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MINIMAL 4-COLORED GRAPHS REPRESENTING AN INFINITE
FAMILY OF HYPERBOLIC 3-MANIFOLDS

P. CRISTOFORI, E. FOMINYKH, M. MULAZZANI, V. TARKAEV

To Professor Maria Teresa Lozano on the occasion of her 70th birthday

Abstract. The graph complexity of a compact 3-manifold is defined as the minimum

order among all 4-colored graphs representing it. Exact calculations of graph complexity

have been already performed, through tabulations, for closed orientable manifolds (up to

graph complexity 32) and for compact orientable 3-manifolds with toric boundary (up to

graph complexity 12) and for infinite families of lens spaces.

In this paper we extend to graph complexity 14 the computations for orientable manifolds

with toric boundary and we give two-sided bounds for the graph complexity of tetrahedral

manifolds. As a consequence, we compute the exact value of this invariant for an infinite

family of such manifolds.

2010 Mathematics Subject Classification: 57N10, 57Q15, 57M15.

Key words and phrases: 3-manifolds, colored graphs, graph complexity, tetrahedral man-

ifolds.

1. Introduction

Representation tecniques have long been used as an important tool in the study of PL

manifolds. The theory of crystallizations, or more generally of gems, was introduced as a

combinatorial representation of closed PL manifolds of arbitrary dimension by means of a

particular class of edge-colored graphs (see [13]). This tool has been proved to be particularly

effective in dimension three adding to classical representation methods such as Heegaard

diagrams, spines, framed knots and links, branched coverings, etc...

More recently, the representation by edge-colored graphs has been extended in [10] to non-

closed compact 3-manifolds. More precisely, it has been proved that there is a well-defined

surjective map from the whole set of 4-colored graphs – i.e., 4-regular graphs equipped with

an edge-coloration (see Subsection 2.2) – to the set of 3-manifolds that are either closed or

have non-empty boundary with no spherical components.

In this context, it is natural to pose the problem of determining and listing minimal (with

respect to the number of vertices) 4-colored graphs representing 3-manifolds. The order of

a minimal graph Γ is called the graph complexity of the represented manifold MΓ.

By the duality between 4-colored graphs and a particular kind of vertex-labeled pseudo-

triangulations (called colored triangulations), graph complexity of manifolds turns out to
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be also the number of tetrahedra in a minimal triangulation of this type (see details in

Subsection 2.2).

The graph complexity of a manifold is an important invariant in the theory of 3-manifolds

and the problem of its computation is usually very difficult. Exact values of graph complexity

can be obviously computed by enumerating 4-colored graphs with increasing number of

vertices and identifying the represented manifolds. This has been done first in the closed

case and more recently in the case of non-empty boundary. In particular, there exist tables

of

(a) closed orientable 3-manifolds up to graph complexity 32 ([7, 8, 15]);

(b) closed non-orientable 3-manifolds up to graph complexity 30 ([2], [6]);

(c) compact orientable 3-manifolds with toric boundary up to graph complexity 12 ([11]).

As regards the computation of graph complexity for infinite families of 3-manifolds, few

results have been obtained up to now. It is proved in [8] that lens spaces of the form

L(qr + 1, q), with q, r ≥ 1 odd, have graph complexity 4(q + r), while concrete examples of

minimal graphs for the same family are constructed in [4].

In Section 4 of this paper we extend table (c) to graph complexity 14. Moreover, in Section

3 we give two-sided bounds for the graph complexity of compact tetrahedral manifolds

(i.e., manifolds admitting a triangulation by regular ideal hyperbolic tetrahedra). On the

basis of this result we construct an infinite family of minimal 4-colored graphs representing

tetrahedral manifolds and, hence, compute the exact value of graph complexity for these

manifolds.

