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Abstract The OPERA experiment was designed to search
for νμ → ντ oscillations in appearance mode through the
direct observation of tau neutrinos in the CNGS neutrino
beam. In this paper, we report a study of the multiplicity
of charged particles produced in charged-current neutrino
interactions in lead. We present charged hadron average mul-
tiplicities, their dispersion and investigate the KNO scaling
in different kinematical regions. The results are presented in
detail in the form of tables that can be used in the validation
of Monte Carlo generators of neutrino–lead interactions.

1 Introduction

The multiplicity distribution of charged hadrons is an impor-
tant characteristic of the hadronic final states in hard scat-
tering processes. Since it reflects the dynamics of the inter-
action, it has been extensively studied in cosmic rays, fixed
target and collider experiments [1–7]. These data are useful
to improve models of particle production which are used in
Monte Carlo (MC) event generators.

In this paper, we report the result on charged hadron pro-
duction initiated in charged-current νμ interactions in the
OPERA target. The basic unit that constitutes the target is
the emulsion cloud chamber (ECC) detector which is a stack
of nuclear emulsion films acting as high precision trackers
interleaved with lead plates that provide a massive target.
The excellent spatial resolution of nuclear emulsion allows
the determination of the event topology and the measurement
of charged particle trajectories. Therefore, it is well suited
for the investigation of the moments of the charged parti-
cles multiplicity distribution. However, only few studies of
charged particle multiplicity in neutrino-nucleon interactions
were made using the nuclear emulsion technology [7–10].

In the following, a short description of the experimental
setup and of the procedure used to locate neutrino interac-
tions in the target is given; the data sample and the analy-
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sis procedure are presented. Then, multiplicity moments and
investigation of KNO scaling [11] in different kinematical
regions are presented in a form suitable for the validation of
MC generators of neutrino−lead interactions.

2 Experimental procedure

The OPERA experiment has been designed for the obser-
vation of νμ → ντ oscillations in appearance mode in the
CNGS (CERN Neutrinos to Gran Sasso) neutrino beam [12–
14]. The detector was located at the underground Gran Sasso
Laboratory (LNGS) in Italy. It was exposed to the CNGS
muon neutrino beam with mean energy 17 GeV at a distance
of 730 km. OPERA reported the discovery of ντ appear-
ance with a significance of 5.1σ [15]. The OPERA detec-
tor is a hybrid setup consisting of electronic detectors and
a massive lead-emulsion target segmented into ECC units,
called bricks. The detector is composed of two identical
Super-Modules, each of which has a target section followed
by a muon spectrometer which is composed of a dipole
magnet instrumented with resistive plate chambers and drift
tubes. Each target section has 31 brick walls interleaved with
orthogonal pairs of scintillator strip planes that compose the
Target Tracker (TT). A detailed description of the OPERA
detector can be found in [16].

A brick consists of 57 emulsion films interleaved with
56 lead plates of 1 mm thickness. The films are made of 2
emulsion layers, each 44 μm thick coated on both sides of
a 205 μm transparent plastic base. The brick has transverse
dimensions of 128 × 103 mm2, a thickness of 81 mm (about
10 radiation lengths) and it weighs 8.3 kg. A pair of remov-
able emulsion films called changeable sheets (CS) attached to
the downstream face of each brick act as interfaces between
the emulsion films in the brick and the TT. There are about
150,000 bricks in total for a target mass of 1.25 ktons.

TT hit patterns are used to identify the bricks possibly con-
taining the neutrino interaction vertex [17]. The most prob-
able brick is then extracted from the target and its CS films
scanned. If a signal compatible with the TT predictions is
found, the brick is disassembled and its films analysed. Once
the vertex has been located, a surrounding volume of about
2 cm3 is scanned to determine the event topology. Otherwise,
the procedure is repeated in the next brick in the probability
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Fig. 1 a Combination of clusters belonging to images taken at different depths in one emulsion layer forms a micro-track; b the association of
two micro-tracks across the plastic base forms a base-track

ranking. Track recognition in an emulsion layer is based on
16 tomographic images taken by the sensor of an automated
microscope and equally spaced through the 44-μm depth of
the layer. A sequence of aligned grains in a layer forms a
micro-track (Fig. 1a) and the association of two matching
micro-tracks on each side of the plastic base in a film con-
stitutes a base-track (Fig. 1b). Track positions and slopes are
determined by a linear fit through base-tracks in the anal-
ysed volume. The details of the event analysis procedure are
described in [18].

