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Virtual quandle for links in lens spaces

A. Cattabriga∗, T. Nasybullov†

Abstract

We construct a virtual quandle for links in lens spaces L(p, q), with q = 1.
This invariant has two valuable advantages over an ordinary fundamental
quandle for links in lens spaces: the virtual quandle is an essential invariant
and the presentation of the virtual quandle can be easily written from the
band diagram of a link.

Mathematics Subject Classification 2010: Primary 57M27, 08A99; Secondary
57M10.

Keywords: links in lens spaces, link invariants, virtual quandles.

1 Introduction

Over the years knot theory has worked with knots and links in the three-dimensional
sphere S3. However, together with improving knowledge about 3-manifolds, great
attention has been paid to knots and links in manifolds different from S3: Seifert
fiber spaces [9] (in particular, lens spaces [4, 5, 7, 12, 17]), thickened surfaces [13, 15],
arbitrary 3-manifolds [8, 16]. In this paper we focus on knots and links in lens spaces
L(p, q) with q = 1. These manifolds are the simplest ones (beside S3) where we can
study knots and links since every link in L(p, 1) can be presented by integer p-surgery
over the unknot (in cases of other manifolds the surgery link can be much more
difficult). Moreover, there are interesting articles explaining applications of knots
in lens spaces to other fields of science: [21] exploits them to describe topological
string theories and [2] uses them to describe the resolution of a biological DNA
recombination problem.

A lot of link invariants can be generalized from links in S3 to links in L(p, q).
Kauffman bracket skein module [12], knot Floer homology [1], HOMFLY-PT poly-
nomial [6] all have analogues in lens spaces.

∗The author is supported by GNSAGA of INdAM and University of Bologna, funds for selected
research topics.
†The author is supported by the Research Foundation – Flanders (FWO), app. 12G0317N.
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Despite the fact that some invariants can be generalized to links in lens spaces,
sometimes it is very difficult to use them. For example, the fundamental quandle of
a link which has a very simple topological description for links in S3 can be easily
generalized to links in L(p, q). However, an explicit procedure to write down a
presentation of a fundamental quandle for links in L(p, q) by generators and relations
directly from a (band, disc, grid) diagram is known only in the case (p, q) = (2, 1)
(see [11]), so it is almost impossible to use this invariant. Another disadvantage
of the ordinary fundamental quandle for links in L(p, q) is that the fundamental
quandle of the link K ⊂ L(p, q) is isomorphic to the fundamental quandle of its
lift π−1(K) ⊂ S3, where π : S3 → L(p, q) denotes the universal covering map.
So we cannot distinguish links with equivalent liftings. Such invariants are called
inessential [5]. In this paper we define the notion of virtual quandle for links in
L(p, 1). Virtual quandles were firstly introduced in [18, 19] as generalizations of
quandles for virtual links. Even if in the present paper we do not work with virtual
links, we use the name “virtual quandle” since our invariant has the same algebraic
structure.

The paper is organized as follows. In Section 2 we review the definition of band
diagrams for links in lens spaces, while in Section 3 we recall those of quandle
and virtual quandle, proving some results that will be useful in the following. In
Section 4 we construct a virtual quandle for links in L(p, 1) and prove that it is an
invariant (see Theorem 1). Finally, in Section 5 we investigate some properties of
this invariant, proving that it is essential (see Proposition 2).

2 Band diagrams for links in lens spaces

In this section we recall the notion of band diagrams for links in lens spaces (which
were firstly introduced in [12]) and recall how Reidemeister moves for such band
diagrams look like.

We start by giving the definition of Dehn surgery in S3. Let K be a knot in S3,
denote by N(K) a closed tubular neighborhood of K and let γ be a simple closed
curve on ∂N(K). The Dehn surgery on K along γ is the manifold M obtained
by gluing S3 \ int(N(K)) with a solid torus D2 × S1 along their boundaries via a
homeomorphism which identifies γ with the boundary of a meridian disc. The curve
γ is called the slope of the surgery and the homeomorphism type of the resulting
manifold depends only on the homology class of γ in ∂N(K), up to orientation
change. We fix a base (m, l) for H1(∂N(K)), such that m is a meridian of K and
l has algebraic intersection 1 with m. If the homology class of γ is pm + ql, with
p, q ∈ Z, we call the surgery rational and we say that it has framing index p/q.