2. Preliminaries

2.1. Triangulations. Let D = {∆̃1, . . . , ∆̃n} be a collection of pairwise-disjoint tetrahedra

and suppose Φ = {ϕ1, . . . , ϕ2n} is a family of affine homeomorphisms pairing faces of the

tetrahedra in D so that every face has a unique counterpart. It is allowed that faces in each

pair belong either to different tetrahedra or to the same tetrahedron. We use D/Φ to denote

the space obtained from the disjoint union of the tetrahedra of D by identifying all the faces

via the homeomorphisms of Φ.

It is well known that, by the previous assumptions, the identification space D/Φ is a 3-

manifold except possibly at the images of some vertices and at the center of some edges of

the tetrahedra ∆̃i under the projection p : ∪i∆̃i → D/Φ.
In the following we restrict our attention to the cases where the singularities of D/Φ only

appear at the images of the vertices. This happens, for example, when all homeomorphisms

of Φ are orientation-reversing with respect to a fixed orientation of the tetrahedra of D, and

therefore the complement of the singularities is an orientable 3-manifold.

We collect all these information into a single symbol T and call T a triangulation of

D/Φ; moreover, we also use |T | to denote the space D/Φ. In the literature this kind of

triangulation is often called pseudo- or singular triangulation. A tetrahedron, face, edge, or
2



vertex of this triangulation is, respectively, the image of a tetrahedron, face, edge, or vertex

of the tetrahedra of D. We will denote the image of the vertices by T (0).

The link of each vertex of T is either a 2-sphere (such a vertex is called regular) or a closed

surface distinct from the 2-sphere (such a vertex is called singular). Denote by T (0)
s ⊆ T (0)

the set of the singular vertices of T . If T (0)
s = ∅, then T is a triangulation of the closed

orientable 3-manifold M = |T |. If T (0)
s 6= ∅, we say T \ T (0)

s is a triangulation of the

noncompact 3-manifold M̂ = |T | \ |T (0)
s |. In some cases when T (0)

s = T (0), then T \ T (0)
s is

an ideal triangulation of M̂ (an example are the tetrahedral manifolds in Subsection 2.4).

Assume that T (0)
s 6= ∅. Let us replace every tetrahedron of T by the corresponding

partially truncated one, by removing open regular neighborhoods of all singular vertices of

T . In this way we get a compact 3-manifold M with nonempty boundary. It is obvious that

we can identify Int M = M \ ∂M with the noncompact 3-manifold M̂ = |T | \ |T (0)
s |. In this

situation, we also say that T \ T (0)
s is a triangulation of the compact 3-manifold M with

nonempty boundary.

2.2. From 4-colored graphs to triangulated compact 3-manifolds.

Definition 1. A 4-colored graph is a regular 4-valent multigraph (i.e., multiple edges are

allowed, but loops are forbidden) Γ = (V (Γ), E(Γ)) endowed with a map γ : E(Γ) → C =

{0, 1, 2, 3} that is injective on adjacent edges. 1

A 3-dimensional compact manifold MΓ, possibly with non-empty non-spherical boundary,

can be associated to any 4-colored graph Γ in the following way:

• consider a collection D(Γ) = {∆̃1, . . . , ∆̃n} of tetrahedra in bijective correspondence

with V (Γ) and label the vertices of each tetrahedron by different elements of C;
• for each pair of c-adjacent vertices of Γ (c ∈ C), glue the faces of the corresponding

tetrahedra that are opposite to the c-labeled vertices, so that equally labeled vertices

are identified;

• remove from the resulting 3-pseudocomplex K(Γ) small open neighborhoods of the

singular vertices.

As a consequence of the construction the pseudocomplex K(Γ) inherits a natural vertex-

labeling by C that is injective on each simplex.

We remark that the above construction is dual to the one introduced in [10], where it

is proved that any compact 3-manifold without spherical boundary components admits a

representation by 4-colored graphs and that the manifold is orientable if and only if the

representing graph is bipartite.