3 Analysis

During the physics runs between 2008 and 2012, OPERA
collected data corresponding to 1.8×1020 protons on target.
The electronic detectors recorded 19,505 neutrino interac-
tions in the target fiducial volume. The search of the neutrino
vertex in the first and second most probable bricks plus some
additional selections (see [18] for more details) resulted in
a sample of 5603 located events out of which 4406 have an
identified muon. For the present measurement an unbiased
sub-sample of 818 events occurring in the lead with a neg-
atively charged muon identified by the muon spectrometer
was selected in order to measure the track and vertex param-
eters in the target including a detailed check of the nuclear
break-up and evaporation processes.

It is further required that W 2, the square of the invariant
mass of the hadronic system measured with the electronic
detector, is larger than 1 GeV2/c4 in order to eliminate the
quasi-elastic contribution. The final data sample contains 795
events with an identified muon. The contamination from νμ

neutral-current interactions in the final data sample is esti-
mated by MC simulations to be less than 1%.

Selected νμ CC events are inspected carefully and tracks
are classified as being left by a minimum ionisation particle
(mip), grey and black depending on their ionisation features.
The mip tracks are left by the muon and by highly relativistic
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Fig. 2 Pulse height volume distribution of muon tracks

charged hadrons resulting from the cascade of interactions
generated inside the target nucleus by the primary hadrons
emitted with the muon at the neutrino-nucleon interaction.
Black tracks are produced by low energy fragments (pro-
tons, deuterons, alpha particles and heavier fragments) emit-
ted from the excited target nucleus. Black tracks are classified
as backward or forward based on the emission direction. Grey
tracks are left by slow particles which are interpreted as being
recoil nucleons emitted during the nuclear cascade [19].

The black tracks are easy to recognise visually since they
are heavily ionising, they have short path lengths and stop
within two lead plates. The separation between mip and grey
tracks is based on the pulse height volume (PHV) [20,21]
which is defined as the sum of the number of pixels associated
with each track in all sixteen layers of images [22,23]. PHV
indicates the track width and is therefore a measure of the
grain density of a track that reflects the energy deposition of a
particle in the emulsion film. The PHV distribution of muon
tracks is shown in Fig. 2. All muon tracks have a PHV below
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Fig. 3 Multiplicity distribution of mip tracks
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Fig. 4 Multiplicity distribution of grey tracks

85 and mip tracks are defined by requiring a PHV smaller
than 85, the tracks with a higher PHV being classified as
grey. The mip, grey and black track multiplicities are shown
in Figs. 3, 4 and 5, respectively. The average numbers of mip
and grey tracks in νμCC events are 〈nmip〉 = 2.94 ± 0.05
and 〈ng〉 = 0.22 ± 0.01, respectively. The average number
of backward and forward black tracks are measured to be
〈nb〉B = 0.15±0.01 and 〈nb〉F = 0.38±0.02, respectively.
The charged hadrons multiplicitynch is defined as the number
of mip tracks excluding the muon track, its average being
〈nch〉 = 〈nmip〉 − 1 = 1.94 ± 0.05. The distribution of mip
tracks as a function of their emission angle with respect to the
beam axis is given separately for muons and charged hadrons
in Table 1.
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Fig. 5 Multiplicity distribution of backward and forward black tracks

Table 1 The numbers of hadron (nch) and muon (nμ) tracks per event
as a function of the emission angle θ