Every link L in a manifoldM obtained via a p/q-surgery overK, can be presented
by a diagram of a link L′ ∪K in S3, where the knot K is equipped with a number
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p/q ∈ Q ∪ {∞}, the surgery along K gives M and L is the image of L′ under the
surgery operation. This presentation of L is called a mixed link diagram and the
knot K is called the surgery knot. In order to simplify notation we use the same
symbol L to denote both L′ and L.

The lens space L(p, q) is the 3-manifold obtained by a rational surgery on the
unknot U in S3 with framing index −p/q. So, a link L in L(p, q) can be described
by a mixed link diagram of the link L ∪ U (see, for example, Figure 1).

−p/q

Figure 1: Example of a mixed link diagram of a link in L(p, q).

In order to construct a band diagram for a link L in L(p, q) we present S3 as
a one-point compactification of R3 and fix coordinates (x1, x2, x3) in R3 such that
the surgery knot (which is the unknot in S3) is described as the x3 axis in R3. A
regular orthogonal projection of a mixed link diagram onto the plane x1x2 is called a
punctured disc diagram of L (see Figure 2 on the left). In a punctured disc diagram
the surgery knot is depicted as a puncture. A band diagram for a link L in L(p, q)
can be obtained from a punctured disk diagram by (i) cutting a disc containing
the punctured disk diagram and centered in the pucture along a half-line starting
from the puncture and avoiding the crossings of L and (ii) deforming the resulting
annulus into a rectangle (see Figure 2 on the right). Clearly, an orientation of the
link induces an orientation on the resulting band diagram.

Figure 2: A punctured disc diagram (on the left) and the corresponding band dia-
gram (on the right).

The intersection points of the link with the left (resp. right) side of the band
diagram are called left (resp. right) boundary points. Left and right boundary points
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together are called boundary points of a band diagram.
Two band diagrams are equivalent under the three classical Reidemeister moves

R1, R2, R3 inside the rectangle and a global move called the SL-move (see [16]). In
the case of lens spaces L(p, 1) the SL-move is depicted in Figure 3.
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.

. Λ

.

.

.

.

.

.

.

.

.

.

.

.

p

Figure 3: The SL-move for links in L(p, 1).

3 Quandles and virtual quandles

In this section we review some facts about quandles and virtual quandles from the
algebraic point of view.

3.1 Quandles

A quandle is a set Q endowed with a binary algebrabraic operation (x, y) 7→ xy

satisfying the following axioms:

1. for all x ∈ Q xx = x;

2. for all x ∈ Q the map ix : y 7→ yx is a bijection on Q;

3. for all x, y, z ∈ Q xyz = xzy
z
.

Here for simplicity we use symbols xyz and xy
z

to denote (xy)z and x(y
z) respectively.

The notion of a quandle was first introduced by Joyce [14] and, independently,
Matveev [20] as an invariant for links in the 3-sphere. After that quandles were also
studied from an algebraic point of view (see, for example, [3]).

Example 1. For a group G and a number k ∈ N denote by Conjk G the quandle
having the same underlying set as G and with operation xy = y−kxyk. This quandle
is called the k-th conjugacy quandle.
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A bijection ϕ : Q → Q is called an automorphism of a quandle Q if for all
x, y ∈ Q the equality ϕ(xy) = ϕ(x)ϕ(y) holds. In particular, from the second and the
third axioms follows that the map ix is an automorphism of Q for each x ∈ Q. The
group generated by ix for all x ∈ Q is called the group of inner automorphisms of
Q and is denoted by Inn(Q). We denote by yx

−1
the image of the element y under

the map i−1x : this notation should not suggest that x−1 is an element of Q, however
it is practically convenient since yxx

−1
= yx

−1x = y for all x, y ∈ Q. From the third
axiom of quandles for all x, y ∈ Q we have xyz = xzy

z
, and replacing x by xz

−1
, we

obtain the equality
xz

−1yz = xy
z

. (1)

If an element of a quandle Q has the form xw for x ∈ Q and w ∈ F (Q), then we
say that the element x is on the primary level and the element w is on the operator
level. Equality (1) says that we do not need more than these two levels and so every
element of a quandle has the form xw. Moreover, if xv = xw for all x ∈ Q then we
use the notation v ≡ w and call this expression the operator relation (see [8]).