Remark 1. Note that any 4-colored graph encodes a triangulation in the sense of Subsection

2.1. In fact, given the collection of tetrahedra of D(Γ), the affine homeomorphisms of

1Note that there exist (non-bipartite) 4-regular multigraphs admitting no coloration of this type.
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the triangulation are defined naturally by the gluings of their faces induced by the vertex-

labeling. Therefore, the construction of the pseudocomplex K(Γ) is a particular case of the

one described in Subsection 2.1. Note also that in this case no singularities can arise at the

images of the centres of the edges.

When the graph is bipartite the tetrahedra of D(Γ) can be subdivided into two classes

according to the bipartition classes of the corresponding vertices of Γ and, by giving to the

tetrahedra of one class the orientation induced by the cyclic permutation (0 1 2 3) of the

labels of their vertices, and to the tetrahedra of the other class the opposite orientation, all

the affine homeomorphisms of the triangulation turn out to be orientation-reversing; as a

consequence the resulting manifold is orientable.

2.3. Graph and tetrahedral complexities of 3-manifolds. A 4-colored graph Γ is called

minimal if there exists no graph representing MΓ with less vertices than Γ.

Definition 2. The graph complexity of a compact 3-manifold M , denoted by cg(M), is the

number of vertices in a minimal 4-colored graph representing M .

In case M is a closed manifold a notion of complexity in terms of colored graphs has been

already introduced in [15]: it is called gem-complexity, denoted by k(M), and the relation

between the two invariants is cg(M) = 2k(M) + 2.

A triangulation of a compact 3-manifold M into tetrahedra is minimal if there is no

triangulation of M into fewer tetrahedra. The tetrahedral complexity ctet(M) of M is the

number of tetrahedra in a minimal triangulation.

The next result gives an inequality relating the complexities ctet and cg.

Lemma 1. For every compact 3-manifold M we have ctet(M) ≤ cg(M).

Proof. Consider a minimal 4-colored graph Γ representing the manifold M . By definition,

Γ has cg(M) vertices. Therefore, the graph Γ determines a triangulation of M with cg(M)

tetrahedra. This implies that ctet(M) ≤ cg(M). �

In Section 3 we will apply Lemma 1 in order to find lower bounds for the graph complexity

of the so-called tetrahedral manifolds.

2.4. Tetrahedral manifolds. Let M be a compact 3-manifold with boundary consisting

of tori. Suppose that the interior of M , denoted by Q, possesses a complete Riemannian

metric with finite volume and constant sectional curvature −1. Following [14], we say that M

is tetrahedral if there exists a decomposition of Q into ideal regular hyperbolic tetrahedra.

Equivalently, there exists an ideal triangulation of M such that each edge class contains

exactly six edges of the tetrahedra of D.

As mentioned in [1, 14, 18], coverings of tetrahedral manifolds yield infinite families of finite

volume hyperbolic 3-manifolds whose tetrahedral complexity can be calculated exactly. More

precisely the following statement holds.
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Lemma 2. Let M be a compact tetrahedral manifold such that the interior of M is obtained

by gluing together k regular ideal tetrahedra, and let N be an n-fold covering of M . Then

ctet(M) = k and ctet(N) = nk.

Proof. Let us denote by Q the interior of M . Recall that the volume of the regular ideal

tetrahedron, that is vtet = 1.01494 . . . , is maximal among the volumes of all tetrahedra in

H3. On this property the relation ctet(M) ≥ vol(Q)/vtet mentioned in [1] is based. Since Q

is obtained by gluing k regular ideal tetrahedra together, its volume vol(Q) is kvtet. Hence,

ctet(M) = k.

Since the class of tetrahedral manifolds is closed under finite coverings, N is a tetrahe-

dral manifold such that the interior of N is obtained by gluing together nk regular ideal

tetrahedra. Hence, ctet(N) = nk. �

3. Exact values and two-sided bounds for the graph complexity of

tetrahedral manifolds

An n-fold covering between two 4-colored graphs G and Γ, where n = #V (G)/#V (Γ), is

a map f : V (G) → V (Γ) that preserves c-adjacency of vertices for all c ∈ C (i.e., for each

pair of c-adjacent vertices a, b ∈ V (G) the vertices f(a), f(b) are c-adjacent in Γ).