θ(Radian) 〈θ〉 nch /event nμ/event

0.00 ÷ 0.050 0.031 ± 0.001 0.134 0.070

0.050 ÷ 0.100 0.076 ± 0.001 0.258 0.195

0.100 ÷ 0.150 0.126 ± 0.001 0.280 0.231

0.150 ÷ 0.200 0.174 ± 0.001 0.237 0.177

0.200 ÷ 0.300 0.246 ± 0.002 0.383 0.195

0.300 ÷ 0.400 0.347 ± 0.003 0.298 0.079

0.400 ÷ 0.500 0.450 ± 0.004 0.179 0.029

0.500 ÷ 0.600 0.549 ± 0.006 0.113 0.017

≥ 0.600 0.661 ± 0.03 0.058 0.002

Total 1.94 1.00

3.1 Efficiency estimation

The location and reconstruction efficiency is computed using
the standard OPERA simulation framework. The neutrino
fluxes and spectra are based on the FLUKA simulation
[24] of the CNGS beam-line. The neutrino interactions in
the detector are generated using the NEGN generator [26].
MC-generated νμCC events are processed through the full
OPERA simulation chain, from the event classification and
brick finding provided by the electronics detectors to the CS
analysis and event location and analysis in the brick.

The location and reconstruction efficiency, shown in
Table 2, of the νμCC events is estimated as a function of
W 2 and of the charged hadron multiplicity. Since the event
location is done using mip tracks, the location efficiency does
not depend on the black and grey track multiplicities at the
neutrino interaction vertex. Figure 6 shows the good agree-
ment between the charged hadrons multiplicities obtained for
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Table 2 Location and reconstruction efficiency as a function of W2 and the charged hadron nch multiplicity

W 2(GeV2/c4) nch

0 1 2 3 4 ≥ 5 Total

1–3 0.32 ± 0.03 0.48 ± 0.02 0.53 ± 0.04 0.55 ± 0.06 0.56 ± 0.09 0.62 ± 0.17 0.46 ± 0.01

3–6 0.34 ± 0.02 0.47 ± 0.02 0.54 ± 0.03 0.56 ± 0.04 0.65 ± 0.07 0.66 ± 0.11 0.47 ± 0.01

6–9 0.33 ± 0.02 0.46 ± 0.02 0.56 ± 0.02 0.63 ± 0.03 0.67 ± 0.06 0.68 ± 0.08 0.48 ± 0.01

9–12 0.34 ± 0.02 0.49 ± 0.02 0.57 ± 0.02 0.62 ± 0.03 0.69 ± 0.05 0.66 ± 0.07 0.50 ± 0.01

12–15 0.36 ± 0.02 0.50 ± 0.02 0.58 ± 0.02 0.63 ± 0.03 0.70 ± 0.04 0.70 ± 0.06 0.52 ± 0.01

15–19 0.37 ± 0.02 0.49 ± 0.02 0.60 ± 0.02 0.62 ± 0.02 0.66 ± 0.03 0.74 ± 0.05 0.53 ± 0.01

19–25 0.40 ± 0.02 0.52 ± 0.02 0.56 ± 0.02 0.64 ± 0.02 0.66 ± 0.03 0.68 ± 0.04 0.54 ± 0.01

25–35 0.41 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.60 ± 0.02 0.62 ± 0.02 0.69 ± 0.03 0.55 ± 0.01

≥35 0.39 ± 0.02 0.39 ± 0.02 0.42 ± 0.01 0.43 ± 0.01 0.54 ± 0.02 0.57 ± 0.02 0.45 ± 0.01

Total 0.37 ± 0.007 0.48 ± 0.007 0.54 ± 0.008 0.57 ± 0.09 0.62 ± 0.01 0.62 ± 0.01 0.50 ± 0.01
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Fig. 6 Comparison between the PDF of the data and MC charged
hadron multiplicities

observed and MC simulated data. The efficiency correction
is hereafter applied to the measured data distributions.

In νμCC interactions, neglecting the Fermi motion, the
full kinematics of the event can be reconstructed from the
measurement of the muon momentum pμ, its angle θμ with
respect to the beam axis, and Ehad , the energy transfer to the
hadronic system, obtained by measuring the energy deposi-
tion in the TT (detailed information is available in [16])

Eν = Eμ + Ehad

Q2
ν = 2Eν(Eμ − pμ cos θμ) − m2

μ

W 2 = 2mN Ehad + m2
N − Q2

ν,

chn
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Fig. 7 The multiplicity distribution corrected for efficiencies super-
imposed with the negative binomial distribution (n.b.) defined in Eq.
1

where Eν and Eμ are the energy of the incoming neutrino
and the muon, Q2

ν the squared four-momentum transfer, mN

and mμ are the mass of the nucleon and muon respectively.
The average neutrino energy of the data sample is 〈Eν〉 =
(19.6 ± 0.3) GeV, the mean-square momentum transferred
to the hadronic system is 〈Q2

ν〉 = (5.7 ± 0.3) GeV2/c2, and
the mean-square of the invariant mass of the hadronic system
is 〈W 2〉 = (16.9 ± 0.6) GeV2/c4.