3.2 Virtual quandles

A virtual quandle is a set V Q endowed with a binary algebraic operation (x, y) 7→ xy

and a unary algebraic operation x 7→ f(x) satisfying the following axioms:

1. V Q with the operation (x, y) 7→ xy is a quandle;

2. f is a bijection of V Q such that f(xy) = f(x)f(y).

Example 2. Let G be a group, k ∈ N and g be a fixed element of G. If we add to
the quandle Conjk G the operation ig, then we obtain a virtual quandle.

A bijection ϕ : V Q→ V Q is an automorphism of the virtual quandle V Q if for
all x, y ∈ V Q we have ϕ(xy) = ϕ(x)ϕ(y) and ϕ(f(x)) = f(ϕ(x)). The selfmap f
is clearly an automorphism of V Q, moreover f belongs to the center of the group
Aut(V Q). On the contrary the bijection ix is not necessarily an automorphism of
a virtual quandle. Indeed if ix is an automorphism, then for all y ∈ V Q we have
ix(f(y)) = f(ix(y)) and f(y)x = f(y)f(x). So, ix is an automorphism of V Q if and
only if x ≡ f(x), for all x ∈ V Q.

If V Q is a virtual quandle, then we denote by V Q− the quandle obtained from
V Q just forgetting about the operation f . Every automorphism of V Q induces an
automorphism of V Q− and every map ix induces an automorphism of V Q−.

As for groups, it is possible to present (virtual) quandle by generators and re-
lations as follows. Given a set of letters X = {x1, x2, . . . } denote by A(X) the
inductively defined set of words obtained from X by all possible subsequent appli-
cation of the operations (x, y) 7→ xy, (x, y) 7→ xy

−1
, x 7→ f(x), x 7→ f−1(x). Let
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{ri, si | i ∈ I} be some set of words from A(X) and R = {ri = si | i ∈ I} be a set
of formal equalities. Denote by ∼ an equivalence relation on A(X) which consists
of the following relations:

1. for all x, y ∈ A(x) x ∼ (xy)y
−1

∼
(
xy

−1
)y

;

2. for all x ∈ A(X) x ∼ f−1 (f(x)) ∼ f (f−1(x));

3. for all x ∈ A(X) x ∼ xx ∼ xx
−1

;

4. (xy)z ∼ (xz)y
z

for all x, y, z ∈ A(X);

5. for all x, y ∈ A(X) f
(
xy

−1
)
∼ f(x)f(y)

−1
, f−1

(
xy

−1
)
∼ f−1(x)f

−1(y)−1
,

f(xy) ∼ f(x)f(y), f−1(xy) ∼ f−1(x)f
−1(y);

6. ri ∼ si if the equality ri = si belongs to R.

The quotient A(X)/∼ with well defined operations (x, y) 7→ xy and x 7→ f(x) is
obviously a virtual quandle. We say that this virtual quandle is presented by the set
of generators X and the set of relations R and denote it by 〈X | R〉. Every relation
in the virtual quandle V Q has the form xv = yw, where x, y are elements of V Q and
v, w belong to the free group F (V Q) generated by V Q.

3.3 n-splitting automorphisms of quandles

Let f be an automorphism of a quandle Q. In general we cannot write the equalities
f(xy

−1
) = f(x)f(y

−1) and f(xyz) = f(x)f(yz) since the expressions f(y−1) and f(yz)
are not defined. However it is easy to show that the following equalities hold

f(xy
−1

) = f(x)f(y)
−1

f(xyz) = f(x)f(y)f(z).

Moreover, an automorphism f of a quandle Q induces an automorphism f∗ of
Inn(Q) which acts on the generators of Inn(Q) by the rule f∗(ix) = if(x). As a
consequence, on the operator level we can write expressions of type f(yz) and f(y−1)
meaning that xf(yz) = f∗(iziy)(x) and xf(y

−1) = f∗(i
−1
y )(x). Moreover if x belongs to

the free group F (Q) generated by the elements of Q then on the operator level we
can write expressions of type f(x).

An automorphism f of a quandle Q is said to be an n-splitting automorphism
of Q if for every element x ∈ Inn(Q) the equality xf∗(x) . . . fn−1

∗ (x) = 1 holds. In
other words, f is an n-splitting automorphism of Q if xf(x) . . . fn−1(x) ≡ 1 for all
x ∈ F (Q).

6



Example 3. Let G be a group, N = 〈xn | x ∈ G〉 be a subgroup of G generated by
n-th powers of elements from G and g ∈ G/N be a fixed element of the quotient.
Then ig is an n-splitting automorphism of the quandle Conj1 G/N .

