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Stem cells from human dental pulp have been considered as an alternative source of adult

stem cells in tissue engineering because of their potential to differentiate into multiple cell

lineages. Recently, polysaccharide based hydrogels have become especially attractive

as matrices for the repair and regeneration of a wide variety of tissues and organs.

The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate

the performance of the scaffolds with potential applications in tissue engineering. The

aim of this study was to verify the osteogenic and odontogenic differentiation of dental

pulp stem cells (DPSCs) cultured on a carboxymethyl cellulose—hydroxyapatite hybrid

hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite

hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14, and 21

days. Cell viability assay and ultramorphological analysis were carried out to evaluate

biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the

expression of osteogenic and odontogenic markers. Results showed a good adhesion

and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel,

while a low adhesion and viability was observed in cells cultured on carboxymethyl

cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of

osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl

cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms

the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in

presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together,

our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite

hybrid hydrogel could be considered promising candidates for dental pulp complex and

periodontal tissue engineering.
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FIGURE 6 | (A) TEM image of CMC-HA scaffold with DPSCs organized in cluster (arrow) after 1 day of culture (m: hydrogel material; arrowheads: HA crystals; bar:

20 um); (B) TEM image of DPSCs cultured on CMC-HA hydrogel for 7 days. Cells appear well-preserved (n, nucleus; c, cytoplasm; bar: 10 um); (C) TEM analysis of

DPSCs cultured for 14 days. An initial deposition of the extracellular matrix (em) was observed (n, nucleus; c, cytoplasm; arrowhead, HA crystals; bar: 10 um); (D) High

magnification of the fibrillary structures observed in the extracellular matrix of DPSCs cultured on CMC—HA for 14 days (bar: 200 nm); (E) TEM image of DPSCs

grown for 21 days on CMC—HA hydrogel. Cells completely covered hydrogel surface (n, nucleus; c, cytoplasm; em, extracellular matrix; bar: 20 um). (F) High

magnification of fibrillary structures observed in the extracellular matrix of cells culture on CMC—HA hydrogel for 21 days. A banding structure connected with type I

collagen fibers is observed (arrow) (c, cytoplasm; bar: 200 nm).

seeded on both materials was initially the same, we concluded
that in CMC samples there was a weaker adhesion of cells to
the scaffold surface and less proliferation during the time of
incubation. These findings reflect one of the common problems
associated with non-human polysaccharide based hydrogels
(carboxymethylcellulose, chitosan, alginates, etc.) utilized for
tissue engineering applications, characterized by a lack of
bioactivity, which usually limits cell adhesion to biomaterials and
further tissue integration (Shin et al., 2004; Jing et al., 2015). One
approach to promote polysaccharide biomaterials interactions
with surrounding tissue has been to tether cell-binding peptides
to the biomaterial, through physical or chemical modification
methods, to provide biological cues to mimic cell–extracellular
matrix protein interactions (Jing et al., 2015).

Polysaccharide based hydrogels, designed for bone
tissue engineering, need stronger mechanical proprieties to
regenerate hard tissues (Pasqui et al., 2014; Mattei et al., 2015;
Michel et al., 2015). To this aim, it has been demonstrated
that the combination of hydroxyapatite with natural or
synthetic hydrogels improves bioactivity, osteoinductivity, and
osteoconductivity (Michel et al., 2015).

A previous investigation reports that the CMC-HA hybrid
hydrogel showed the presence of HA crystal homogenously
distributed inside and on the hydrogel surface, improving
inherent mechanical and adhesive proprieties (Pasqui et al., 2012,
2014).

HR-SEM analysis confirmed a poor adhesion of DPSCs on the
CMC surface. At the end of day 21, no cells were detected on
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FIGURE 7 | (A) Quantitative Real Time PCR analysis of mRNA of RUNX-2, COL1A1, SPARC, and ALP of DPSCs cultured on CMC-HA scaffold for 1, 3, 5, 7, 14, and

21 days. Each individual assay was performed in triplicates and expressed as mean ± SD; # represents a significant difference of RUNX-2 expression relative to

control DPSCs (CTR DPSCs), P < 0.05; §represents a significant difference of COL1A1 expression relative to control DPSCs (CTR DPSCs), P < 0.05; ◦ represents a

significant difference of SPARC expression relative to control DPSCs (CTR DPSCs), P < 0.05; *represents a significant difference of ALP expression relative to control