We call a covering admissible if it is bijective when restricted to the bicolored cycles of the

graphs.

The n-fold covering f naturally induces a topological n-fold (possibly branched) covering

|f | : MG → MΓ. Moreover, |f | is unbranched if and only if f is admissible. Note also that

the triangulation associated to G is the lifting of the one associated to Γ.

The next result gives two-sided bounds for the graph complexity of compact tetrahedral

manifolds.

Theorem 3. Let Γ be a 4-colored graph with k vertices representing a compact tetrahedral

manifold MΓ such that the interior of MΓ is obtained by gluing together d regular ideal

tetrahedra. Let G be an admissible n-fold covering of Γ. Then

nd ≤ cg(MG) ≤ nk.

Proof. Since G is an n-fold covering of Γ, G has nk vertices. This implies that cg(MG) ≤ nk.

On the other hand, it follows from Lemma 1 that ctet(MG) ≤ cg(MG). Since G is an

admissible n-fold covering of Γ, MG is an n-fold covering of MΓ. Thus, by Lemma 2, we

have ctet(MG) = nd. �

Now we give examples of 4-colored graphs satisfying the assumptions of Theorem 3. They

allow us to find either the exact values or two-sided bounds for the graph complexity of

infinite families of compact tetrahedral manifolds.
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Theorem 4. Let Γ be the bipartite 4-colored graph with 12 vertices of Figure 1. If G is an

admissible n-fold covering of Γ, then

cg(MG) = 12n.

Proof. It follows from [11, Table 3] that Γ represents the tetrahedral manifold otet12_00009,

which is obtained by gluing together 12 regular ideal tetrahedra (see details in [11]). The

conclusion cg(MG) = 12n now follows from Theorem 3. �

In Figure 2 we give a concrete example of such a graph G. As pointed out in [17], MG is

the complement of the link in S3 composed by the weaving knot W(3, 3n) and its braid axis

(see Figure 3). As in [9], the weaving knot W(p, q) is the alternating knot or link with the

same projection as the standard p-braid (σ1 · · ·σp−1)q projection of the torus knot or link

T (p, q).
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Figure 1. The 4-colored graph Γ.

The code of a bipartite 4-colored graph Γ with 2p vertices is a numerical “string” of length

3p which completely describes both combinatorial structure and coloration of Γ.

More precisely, the vertices of Γ are divided into the two bipartition classes and labelled

by the integers {−p, . . . ,−1} and {+1, . . . ,+p} respectively. Then, for each i ∈ {1, . . . , p}
and c ∈ {1, 2, 3}, the label of the vertex that is c-adjacent to −i appears as the (c−1)p+ i-th

character of the string, while −i and +i are assumed to be 0-adjacent.

Although there are obviously many ways of labeling the vertices and also of permuting

the elements of the color set, there exists an algorithm to compute the string such that it

uniquely determines Γ up to relabeling of the vertices and permutations of the color set (see

[15] for details).

When the vertices are few, the code is often displayed by using small letters for negative

integers and capital ones for positive integers.
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Figure 2. An admissible n-fold covering of the graph Γ depicted in Figure 1.

. . .

Figure 3. The weaving knot W(3, 3n) with the braid axis.

Theorem 5. Let Γ1,Γ2,Γ3 be bipartite 4-colored graphs represented by the following codes:

Γ1 : DABCFEFEABDCCDEFAB;

Γ2 : FABCDEDEFABCCDEFAB;

Γ3 : DABCFEFEDABCBCFEDA.

If Gi, 1 ≤ i ≤ 3, is an admissible n-fold covering of Γi, then

10n ≤ cg(MGi
) ≤ 12n.

