cellular responses to single or multiple rounds of mild stress” [78]. Various stressors have been 

reported to have hormetic characteristics, modulating ageing and favouring longevity in cells and 

animals, such as heat shock, irradiation, heavy metals, pro-oxidants, acetaldehyde, alcohols, 

hypergravity, repeated physical exercise. The Nuclear factor erythroid 2-related factor 2 (Nrf2) 

pathway plays a key role in modulating the hormetic stress responses. It has been recently shown that 

lithium, a drug approved for human use, promotes longevity and healthspan in Drosophila through the 

inhibition of glycogen synthase kinase-3 (GSK-3) and activation of NRF-2 [79].  

 The best-documented example of hormetic strategies to counteract the aging process is short-

and long-term dietary/calorie restriction, including intermittent fasting [80-81]. Within the field of 

hormetics, all such conditions that bring about biologically beneficial effects, by initially causing low-

level damage that consequently stimulates various defense pathways, are termed as hormetins [81]. 

Recently, it is been postulated that the mediterranean diet (MedDiet) exerts its healthy effects through 

hormetic mechanisms [82]. Specific components of the MedDiet (phytochemicals, vitamins but also 

lipids, carbohydrates and fibers) likely counteract the effects of inflammatory stimuli by acting as 

hormetins. A lifelong exposure to the MedDiet may therefore postpone the age at which the ratio pro-

/anti-inflammation trespasses the threshold that separates physiological inflammation from unbalanced 

inflammation/inflammaging, which in turn favors age-related diseases [82]	 

 Phytochemicals found in fruits and vegetables exhibit several neuroprotective properties. 

Various interventional trials suggest that a diet rich in phytochemicals may enhance neuroplasticity and 

resistance to neurodegeneration, postponing or preventing neurodegenerative disorders, including 

Alzheimer’s and Parkinson’s diseases in animal models [83-85]. The term “neurohormesis” indicates 

the ability of the central nervous system (CNS) to respond to exogenous, but also endogenous (i.e. 

hydrogen sulfide, nitric oxide, carbon monoxide, glutamate, Ca2+) toxic agents) [86] which represent 

mild stress and a driving force to augment the neuronal resistance toward stronger insults [84]. 

 On the contrary, sedentary lifestyles often accompanied by nutrient-rich and high-fat diets may 
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adversely affect the brain by impairing cellular stress resistance and neuroplasticity [87]. Rats fed a diet 

with high levels of fat and sugar had impaired hippocampal plasticity and cognitive performance [88]. 

Elderly subjects with metabolic syndrome or diabetes performed worse on cognitive tests involving 

information processing speed, attention, and executive function compared to age-matched healthy 

subjects [89]. Measurements of relative levels of metabolites in human brains revealed that subjects 

with a high body mass index had reduced levels of N-acetyl-aspartate, an indicator of neuron metabolic 

health, in frontal, parietal, and temporal white matter and frontal gray matter [90]. 

The continuum between physiological ageing and Parkinson’s Disease (PD) 

Age is the major risk factor for PD, the second most frequent common neurodegenerative disease  [91]. 

Despite this evidence, the relationship between the cellular/molecular alterations of 

physiological/healthy ageing and those underpinning PD pathogenesis are unclear. It can be 

hypothesized that PD is, at least in part, a sort of “segmental” ageing i.e. the result of a specific type of 

localized, accelerated ageing which, for reasons at present largely unknown, affects more 

markedly/rapidly some type of neuronal cells in the brain and other parts of the body. Indeed, even 

physiological ageing is characterized, among other phenomena, by a progressive decline of motor 

abilities and anatomo-pathological signs of neuronal degeneration in the brain, similar to those 

characteristics of PD, but elderly without clinical sign of PD have been detected. Data on 2500 old 

persons annually assessed for Parkinsonism showed that mean global Parkinsonism was 18.6%. 