DPSCs (CTR DPSCs), P < 0.05; (B) Quantitative Real Time PCR analysis of mRNA of DMP-1and DSPP of DPSCs cultured on CMC-HA scaffold for 1, 3, 5, 7, 14, and

21 days. Each individual assay was performed in triplicates and expressed as mean ± SD; *represents a significant difference of DMP1 expression relative to control

DPSCs (CTR DPSCs), P < 0.05; # represents a significant difference of DSPP expression relative to control DPSCs (CTR DPSCs).

the hydrogel surface. This result is apparently in contrast with
cell viability data, where at day 7 a peak of cell viability was
observed. We speculate that during the preparation of the sample
for electron microscopy analysis, cells were lost due to a weak
adhesion on the CMC scaffold.

HR-SEM images of the CMC-HA scaffold showed a good
adhesion of cells after 1 day of culture. By the end of
day 21, the cells covered the scaffold surface, showing a
fibroblast-like morphology and several secretory vesicles on the
cellular membrane, suggesting intense protein synthesis mainly
connected with the differentiation process (Venugopal et al.,
2010; Teti et al., 2012). TEM images demonstrated the presence
of extracellular matrix fibrils resembling type I collagen protein
at day 14 and 21, in agreement with the commitment of MSCs
toward the osteogenic and odontogenic lineage (Riccio et al.,
2010; Teti et al., 2012).

To fully confirm the osteogenic differentiation of DPSCs
cultured on CMC-HA hydrogel, a Real Time PCR analysis was
carried out to test mRNA expression of osteogenic markers

such as ALP, RUNX2, COL1A1, and SPARC. RUNX2 is a
transcription factor involved in osteoblastic differentiation and
skeletal morphogenesis. It has been shown to affect the expression
of type I collagen and SPARC by binding to the promoters
of these genes. RUNX2 and COL1A1 are known to be early
markers of osteoblastic differentiation while SPARC is involved
in initiating mineralization and promoting mineral crystal
formation during bone formation. ALP appears to be intimately
related to pre-osseous cellular metabolism and to the elaboration
of a calcifying bone matrix (Siffert, 1951).

The data obtained showed the expected expression profiles
of the osteoblast phenotype. Results showed an up-regulation of
all osteogenic markers after day 14 and 21, compared to control
DPSCs. These data are in agreement with the temporal gene
expression demonstrated during osteogenesis (Kulterer et al.,
2007; Raggatt and Partridge, 2010; Fakhry et al., 2013). An up-
regulation of RUNX2 was evident during the whole period of
differentiation. COL1A1 reached a maximum of expression on
day 21 in agreement with TEM images that showed the presence

Frontiers in Physiology | www.frontiersin.org 8 October 2015 | Volume 6 | Article 297

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Teti et al. DPSCs differentiation on CMC-HA hydrogel

of extracellular fibrillary structures, resembling type I collagen
protein. Also SPARC showed a nearly constant, up-regulated
expression level with a peak on day 21 of differentiation.

To demonstrate odontogenic differentiation, the mRNA
expression of DMP1 and DSPP genes was investigated by Real
Time PCR. DMP1 plays crucial roles in the formation of dentin
mineralized tissues (Ye et al., 2004). DSPP is a large protein
which subsequently undergoes cleavage to generate two products:
dentin sialoprotein (DSP) and dentin phosphoprotein (DPP)
(Yamakoshi et al., 2006). DPP is thought to play a role during
the nucleation of calcium phosphate while DSP has little or
no effect on mineralization; its real function remains unclear
(Yamakoshi et al., 2006). Our data demonstrated an upregulation
of both odontogenicmarkers during the process of differentiation
reaching peak levels at D14 and D21, corresponding to the phase
of deposition of extracellular matrix andmineralization (Kulterer
et al., 2007).

In conclusion, our in vitro data demonstrated that the CMC-
HA hybrid hydrogel has suitable proprieties in supporting
DPSCs adhesion, proliferation and osteogenic and odontogenic
differentiation. This novel biomaterial could be a promising
candidate for periodontal and dental pulp tissue engineering.
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