3.2 Multiplicity distributions

Figure 7 displays the multiplicity distribution after correction
for efficiencies. It is observed that it is well described by a
negative binomial pdf, also shown on the figure,

123



62 Page 6 of 8 Eur. Phys. J. C (2018) 78 :62

〉)4/c2(GeV2W〈ln
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

〉
chn〈

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
 / ndf =       5.45 / 72χ

 0.18± =    -0.19 a

 0.07± =    0.76 b

Fig. 8 The average charged hadron multiplicity distributions as a func-
tion of lnW 2

P(nch) =
(
nch + k − 1

nch

)
pnch (1 − p)k (1)

with p = n̄/k
1+n̄/k , the mean n̄ = 1.62 ± 0.06 fully compatible

with its measured value < nch >= 1.63 and parameter k =
2.67 ± 0.38. The χ2/ndf of the fit is 7.36/9.

The average charged hadrons multiplicity as a function of
W 2 is presented in Fig. 8. The data is well described by a
linear function in lnW 2:

〈nch〉 = a + blnW 2. (2)

The values of the fitted parameters are a = − 0.19 ± 0.18
and b = 0.76 ± 0.07. Values for different W 2 bin intervals
are shown in Table 3. A comparison with other experiments
is given in Table 4.

3.3 Dispersion

One of the characteristics of the multiplicity distribution
which is of considerable theoretical interest is its dispersion.
In this section we investigate its dependence on the aver-
age multiplicity. The dispersion Dch is defined as Dch =√

〈n2
ch〉 − 〈nch〉2. For independent particle production it

would follow a Poisson distribution with Dch = √〈nch〉.
However, it was observed that charged particles production
in hadronic interactions satisfies an empirical parameterisa-
tion [27]:

Dch = A + B〈nch〉 (3)

Figure 9 shows the dependence of the dispersion on the aver-
age multiplicity 〈nch〉 with a linear fit superimposed. The
values of the fitted parameters are A = 0.59 ± 0.12 and
B = 0.46 ± 0.06. They are shown in Table 5 together with
those obtained in other experiments for comparison.

Table 3 The charged hadron multiplicity nch distribution as a function of W 2 (efficiency corrections are not applied and errors shown are statistical
only)

W 2(GeV2/c4) ln〈W 2(GeV2/c4)〉 nch

0 1 2 3 4 5 6 7 8 9 10 ≥ 11 〈nch〉 Total

1–3 0.68 ± 0.03 59 21 7 1 0 1 0 0 0 0 0 0 0.48 ± 0.11 89

3–6 1.48 ± 0.01 29 37 24 4 2 0 1 0 0 0 0 0 1.14 ± 0.10 97

6–9 2.01 ± 0.01 28 37 16 12 5 1 1 0 0 0 0 0 1.36 ± 0.12 100

9–12 2.33 ± 0.01 10 26 25 13 6 2 1 0 0 0 0 0 1.86 ± 0.13 83

12–15 2.61 ± 0.01 10 24 29 27 3 2 3 0 0 0 0 0 2.07 ± 0.13 98

15–19 2.83 ± 0.01 12 17 35 14 8 4 1 1 0 0 0 0 2.10 ± 0.15 92

19–25 3.08 ± 0.01 5 18 22 19 12 3 1 3 0 0 0 0 2.51 ± 0.16 83

25–35 3.36 ± 0.01 4 15 17 19 12 8 2 1 1 0 0 0 2.79 ± 0.18 79

≥35 4.04 ± 0.05 3 6 16 14 15 8 4 4 3 0 1 0 3.59 ± 0.24 74

Total 2.83 ± 0.03 160 201 191 123 63 29 14 9 4 0 1 0 1.94 ± 0.05 795

Table 4 Values of the
parameters of the linear fit to the
average charged hadrons
multiplicity dependence on
lnW 2. The results from other
experiments are also shown for
comparison

Reaction 〈Eν〉(GeV) a b Ref.