Proof. It follows from [11, Table 3] that Γ1,Γ2 and Γ3 represent the tetrahedral manifolds

otet10_00014, otet10_00028 and otet10_00027 respectively, which are obtained by gluing

together 10 regular ideal tetrahedra (see details in [11]). The double inequality 10n ≤
cg(MGi

) ≤ 12n now follows from Theorem 3. �

4. Manifolds of graph complexity 14

The previous section shows how it could be useful to have a census of (prime) 3-manifolds

represented by 4-colored graphs.
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In [11], all prime orientable 3-manifolds with toric boundary representable by (bipartite)

4-colored graphs with order ≤ 12 have been classified.

In this section we extend the classification up to 14 vertices of the associated graphs.

Moreover, we show that all manifolds appearing in this census, except four, are complements

of links in the 3-sphere whose diagrams are also determined.

The classification has been obtained starting from the catalogues of graphs described in

[11] by using the programs 3-Manifold Recognizer [16] and SnapPy [12] and following the

procedure described in the same paper.

Theorem 6. There exist exactly 34 non-homeomorphic compact orientable prime 3-

manifolds with (possibly disconnected) toric boundary of graph complexity 14, and exactly

30 of them are complements of links in the 3-sphere (see Table 1).

In order to refer with precision to each manifold in our census, we use a notational system

analogous to that used in the knot and link tables. For each 1 ≤ k ≤ 5, we sort in arbitrary

order all 3-manifolds with k boundary components represented by a minimal 4-colored graph

with 14 vertices, and we denote by 14k
n the n-th manifold of this list.

Let us describe which kind of 3-manifolds can be found in Table 1.

Seifert manifolds. A Seifert manifold will be denoted by (F, (p1, q1), . . . , (pk, qk)), where

F is a compact surface with non-empty boundary, k ≥ 0 and the coprime pairs of integers

(pi, qi), with pi ≥ 2, are the Seifert invariants of the exceptional fibers.

We point out that, by construction, any Seifert manifold with non-empty boundary is

endowed with a coordinate system for each of its boundary tori, made by a pair of merid-

ian/longitude suitably oriented.

All Seifert manifolds appearing in our census, either as single manifolds or as components

of a graph manifold, have either disks or Möbius strips, possibly with holes, as base spaces

and at most two exceptional fibers.

In Table 1, we denote by D2
i and M2

i the disc and the Möbius strip with i > 0 holes

respectively.

Graph manifolds. Graph manifolds of Waldhausen are obtained from Seifert manifolds

by gluing them along boundary components. The structure of the 14 graph manifolds arising

in our census is very simple: each of them is obtained by gluing together either two or three

Seifert manifolds as follows.

• Let M,M ′ be two Seifert manifolds with non-empty boundaries equipped with fixed

coordinate systems. Chosen arbitrary tori T and T ′ of ∂M and ∂M ′, respectively, let

fA : T → T ′, with A = (aij) ∈ GL2(Z), be a homeomorphism that takes any curve

of type (m,n) on T to a curve of type (a11m+a12n, a21m+a22n) on T ′. So we define

M ∪A M ′ = M ∪fA M ′.

8



• Let M,M ′,M ′′ be three Seifert manifolds with non-empty boundaries equipped with

fixed coordinate systems. Chosen arbitrary tori: T of ∂M , T ′1 and T ′2 of ∂M ′ and T ′′

of ∂M ′′, let fA : T → T ′1, fB : T ′′ → T ′2 be homeomorphisms corresponding to the

matrices A,B ∈ GL2(Z) as above, then we define M∪AM ′∪BM
′′ = M∪fAM ′∪fBM

′′.

Hyperbolic manifolds. Of the seven hyperbolic manifolds in our census, three (143
9, 143

10

and 144
14), by removing their boundary, give rise to cusped hyperbolic 3-manifolds that are

contained in the orientable cusped census [5] or in the censuses of Platonic manifolds of

SnapPy.