However, the anatomo-pathological study of 744 of these subjects deceased without PD (mean age at 

death: 88.5 yrs.) and who donated brains showed that: i. about 1/3 of cases had mild or more severe 

nigral neuronal loss; ii. about 17% had Lewy bodies; iii.10% of the brains showed both nigral neuronal 

loss and Lewy bodies [92]. Thus, there is an apparent continuum between physiological ageing and 

neurodegenerative age-related motor disorders. Idiopathic PD manifests with a combination of motor 

and non-motor features which can precede for decades the onset of motor signs, and is thought to result 

from the combined effects of ageing and genetic risk factors plus lifestyle/nutritional/environmental 

determinants, including possible exposure to toxic substances. At present, identified PD-associated 

environmental and genetic risk factors are of limited clinical usefulness in the majority of PD patients. 

 The environmental component(s) of sporadic PD is/are unclear although many factors have 

been found to be associated with higher risk of PD. Increasing evidence suggests that PD be included 

on the growing list of diseases associated with vitamin D insufficiency and that we should routinely 

monitor vitamin D levels in patients with PD [93]. One of the most advanced and appealing hypotheses 

is that environmental stressors may contribute to age-related neuro-degeneration by favoring cell 
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senescence of glia, thus creating a chronically inflamed milieu in the brain [94]. From this point of 

view the known involvement of the bi-directional gut-brain microbiome axis in the production of a 

variety of neurotransmitters (serotonin, dopamine, noradrenaline, GABA, directly produced by bacteria 

or indirectly regulated) and in a variety of behavioural and CNS effects [95, 96]. The presence of 

prolonged constipation has also been associated with the possibility that inflammatory bacterial 

products that can travel (through retrograde transport via the vagus nerve) from the gut and reach the 

brain.  

 Recent studies showed that PD is associated to gut dysbiosis [97, 98]. The fecal concentration 

of short chain fatty acids (SCFA) is significally reduced in PD patients compared to controls and this 

reduction could impact on CNS alterations and contribute to gastrointestinal dysmobility in PD [99]. In 

a mouse model of PD, it has been demonstrated that gut microbiota is key player in motor deficits and 

microglia activation [100]. Importantly, several research findings suggest that direct modulation of gut 

microbiome may be applied both in treating particular age-related disorders [101], but also can be a 

promising therapeutic option to combat the aging process per se [102,103].  

On the basis of the profound even if still unclear relationship between aging and PD, these data 

on PD microbiome should be interpreted within the context of the changes that occur in the gut 

microbiome during healthy aging.  It has been recently showed that the gut microbiome undergoes 

profound changes with age [104, 105], which likely contribute to inflammaging and can have profound 

effects on the brain, owing to the increased abundance with age of bacteria involved in the tryptophan 

metabolism pathway, in agreement with the reduction of tryptophan (a precursor of serotonin) found in 

the serum of centenarians [106, 16]. Accumulating evidence shows that the age-related dysbiosis is 

involved in the neurological decline and promotes inflammaging [4], which play a pivotal role in both 

the physiological and the pathological cognitive decline [107]. While gut microbiota is able to 

modulate the CNS development, cognitive function and behaviour, behavioural alterations may also 

affect the gut microbiota composition [108]. The gut microbiota is essential for the bioavailability of 

substances such as polyphenols, unsatured fatty acids and anti-oxidants, which exert a protective action 

on cellular and neuronal aging. The gut microbiota could also contribute to the regulation of the brain 

function modulating the metabolism of tryptophan, an essential amino acid derived from the diet, that 

when metabolized from the gut is able to cross the blood-brain barrier contributing to the synthesis of 

the serotonin in the central nervous system [107]. These age-related changes are more evident in the 

amygdala, hippocampus and frontal cortex. The function of these brain areas is strongly dependent on 

serotonergic neurotransmission, thus involving the changes in tryptophan gut-microbiome-dependent 
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metabolism. Alterations in the serotonin system could represent the common denominator of the 

alterations of the sleep, mood and sexual conduction often observed in elderly as well as of other 

modifications such as diabetes and cardiovascular diseases [107].   