νμ-emulsion 38 0.45 ± 0.24 0.94 ± 0.08 [7]

νμ-emulsion 50 1.92 ± 0.68 1.19 ± 0.23 [8]

νμ-emulsion 8.7 1.07 ± 0.05 1.32 ± 0.11 [9,10]

νμ-lead 20 − 0.19 ± 0.18 0.76 ± 0.07 OPERA
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Fig. 9 The charged hadrons multiplicity dispersion as a function of
〈nch〉

Table 5 Values of parameters A and B obtained by a linear fit on the
distribution of Dch versus 〈nch〉. The results obtained in other neutrino
experiments are also shown

Reaction 〈Eν〉(GeV) A B Ref.

νμ-emulsion 38 1.18± 0.17 0.20± 0.05 [7]

νμ-p > 5 0.36 ± 0.03 0.36± 0.03 [6]

νμ-lead 20 0.59 ± 0.12 0.46± 0.06 OPERA

3.4 KNO scaling

Koba, Nielsen, and Olesen have shown that the multiplic-
ity distribution P(nch) scaled by the average multiplicity
〈nch〉 is asymptotically independent of the primary energy
and depends only on variable z = nch〈nch〉 :

〈nch〉 . P(nch)
E→∞−−−−→ Ψ (z) (4)

KNO scaling is derived from Feynman scaling, i.e. based on
the assumption that the rapidity density dnch

dy reaches its limit
value at y = 0 above a certain energy which corresponds to
an asymptotic scaling of the total multiplicity as 〈nch〉 ∝
ln

√
s. KNO scaling implies that the intercept A in Eq. 3 be

compatible with 0, which is not the case at low to medium
energies for all kinds of interactions. Buras et al. [28] have
introduced a new variable z′ defined as

z′ = nch − α

〈nch − α〉 , (5)

where the reaction dependent and energy independent param-
eter α is chosen in order to provide an extension of the KNO

〉α-
ch

n〈)/α-
ch

z'=(n
0.5 1 1.5 2 2.5 3 3.5 4 4.5

)
ch
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 P
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Fig. 10 KNO scaling distribution. The curve superposed on the data
results from a fit using the parameterisation defined in Eq. 7

scaling to low energies. In the current analysis, this implies
that α = −A/B = −1.28. Hence

〈(nch − α)〉P(nch) = Ψ (z′). (6)

A tentative explanation for a non-zero value for α has been
proposed in terms of a leading particle effect in interactions
of hadrons [28] and of neutrinos [29] as well as resulting
from the heavy nuclear targets in neutrinos experiments using
emulsion [7]. Figure 10 shows the distributions obtained for
Ψ as a function of z′ for three different intervals ofW 2 for νμ-
lead CC interactions. The data shows good agreement with
approximate KNO scaling. Such observation has been made
by other experiments [7,29–32]. The fitted curve superim-
posed on the data results from a parameterisation of Ψ (z′) of
the type first introduced by Slattery [33]:

Ψ (z′) = (A(z′)3 + B(z′)4)e−Cz′ (7)

The values obtained for the fit parameters are A = 32.16 ±
5.35, B = − 10.18 ± 1.68 and C = 3.31 ± 0.11. The χ2/ndf
of the fit and the correlation matrix of the parameters are
14.7/23 and

⎛
⎝ 1.000 −0.962 0.866

−0.962 1.000 −0.744
0.866 −0.744 1.000

⎞
⎠ ,

respectively.

4 Conclusion

In this article, we studied the characteristics of the mul-
tiplicity distribution of charged hadrons in neutrino–lead
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interactions in the OPERA detector with the main objec-
tive to aid in tuning the models used in MC event gen-
erators. For this purpose, the results are presented in
detail in the form of tables. They can be summarized as
follow:

i The dependence of the average multiplicity 〈nch〉 on
ln W 2 is approximately linear.

ii The dependence on the charged hadrons multiplicity nch
of its dispersion Dch is approximately linear.

iii Approximate KNO scaling is valid for the charged
hadrons multiplicity.
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