We end the section proving some useful properties of n-splitting automorphisms.

Lemma 1. Let f ∈ Aut(Q) be an n-splitting automorphism of a quandle Q. The
following properties hold:

1) fn
∗ (x) = x for all x ∈ Inn(Q);

2) fn−1
∗ (x)fn−2

∗ (x) . . . x = 1 for all x ∈ Inn(Q);

3) for every z ∈ Q the automorphism g = izf is an n-splitting automorphism of
Q. Moreover if fn = id, then gn = id.

Proof. 1) From the n-splitting relation we have

1 = f∗(x)f 2
∗ (x) . . . fn

∗ (x) = x−1xf∗(x)f 2
∗ (x) . . . fn

∗ (x) = x−1fn
∗ (x).

Therefore fn
∗ (x) = x.

2) follows from 1) and the n-splitting relation.
3) Let y be an arbitrary element of F (Q), then the following sequence of equalities

holds

yg(y) . . . gn−1(y) ≡ yf(y)zf 2(y)f(z)z . . . fn−1(y)f
n−2(z)...z

≡ yz−1f(y)zz−1f(z)−1f 2(y)f(z)z . . . fn−1(y)fn−2(z) . . . z

≡ yz−1f(yz−1) . . . fn−1(yz−1)fn−1(z)fn−2(z) . . . z ≡ 1.

In the last equality we used item 2) of the lemma. So g is an n-splitting automor-
phism of Q. For every element x ∈ Q we have gn(x) = fn(x)f

n−1(z)fn−2(z)...z = fn(x),
therefore if fn = id, then gn = id.

Note that equality 1) of Lemma 1 does not imply the equality fn(x) = x. It just
says that fn(x) ≡ x for all x ∈ F (Q).

4 The virtual quandle for links in L(p, 1)

In this section we define the notion of the virtual quandle V Q(K) for a link K in a
lens space L(p, 1) and prove that it is invariant under all moves R1, R2, R3, SL.

An arc of a band diagram of a link K in L(p, 1) is a connected part of the
diagram bounded by two overpasses, or two boundary points, or one overpass and
one boundary point. Referring to Figure 4, we label (i) the arcs which are bounded
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by (at least) one left boundary point by the letters x1, x2, . . . , xn, (ii) the arcs which
are bounded by (at least) one right boundary point by the letters y1, y2, . . . , yn
and (iii) all the remaining arcs by the letters z1, z2, . . . , zk. Note that some of
x1, . . . , xn, y1, . . . yn, z1, . . . , zk may be identified. Choose an orientation of the link
and for each right boundary point yi define the number εi by the following rule: if
the arrow yi runs from the left to the right, then εi = 1, otherwise εi = −1.

Λ
x1

x2

xn

y1

y2

yn

.

.

.

.

.

.

Figure 4: Labelling arcs of a band diagram.

We define the virtual quandle V Q(K) of a link K ⊂ L(p, 1) as the virtual quandle
having the presentation V Q(K) = 〈X | I ∪B ∪ S〉, where:

• the set of generators X is {x1, . . . , xn, y1, . . . , yn, z1, . . . , zk};

• the set of inner relations I consists of relations which can be written from the
part Λ of the band diagram contained in the interior of the rectangle. Here
we have (i) relations of identifications between some of x1, . . . , xn, y1, . . . yn,
z1, . . . , zk (if it is necessary) and (ii) as in the classical case, for each crossing,
the relation xy = z, where x, y, z are the labels of the arcs involved in the
crossing as depicted in Figure 5;

xy

yz

Figure 5: Labels of the arcs in classical crossings.

• the set of boundary relations B consists of the n relations f(xi) = yi for
i = 1, . . . , n and one operator relation yεnn y

εn−1

n−1 . . . y
ε1
1 ≡ 1;

• the set of splitting relations S consists of relations which state that f is a
p-splitting automorphism of V Q(K)− and has order p: xf(x) . . . fp−1(x) ≡ 1
for all x ∈ F (X) and fp(x) = x for all x ∈ V Q(K).

Example 4. Let K be the knot in L(p, 1), whose band diagram is depicted in
Figure 6.
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x1

x2

y1

y2

Figure 6: Example of a band diagram for the knot K in L(p, 1).