Therefore they are identified, in Table 1, by the notations of their corresponding cusped

manifolds.

Composite manifolds. We call a 3-manifold composite if its JSJ decomposition is non-

trivial and contains a hyperbolic manifold. Each of the 10 composite manifolds arising in

our census is obtained by gluing together one hyperbolic manifold and either one or two

Seifert manifolds as follows.

• Let M be a Seifert manifold with non-empty boundary equipped with fixed coor-

dinate systems as remarked above. Let ML be a hyperbolic manifold, which is the

complement of an open regular neighbourhood of a link L = L1 t . . . t Lr in S3. A

preferred coordinate system for ∂ML can be also chosen in the following way. On

the regular neighbourhood of each Li, considered as a knot in S3, we choose a stan-

dard coordinate system formed, as usual, by the boundary of a meridian disk and

a homologically trivial curve in the complement of Li. Therefore, once a boundary

torus T of M and an i-th component (∂ML)i of ∂ML corresponding to Li are cho-

sen, a homeomorphism fA,i : T → (∂ML)i can be described by means of a matrix

A ∈ GL2(Z) as in the case of graph manifolds. Finally, we denote by M ∪A,i ML

the manifold obtained by gluing M and ML through the homeomorphism fA,i. Since

in Table 1 each manifold ML is represented by a link with up to 8 crossings, we

numerate the components L1, . . . , Lr of L as they appear in its Gauss code displayed

in the corresponding page of [3].

• Given two Seifert manifolds with non-empty boundaries M ′ and M ′′ and a hyperbolic

manifold ML as above, we denote by M ∪A,i ML ∪B,j M
′′ the manifold obtained by

identifying two bondary tori of M ′ and M ′′ with (∂ML)i and (∂ML)j respectively by

the homeomorphisms fA and fB similarly to the previous case.

All prime links appearing in Table 1 are contained in the Thistlethwaite link table up to

14 crossings distributed with SnapPy; they are identified through their Thistlethwaite name,

that is of the form L[k]a[j1] or L[k]n[j2], depending on whether the link is alternating or not.

Here k is the crossing number and j1, j2 are archive numbers assigned to each (a, k), (n, k)

pair, respectively. All other links of Table 1 are not prime and their diagrams are depicted

in Figure 4.
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Table 1: Orientable prime 3-manifolds with toric bound-

ary of graph complexity 14

Name Code Manifold Link

1421 EABCDGFGDFEBCADGEFBAC
(
D2

1 , (3, 1)
)

L6a3

1422 DABCGEFGFECDBABGDFACE
(
D2, (2, 1), (3, 1)

)⋃1 1

1 0


(D2

2 × S1) see fig. 4

1423 GABCDEFEDGFABCDEFAGCB
(
D2

1 , (2, 1)
)⋃0 1

1 0


(
D2

1 , (2, 1)
)

L11n204

1431 EABCDGFGEFCADBCEGAFBD
(
D2

2 , (2, 1)
)

L12n1998

1432 DABCGEFGFBADCEFCEAGDB
(
M2

2 , (1, 0)
)

–

1433 DABCGEFFDBECGAEDGCFAB
(
D2, (2, 1), (3, 1)

)⋃1 1

1 0


(D2

3 × S1) see fig. 4

1434 EABCDGFGDFEBCABDGAFEC
(
D2

1 , (2, 1)
)⋃1 2

1 1


(D2

2 × S1) L8n6

1435 DABCGEFGEFBDACFGEBACD
(
D2

1 , (3, 1)
)⋃0 1

1 0


(D2

2 × S1) see fig. 4

1436 EABCDGFGFDABECCEFAGDB
(
M2

1 , (1, 0)
)⋃0 1

1 0


(D2

2 × S1) –

1437 EABCDGFGFDABECFDGBACE
(
D2

1 , (2, 1)
)⋃0 1

1 0


(D2

2 × S1)
⋃0 1

1 0


(
D2

1 , (2, 1)
)