Ageing and PD share basic propagation phenomena 

The most recent data indicate that ageing and PD share basic characteristics such as accumulation of 

senescent cells, inflammation and propagation phenomena. Senescent cells have a secretory phenotype 

called SASP (Senescence Associated Secretory Phenotype) characterized by the robust expression and 

secretion of cytokines and other inflammatory compounds, which contribute to inflammaging [94] 

("neuro-inflammaging" in the brain) [109]. Inflammaging [4,110] and cell senescence [94] can be 

transmitted locally to bystander cells and systemically [111] by the spill over of a variety of molecular 

effectors, e.g. cytokines, extracellular ATP, extracellular oligomeric complex of NLRP3 inflammasome 

[112], circulating mitochondrial DNA [113], circulating microRNAs [114] and shuttles (e.g. exosomes) 

which, on the whole, progressively impair the fitness of the organism [115]. 

 Inflammaging appears to be causal to ageing as recently suggested by Jurk et al. [116] who 

showed that chronic, progressive low-grade inflammation induced in mice by knockout of the nfkb1 

subunit of the transcription factor NF-κB induces an accelerated ageing which propagates to neighbour 

cells via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any 

other genetic or environmental factor. 

 Indeed, the above-mentioned data and many others showed that there is a fundamental vicious 

circle where inflammaging can induce cell senescence, which in turn can produce substantial amounts 

of inflammatory compounds (SASP phenotype), thus propagating these two major characteristics of the 

ageing process, i.e. inflammation and cell senescence, locally and systemically. 

 The most recent literature suggests that inflammation causes DNA damage and, especially, 

telomere dysfunction, which is a potent activator of persistent DNA damage checkpoint activity. Pro- 

inflammatory signals can cause telomere dysfunction because they are closely integrated in multiple 

positive feedback loops with stress and nutrient signalling pathways (involving p38MAPK, TGF-b, 

mTOR and others) that contribute to control of mitochondrial function and ROS production. 

Inflammation acting chronically in vivo (inflammaging) aggravates telomere dysfunction by increasing 

oxidative stress [117] which then accelerates accumulation of senescent cells, which intensifies 

proinflammatory and pro-oxidant signalling by the SASP response and by induction of mitochondrial 

dysfunction, spreading DNA damage and senescence towards bystander cells Senescence-induced 

senescence and inflammation-induced inflammation therefore are apparently key mechanisms to 
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understand the ageing process and its basic propagation nature. This scenario likely represents the 

background fostering neurodegeneration and other age-associated diseases. 

 Strong evidence in favour of the propagation hypothesis of the ageing phenotype emerges from 

the heterochronic parabiosis experiments in rodents showing that old mice can pass blood/systemic 

molecules capable of accelerating the ageing of the brain of young mice (affecting in particular the 

ventricular neuronal stem cells) and vice versa young mice can pass blood/systemic molecules capable 

of rejuvenating brain cells of old mice [118-120]. A similar “rejuvenating” phenomenon can be 

reproduced in vitro using human cells (satellite muscle stem cells) [121]. 

 Ageing and inflammaging are now thought to represent the progressive increase and spreading 

of inflamed micro/local- and macro/systemic-environment of aged bodies [115], fostered by: i) 

increased generation and exposure of cells to exogenous (e.g. alteration of gut microbiota, persistent 

infections such as CMV, environmental toxicants) and endogenous (e.g. increased number of senescent 

cells and cell debris produced by dying cells, damaged/dysfunctional mitochondria and aggregated 

proteins, among others) damage molecules and danger signals (collectively indicated as "garbage"); ii) 

a decreased garbage disposal (decreased efficiency of UPS/Proteasome, autophagy, mitophagy) and 

increased activation of NF-kB and inflammasomes [122-124]. 

 Consistent with the hypothesis that inflammaging promotes age-related brain degenerative 

disorders in the elderly, that the NLRP3 inflammasome is likely one of the basic immune sensors that 

causally link systemic inflammation to aging by controlling inflammaging in both periphery and brain 

[123]. In individuals over 85 years of age, the elevated expression of inflammasome gene modules is 

associated with all-cause mortality [125]. There is a growing interest for the role of inflammasomes in 

the CNS (particularly regarding brain injury) [126,127]. NLRP3 activating the damage-associated 

molecular-patterns  (DAMPs) can induce inflammatory responses in the absence of any bacterial 

infection or products by directly stimulating production of glial derived inflammatory mediators [128]. 

