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1. Evaluating residue positional relevance with deep Taylor decomposition 

The DCNN described in Section 2.2 of the Main Text provides a prediction of the presence/absence of the 

signal peptide sequence in the N-terminus of any input protein. With DCNN, some of the elements of the input 

sequence (i.e. individual residues) may be more determinant than others, in driving the model classification 

towards one specific class. An important question is then how this piece of information can be extracted from 

the analysis of the internal neuronal activity of DCNN. 

Here, we adopted the deep Taylor decomposition (Montavon et al., 2017), a hybrid functional/message passing 

approach that has been recently introduced for the analysis of deep neural networks. The method focuses on 

image classification, but it can be easily extended to other types of prediction scenarios, such as protein 

sequence classification. We briefly describe here its main aspects and refer to the original paper for a complete 

mathematical description of the method (Montavon et al., 2017). 

Let be 𝐱 = 𝐱#,⋯ , 𝐱&  an input protein sequence of length 𝑙 where each 𝐱( ∈ ℝ+, is a 20-channel vector 

representing a residue in the sequence. 𝑓 𝐱 	∈ ℝ is the scalar function implemented by the DCNN and 

evaluated on the input 𝐱. The function 𝑓(𝐱) quantifies the evidence (or score) that a signal peptide is present 

in the N-terminus of the sequence 𝐱. We want to assign to each residue 𝐱( a relevance score 𝑅𝐱4 that quantifies 

the individual contribution of that residue to the total predicted evidence function 𝑓(𝐱). 

The main properties of deep Taylor decomposition can be summarized in few key points (Montavon et al., 

2017). Firstly, the global evidence function 𝑓(𝐱) is decomposed into a set of sub-functions on the basis of the 

specific connectivity between neurons of the network. Secondly, a relevance score is propagated from upper 

to lower layers of the network through local evaluations of Taylor expansions of the relevance function. 

Thirdly, explicit propagation rules exploiting the local network connectivity are defined to propagate the total 

relevance evaluated at the network output back to the input variables. These rules are defined in order to take 



into account all possible (i.e from other neurons) contributions to the relevance computed at a given internal 

neuron. At each propagation stage, the relevance is redistributed from neurons at a given layer to neurons in 

the connected lower layer. 

To understand how deep Taylor decomposition works consider the network showed in Supplementary Fig. 1. 

 

Supplementary Fig. 1. A simple DCNN mapping four input variables to a single output through one 

convolution-pooling stage. 

 

The network is a simplified version of our DCNN, processing a single-channel input sequence of length four 

with a single convolutional layer stage with one motif of width three, sum pooling and final linear mapping to 

a single output through three hidden units.  

Mathematically, the function 𝑓 𝑥#, 𝑥+, 𝑥6, 𝑥7  computed by the network can be decomposed as follows: 
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where 𝑤 is the motif weight matrix and 𝑏& are bias parameters. 

Firstly, the total relevance assigned by the model is the predicted output, i.e. 𝑅I = 𝑓 𝑥#, 𝑥+, 𝑥6, 𝑥7 = 𝑜. From 

Eq. 4, the relevance 𝑅I can be expressed as a function of the hidden-layer neurons as follows: 

 𝑅I = 𝑔 ℎ#, ℎ+, ℎ6 = 𝑟&ℎ&&        (5) 

In Equation 5 a direct mapping is established between neurons ℎ& and the relevance 𝑅I. This allows to defined 

the relevance value 𝑅KL for a given hidden-neuron ℎ& in terms of a local first-order Taylor expansion of the 

mapping function 𝑔 = 𝑅I at some well-chosen root point ℎ& (i.e. a point where 𝑔(ℎ&) 	= 	0): 

  𝑅KL =
MNO
MKL
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where MS
MKL

|	KL is the gradient of 𝑅I with respect to ℎ& evaluated at the root point ℎ&. It can be shown that, given 

the functional form of ℎ& (Eq. 3) the only admissible root point is ℎ& = 0 (Montavon et al., 2016).  

Since MS
MKL

= 1, it follows that: 

 𝑅KL = 	 ℎ& = 	max 0, 𝑧B𝑢B& + 𝑏&B       (7) 

In other words, relevance 𝑅KL is proportional to the actual activation of each hidden-neuron. Going one step 

backward, relevance scores 𝑅KL are redistributed to pooling layer neurons 𝑧B. Again, computing local Taylor 

expansion of the function 𝑅KL we have that: 
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where 𝑧B
(&) is a well-chosen root point (here depending on 𝑘 and 𝑙), and 𝑙 is an index for all neurons to which 

𝑧B is connected to. Several methods are presented by authors for choosing the proper root point at this stage, 

each method giving rise to different relevance propagation rules (Montavon et al., 2017). In particular, when 

the input space is unconstrained the root point can be always chosen as the closest point by Euclidean distance 

to the 𝑧B point. In contrast, when the space is constrained, the search domain must be restricted in order to 

consider feasible root points. Here, since the Rectified Linear Unit (ReLU) activations are used in the previous 

layer, the pooling layer output is a constrained input space (ℝ?+ ). We can then apply the so-called z-rule 

(Montavon et al., 2017), leading to the following propagation formula: 
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where 𝑢B&?  denotes the positive part of 𝑢B&. 

Adopting the same concepts, relevance scores are back-propagated to convolution and input layers. 

Analogously to the hidden-layer, for the convolution relevance 𝑅\] we have the following: 
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Finally, for the input layer, according to the z-rule we have that: 
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where, again, 𝑤(? denotes the positive part of 𝑤(. Note that in Eq. 11, the relevance 𝑅^4 takes into consideration 

both the contribution of 𝑥( to connected 𝑦9 (the numerator of the fraction) and the contributions of inputs 𝑥([ 

surrounding 𝑥( (the normalizing denominator of the fraction) to each 𝑦9. 

In summary, deep Taylor decomposition allows to assign to each neuron in a deep network a relevance score 

proportional to the contribution of the neuron to the total predicted score. Neuron relevance scores are 

computed by establishing local, connectivity-dependent functional mapping between neurons activations and 

propagated relevance values from upper-layers. Taylor expansions of local mappings at neuron-specific root 

points are then computed. Depending on the functional form of the mappings and on the nature of the input 

domain, different relevance propagation rules are defined. 

We apply this procedure to our signal peptide DCNN to evaluate the contribution of each residue position to 

the detection of the signal sequence. In other words, when applied to a given input sequence of length 𝑙 = 96, 

deep Taylor decomposition gives a vector: 

  𝑅𝐱a,⋯ , 𝑅𝐱L         (12) 

where the component 𝑅𝐱e is the relevance of the residue in position 𝑖. 

 