see fig. 4

1438 DABCGEFGDFCABEBFDECGA (D2
2 × S1)

⋃0 1

1 0

,1

ML5a1 L13n9356

1439 DABCGEFGEFBDACFCGABDE t12066, ooct02_00003 L8n5

14310 DABCGEFGDFBACECFAEDGB t12067, ooct02_00005 L6a4

1441 EABCDGFGFBACEDBCFDGAE (D2
2 × S1)

⋃0 1

1 0


(
D2

2 , (2, 1)
)

see fig. 4

1442 EABCDGFGBEDFACEFAGCDB (D2
2 × S1)

⋃0 1

1 0


(
M2

2 , (1, 0)
)

–

1443 DABCGEFGCFADBEEGABCFD
(
D2

1 , (2, 1)
)⋃0 1

1 0


(D2

3 × S1)
⋃0 1

1 0


(
D2

1 , (2, 1)
)

see fig. 4

1444 EABCDGFGEFCADBBFDGEAC (D2
2 × S1)

⋃0 1

1 0


(
D2

1 , (2, 1)
)⋃−1 2

1 −1


(D2

2 × S1) L11n379

1445 EABCDGFGFECABDCGDAFEB
(
D2

1 , (2, 1)
)⋃1 2

1 1


(D2

2 × S1)
⋃0 1

1 0


(D2

2 × S1) see fig. 4

1446 EABCDGFGDFACEBBFEDGAC
(
M2

1 , (1, 0)
)⋃0 1

1 0


(D2

2 × S1)
⋃0 1

1 0


(D2

2 × S1) –
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Table 1: Orientable prime 3-manifolds with toric bound-

ary of graph complexity 14

Name Code Manifold Link

1447 EABCDGFGFDEBCAFDEGCAB
(
D2

1 , (2, 1)
)⋃1 0

0 −1

,1

ML8n7 L14n63157

1448 EABCDGFGFEBCDACGFEBAD
(
D2

1 , (2, 1)
)⋃0 1

1 0

,1

ML8n7 L14n61549

1449 EABCDGFGDFEBCAFCGADEB (D2
2 × S1)

⋃0 1

1 1

,1

ML6a5 L14n62850

14410 EABCDGFGFBEACDDCGAFEB (D2
2 × S1)

⋃0 1

1 0

,3

ML8n5 see fig. 4

14411 DABCGEFGEFBDACFGCABDE (D2
2 × S1)

⋃0 1

1 0

,1

ML8n5 L14n62541

14412 EABCDGFGEFBDACCGAEFDB (D2
2 × S1)

⋃0 1

1 0

,1

ML6a4 see fig. 4

14413 EABCDGFGEFBDACBGCEFDA (D2
2 × S1)

⋃0 1

1 0

,1

ML5a1
⋃0 1

1 0

,2

(D2
2 × S1) see fig. 4

14414 EABCDGFGDFACEBFCEGBAD otet10_00011, ocube02_00044 L8a21

14415 EABCDGFGFDABECFDEGCAB hyperbolic manifold with Vol = 10.6669791338 L14n60227

14416 EABCDGFGFEACBDCDFGAEB hyperbolic manifold with Vol = 11.202941612 L10n96

14417 DABCGEFGEFBDACCGAFBDE hyperbolic manifold with Vol = 12.8448530047 L11n456

14418 DABCGEFGEFBDACFGEACDB hyperbolic manifold with Vol = 12.3173273072 L14n63000

1451 EABCDFGGFEBADCCDEGFAB (D2
2 × S1)

⋃0 1

1 0


(D2

3 × S1) see fig. 4

1452 DABCGEFGFBADCEECFGABD (D2
2 × S1)

⋃1 0

0 −1

,1

ML8n7 L12n2249

1453 DABCGEFGCFADBECDEGAFB (D2
2 × S1)

⋃0 1

1 0

,1

ML8n7 L14n63769
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