We have four generators x1, x2, y1, y2. Since both y1, y2 run from the left to
the right, ε1 = ε2 = 1. Inner relations are x1 = y2, x

x1
2 = y1. Boundary relations

are f(x1) = y1, f(x2) = y2, y2y1 ≡ 1. Splitting relations are xf(x) . . . fp−1(x) ≡ 1,
fp(x) = x for all x. Therefore V Q(K) has the following presentation

V Q(K) = 〈x1, x2, y1, y2 | x1 = y2, x
x1
2 = y1, f(x1) = y1, f(x2) = y2, y2y1 ≡ 1,

∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

Using the relations x1 = y2, x
x1
2 = y1 we can delete the elements y1, y2 from the set

of generators. Then V Q(K) can be rewritten as

V Q(K) = 〈x1, x2 | f(x1) = xx1
2 , f(x2) = x1, x2x1 ≡ 1

∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

Using the relation f(x2) = x1 we can delete x1 from the set of generators. Then if
we replace the letter x2 just by x we have

V Q(K) = 〈x | f 2(x) = xf(x), xf(x) ≡ 1,∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

From the relations f 2(x) = xf(x) and xf(x) ≡ 1 we obtain the relation f 2(x) = x.
If p is odd, then from the relations f 2(x) = x and fp(x) = x we get f(x) = x and
the virtual quandle has the following presentation

V Q(K) = 〈x | f(x) = x〉.

If p is even, then the relation fp(x) = x is a consequence of the relation f 2(x) = x,
and the relation xf(x) . . . fp−1(x) ≡ 1 can be obtained from the relation xf(x) ≡ 1.
Then the virtual quandle has the following presentation.

V Q(K) = 〈x | f 2(x) = x, xf(x) ≡ 1〉

Example 5. Let U be the unknot in L(p, 1). A band diagram for U is depicted in
Figure 7.

9



x

Figure 7: Band diagram for the unknot in L(p, 1).

Here we have only one generator x and only splitting relations, so

V Q(U) = 〈x | ∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

Example 6. Let L be the n-component link in L(p, 1), whose band diagram is
depicted in Figure 8.

x1

x2

xn

Figure 8: Band diagram for the link L in L(p, 1).

We have n generators x1, . . . , xn and no inner relations (I = ∅). Boundary
relations are f(x1) = x1, . . . , f(xn) = xn, xnxn−1 . . . x1 ≡ 1 and splitting relations
are xf(x) . . . fp−1(x) ≡ 1 and fp(x) = x for all x, so the virtual quandle is

V Q(L) = 〈x1, . . . , xn | f(x1) = x1, . . . , f(xn) = xn, xn . . . x1 ≡ 1,

∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

From the relations f(x1) = x1, . . . , f(xn) = xn, it follows that f(x) = x for all x.
Then the virtual quandle has the following presentation

V Q(L) = 〈x1, . . . , xn | f(x1) = x1, . . . , f(xn) = xn, xn . . . x1 ≡ 1,∀x xp ≡ 1〉.

Theorem 1. The virtual quandle V Q(K) is an invariant for links in L(p, 1).

Proof. In order to prove that the virtual quandle is an invariant for links in L(p, 1)
we need to prove that it is invariant under all the Reidemeister moves R1, R2, R3

and the SL-move. The proof of the invariance under the moves R1, R2, R3 is the
same as in the case of ordinary quandle for links in S3 (see, for example, the proof
of [13, Theorem 3.4]). So we need to consider only the case of the SL-move.
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Let K be a link in lens space L(p, 1) whose band diagram is depicted in Figure 4.
The virtual quandle V Q(K) has generators x1, . . . , xn, y1, . . . , yn, z1, . . . , zk and the
set of relations I ∪ B ∪ S. Denote by K1 the link having the band diagram which
is obtained from the band diagram of K by the SL-move (see Figure 9). Fix an
orientation of K and take the induced orientation on K1: note that the arcs of K1

labelled by Y1, . . . , Yp are oriented as the arc of K labelled by y1.

Λ

.

.

.

.

.

.

.

.

.

.

.

.

X1

Xp

x1

x2

xn

y1

y2

yn

Y1

Yp

Yp+1

Yp+2

Yp+n

X2 Y2

Z2

Zp

Zp+1

Zp+n−1

Figure 9: The band diagram after the SL-move.