It has been recently shown that the neurotransmitter dopamine inhibits NLRP3 inflammasome 

activation [129].  
 Conversely, it has been reported that senescent and inflammatory cells (astrocytes) are present 

in the brain of PD patients [109] and a "transmission hypothesis" has been proposed regarding the 

pathogenesis of "PD as a prion disease" [130] where intercellular transmission of pathological protein 

aggregates (alfa-synuclein) occurs, causing a prion-like spreading of neuronal damage and neuro-

inflammation [131,132]. Aggregated alfa-synuclein, released by neuronal degeneration, acts as an 

endogenous trigger inducing a strong inflammatory response in PD [133]. Similar propagation 
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phenomena have been described for beta-amyloid and Alzheimer's diseases [134]. 

 

Conclusions 

 PD could be thus properly contextualized within the ageing process based on a theoretical 

convergence between this recently proposed "transmission hypothesis" of neurodegenerative diseases 

and PD and the above-mentioned theory on the propagation of the ageing process/phenotype which 

emerged independently, but that altogether have a strong heuristic power. Accordingly, clinically overt 

PD can be considered an accelerated ageing of the brain, which affects specific neurons in the brain and 

in many other anatomical sites, owing to the co-occurrence in the same individual of a variety of 

genetic and non-genetic risk factors. Such a unifying perspective has the advantage of explaining the 

long and complex pre- clinical history of PD, which involves basic molecular dysfunction shared by 

and central to the ageing process, such as cell senescence, inflammation (spreading from the gut?), 

mitochondrial dysfunction, oxidative stress, and alteration of proteostasis and of the ubiquitin-

proteasomal and autophagy systems. 

The treatment of PD is still based on levodopa, fifty years after its introduction for the therapeutic 

management of parkinsonian patients. Levodopa is characterized by a strong symptomatic effect on 

motor symptoms and, at certain levels, could act following hormetic laws. For instance, the possibility 

to induce and to maintain the so-called “long-duration response” (135,136 Quattrone et al., 1995; 

Zappia et al., 1999), that is a sustained clinical benefit appearing days or weeks after beginning the 

treatment, is mainly due to the administration of low cumulative dosages of levodopa, whereas larger 

dosages may have detrimental effects ( 137 Zappia et al., 2000). Furthermore, it is well known that 

levodopa may influence complex cognitive functions, such as working memory and cognitive control, 

mediated by dopaminergic mesocortical pathways involving ventral tegmental area, striatum and 

prefrontal cortex (138 Miller and Cohen, 2001). Also for these cognitive functions, the effects of 
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dopaminergic drugs as levodopa could be recognized as hormetic-U-shaped dose responses, because 

both improvements as well as impairments could be observed. These paradoxical effects follow an 

inverted-U-shaped function, where both too little and too much dopaminergic activation impairs 

performance, depending from the initial state of the system (139 Cools and D’Esposito, 2011). 

Consistently, several substances/drugs used to treat PD when administered at hormetic doses are able to 

re-activate those mechanisms responsible for the maintenance of homeostasis. However, it is 

interesting to point out that these substances could have different effects at different ages and when 

pro-inflammatory responses tend to prevail the hormetic stimuli capable of inducing anti-inflammatory 

response can restore an optimal balance between pro- and anti-inflammaging (Figure 2).  
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FIGURE 1: Effect of BBB breakdown in infiltration of inflammatory mediators. 
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FIGURE 2: The biphasic response of hormesis applied to inflammaging. In the early stages of life, 

including the reproductive period, the production of danger signals plays a physiological role, 

fundamental for survival (hormesis zone). Later in life danger signals increase and their effect turn to 

be detrimental (inflammaging).  

 

 

 

 

 

 

FIGURE 3 
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FIGURE 3: Hormetic response and the balance between inflammaging and anti-inflammaging. 

When pro-inflammatory responses tend to prevail hormetic stimuli capable of inducing anti-

inflammatory response can  help in restoring an optimal balance. 
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