The virtual quandle V Q(K1) has generators x1, . . . , xn, y1, . . . , yn, z1, . . . , zk,
X1, . . . , Xp, Y1, . . . , Yp+n, Z2, . . . , Zp+n−1. The set of inner relations I1 consists of
the set I and the following relations

X1 = Y2, X2 = Y3, . . . , Xp = Yp+1, (2)

y
y
ε1
1

2 = Yp+2, y
y
ε1
1

3 = Yp+3, . . . , yy
ε1
1

n = Yp+n, (3)

Z
Y

ε1
2

2 = Y1, Z
Y

ε1
3

3 = Z2, . . . , Z
Y

ε1
p+1

p+1 = Zp, (4)

Z
Y

ε2
p+2

p+2 = Zp+1, Z
Y

ε3
p+3

p+3 = Zp+2, . . . , Z
Y

εn−1
p+n−1

p+n−2 = Zp+n−1, y
Y εn
p+n

1 = Zp+n−1. (5)

The set of boundary relations B1 consists of the following p+ n relations

f(X1) = Y1, . . . , f(Xp) = Yp, f(x1) = Yp+1, . . . , f(xn) = Yp+n (6)

and one operator relation

Y εn
p+nY

εn−1

p+n−1 . . . Y
ε2
p+2Y

ε1
p+1 . . . Y

ε1
1 ≡ 1. (7)

The set of splitting relations S1 is the same as the set of splitting relations S and
consists of the relations xf(x) . . . fp−1(x) ≡ 1, fp(x) = x for all x.
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From the set of relations (4) and (5) we see that every element Zi can be expressed
via y1 and Y1, Y2, . . . , Yp+n. Therefore we can delete the elements Z2, Z3, . . . , Zp+n−1
from the set of generators and replace the set of relations (4) and (5) by the relation

y
Y εn
p+nY

εn−1
p+n−1...Y

ε2
p+2Y

ε1
p+1...Y

ε2
2

1 = Y1. (8)

Using boundary relation (7) and the fact that Y
Y

ε1
1

1 = Y1 we conclude from (8) that
Y1 = y1.

From inner relations (2) and (3) we see that all the generators Y2, Y3, . . . , Yp+n can
be expressed via X1, . . . , Xp, y1, . . . , yn. Therefore we can delete all these generators
from the generating set changing them by their expressions via X1, . . . , Xp, y1, . . . , yn
in the relations where they take part. Moreover, from the set of relations (6) we can
express X1, . . . , Xp via x1 (Xi = fp+1−i(x1)) and delete all the elements X1, . . . , Xp

from the set of generators.
After these manipulations we see that V Q(K1) is generated by the elements

x1, . . . , xn, y1, . . . , yn, z1, . . . , zk which are the same as for V Q(K). The set of inner
relations I1 coincides with the set I. The set B1 of boundary relations consists of
the following relations

fp+1(x1) = y1, f(x2) = y
y
ε1
1

2 , . . . , f(xn) = yy
ε1
1

n (9)

and one operator relation(
yy

ε1
1

n

)εn (
y
y
ε1
1

n−1

)εn−1

. . .
(
y
y
ε1
1

2

)ε2
f(x1)

ε1f 2(x1)
ε1 . . . fp+1(x1)

ε1 ≡ 1. (10)

Using the splitting relation and the equality y
y
−ε1
1

1 = y1 we can rewrite the boundary
relations (9) in the following way

f(x1)
y
−ε1
1 = y1, f(x2)

y
−ε1
1 = y2, . . . , f(xn)y

−ε1
1 = yn. (11)

By Lemma 1 we have f(x1)
ε1f 2(x1)

ε1 . . . fp(x1)
ε1 ≡ 1 and using the fact that

fp+1(x1)
ε1 = y1 we can rewrite equality (10) in the form

(
yεnn y

εn−1

n−1 . . . y
ε2
2 y

ε1
1

)yε11 ≡ 1,
which is equivalent to the relation yεnn y

εn−1

n−1 . . . y
ε2
2 y

ε1
1 ≡ 1.

Now the only difference between V Q(K) and V Q(K1) is in the boundary rela-
tions (11). However if we change f by g = iε1y1f , then we obtain completely the same
relations in both quandles since by Lemma 1 the splitting relations for f and for g
are the same.

5 Properties of the virtual quandle invariant

In this section we investigate some properties of the virtual quandle and we prove
that it is an essential invariant.
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At first, we recall some results on the homology of links in lens spaces (see
[4, Lemma 4] and [10, Proposition 2]). If K is an oriented link in L(p, 1) with
components K1, . . . , Km represented via a band diagram with n right boundary
points, then the homology class [Kj] of Kj in H1(L(p, 1)) has the following form

[Kj] =

nj∑
ij=1j

εij mod p, (12)

where 1j, . . . , nj are the labels of the right boundary points which correspond to Kj

and εij = ±1 according to the rule described in the previous section. Moreover,

H1(K) := H1(L(p, 1) \N(K)) = Zd ⊕m
j=1 Z,

where d = gcd(p, [K1], . . . , [Km]).
The following result connects the virtual quandle with the homology of the link.

Proposition 1. Let K ⊂ L(p, 1) be a link with components K1, . . . , Km. Let W (K)
be the virtual quandle obtained from V Q(K) by adding relations x ≡ 1, for all x ∈ X.
Then we have

W (K) = 〈t1, . . . , tm | ∀j f gcd([Kj ],p)(tj) = tj,∀x x ≡ 1〉

where [Kj] denotes the homology class of Kj in H1(L(p, 1)).

Proof. The virtual quandle W (K) is obviously a homomorphic image of V Q(K) and
we can easily represent W by generators and relations transforming relations from
I ∪B ∪ S using relations x ≡ 1 for all x.

The boundary relation yεnn y
εn−1

n−1 . . . y
ε1
1 ≡ 1 and the splitting relation xf(x) . . . fp−1(x) ≡

1 follow directly from the relation x ≡ 1 for all x. Therefore in W from the set B
of boundary relations we have only f(x1) = y1, . . . , f(xn) = yn and from the set
S of splitting relations we have only the relation fp(x) = x for all x. Every inner
relation which follows from crossings of the diagram has the form xy = z (see Figure
5), therefore since y ≡ 1 in W this relation will give us x = z. It means that inner
relations just identify all arcs belonging to the same component of a link and lying
between two boundary points. If we denote by tj the generator corresponding to
the j-th component of a link, we obtain the following presentation for W (K).

W (K) = 〈t1, . . . , tm | ∀j f ε1j+···+εmj (tj) = tj,∀x fp(x) = x, ∀x x ≡ 1〉

The relations f ε1j+···+εmj (tj) = tj and fp(tj) = tj together are equivalent to the

relation f gcd(ε1j+···+εmj ,p)(tj) = tj which by equality (12) is equivalent to the relation
f gcd([Kj ],p)(tj) = tj, therefore W (K) has the following presentation

W (K) = 〈t1, . . . , tm | ∀j f gcd([Kj ],p)(tj) = tj,∀x x ≡ 1〉

and the statement is proved.
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Let π : S3 → L(p, q) be the universal covering. An invariant of links in L(p, q) is
called essential if it is able to distinguish at least a couple of links having equivalent
liftings under π. The fundamental quandle for links in lens spaces is an inessential
invariant since it is invariant under cyclic coverings (see [8]). On the contrary, for
the virtual quandle invariant we have the following result.

Proposition 2. The virtual quandle is an essential invariant for links in L(p, 1).

Proof. In order to prove that the virtual quandle is an essential invariant we need
to find two links K1 and K2 in L(p, 1) which have equivalent liftings and different
virtual quandles. Let us consider two links in L(4, 1) depicted in Figure 10.

Figure 10: Two links in L(4, 1) with equivalent liftings in S3.

This links have equal liftings (see [17]). By Example 4 and Example 6 we have

V Q(K1) = 〈x | f 2(x) = x, xf(x) ≡ 1〉
V Q(K2) = 〈x, y | f(x) = x, f(y) = y, yx ≡ 1,∀z z4 ≡ 1〉

Let W1 and W2 be virtual quandles obtained from V Q(K1) and V Q(K2), respec-
tively, adding the relations z ≡ 1 for all z. Then the virtual quandles

W1 = 〈x | f 2(x) = x,∀z z ≡ 1〉
W2 = 〈x, y | f(x) = x, f(y) = y,∀z z ≡ 1〉

are not isomorphic: they both have two elements, but in W1 the automorphism f
permutes the elements, while in W2 the automorphism f fix both of them. Then
also V Q(K1) and V Q(K2) are obviously not isomorphic.

It would be interesting to investigate relationships between the virtual quandle
and other link invariants: the fundamental group and the augmented fundamental
rack (see [8]).
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