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Abstract We investigate the extension of isotropic inte-
rior solutions for static self-gravitating systems to include
the effects of anisotropic spherically symmetric gravitational
sources by means of the gravitational decoupling realised via
the minimal geometric deformation approach. In particular,
the matching conditions at the surface of the star with the
outer Schwarzschild space-time are studied in great detail,
and we describe how to generate, from a single physically
acceptable isotropic solution, new families of anisotropic
solutions whose physical acceptability is also inherited from
their isotropic parent.

1 Introduction

In a recent paper [1], the first simple, systematic and direct
approach to decoupling gravitational sources in general rela-
tivity (GR) was developed from the so-called Minimal Geo-
metric Deformation (MGD) approach. The MGD was origi-
nally proposed [2,3] in the context of the Randall–Sundrum
brane-world [4,5] and extended to investigate new black
hole solutions [6,7] (for some earlier work on MGD, see
for instance Refs. [8–11], and for some recent applications
Refs. [12–17]). The decoupling of gravitational sources by
MGD (henceforth MGD-decoupling) is not only a novel idea,
but also has a number of ingredients that make it particularly
attractive in the search for new spherically symmetric solu-
tions of Einstein’s field equations, as discussed below.
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The main and foremost feature of this approach is that we
can start from a simple spherically symmetric gravitational
source T̂μν and add to it more and more complex gravitational
sources, as long as the spherical symmetry is preserved. The
starting source T̂μν could be as simple as we wish, including
the vacuum indeed, to which we can add a first new source,
say

T̂μν �→ T̃ (1)
μν = T̂μν + α(1) T (1)

μν , (1.1)

and then repeat the process with more sources, namely

T̃ (1)
μν �→ T̃ (2)

μν = T̃ (1)
μν + α(2) T (2)

μν , (1.2)

and so on. In this way, we can extend straightforward solu-
tions of the Einstein equations associated with the simplest
gravitational source T̂μν into the domain of more intricate

forms of gravitational sources Tμν = T̃ (n)
μν , step by step and

systematically. We stress that this method works as long as
the sources do not exchange energy-momentum, namely

∇ν T̂
μν = ∇νT

(1)μν = · · · = ∇νT
(n)μν = 0, (1.3)

which further clarifies that the constituents shown in Eq. (1.1)
can only couple via gravity.

The converse also works. In order to find a solution to
Einstein’s equations with a complex spherically symmetric
energy-momentum tensor Tμν , we can split it into simpler

components, say T (i)
μν , and solve Einstein’s equations for each

one of these parts. Hence, we will have as many solutions as
are the contributions T (i)

μν in the original energy-momentum
tensor. Finally, by a straightforward combination of all these
solutions, we will obtain the solution to the Einstein equations
associated with the original energy-momentum tensor Tμν .

To summarise, the MGD-decoupling amounts to the fol-
lowing procedure: given two gravitational sources A and B,
standard Einstein’s equations are first solved for A, and then
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a simpler set of quasi-Einstein equations are solved for B.
Finally, the two solutions can be combined in order to derive
the complete solution for the total system A∪B. Since Ein-
stein’s field equations are non-linear, the above procedure
represents a breakthrough in the search and analysis of solu-
tions, especially when the involved situations are beyond
trivial cases, such as the interior of self-gravitating systems
dominated by gravitational sources more realistic than the
ideal perfect fluid [18,19]. Of course, we remark that this
decoupling occurs because of the spherical symmetry and
time-independence of the systems under investigation.

Although decoupling gravitational sources in GR by a sys-
tematic way represents in itself a fact of significant theoret-
ical importance, its practical relevance is no less. Indeed,
this simple and systematic method could be conveniently
exploited in a large number of relevant cases, such as the
Einstein–Maxwell [20] and Einstein–Klein–Gordon system
[21–24], for higher derivative gravity [25–27], f (R)-theories
of gravity [28–34], Hořava-aether gravity [35,36], polytropic
spheres [37–39], among many others. In this respect, the sim-
plest practical application of the MGD-decoupling consists
in extending known isotropic and physically acceptable inte-
rior solutions for spherically symmetric self-gravitating sys-
tems into the anisotropic domain, at the same time preserving
physical acceptability, which represents a highly non-trivial
problem [40] (for obtaining anisotropic solutions in a generic
way, see for instance Refs. [41–43]).

This paper is organised as follows: in Sect. 2, we briefly
review the effective Einstein field equations for a spherically
symmetric and static distribution of matter with effective
density ρ̃, effective radial pressure p̃r and effective tangen-
tial pressure p̃t ; Sect. 3 is devoted to the fundamentals of
the MGD-decoupling; in Sect. 4, we provide detail on the
matching conditions under the MGD-decoupling; in Sect. 5,
we implement the MGD-decoupling to extend perfect fluid
solutions in the anisotropic domain. In particular, three new
exact and physically acceptable anisotropic solutions, gen-
erated from a single perfect fluid solution, are developed in
order to emphasise the robustness of the approach; finally,
we summarise our conclusions in Sect. 6.

2 Einstein equations for multiple sources

Let us start from the standard Einstein field equations

Rμν − 1

2
R gμν = −k2 T (tot)

μν , (2.1)

with

T (tot)
μν = T (m)

μν + α θμν, (2.2)

where

T (m)
μν = (ρ + p) uμ uν − p gμν (2.3)

is the 4-dimensional energy-momentum tensor of a perfect
fluid with 4-velocity field uμ, density ρ and isotropic pres-
sure p. The term θμν in Eq. (2.2) describes any additional
source whose coupling to gravity is further proportional to
the constant α [44]. This source may contain new fields, like
scalar, vector and tensor fields, and it will in general pro-
duce anisotropies in self-gravitating systems. We just recall
that, since the Einstein tensor is divergence free, the total
energy-momentum tensor (2.2) must satisfy the conservation
equation

∇ν T
(tot)μν = 0. (2.4)

In Schwarzschild-like coordinates, a static spherically
symmetric metric reads

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(

dθ2 + sin2 θ dφ2
)

, (2.5)

where ν = ν(r) and λ = λ(r) are functions of the areal radius
r only, ranging from r = 0 (the star center) to some r = R
(the surface of the star), and the fluid 4-velocity is given by
uμ = e−ν/2 δ

μ
0 for 0 ≤ r ≤ R. The metric (2.5) must satisfy

the Einstein equations (2.1), which explicitly read

− k2
(
ρ + α θ 0

0

)
= − 1

r2 + e−λ

(
1

r2 − λ′

r

)
, (2.6)

− k2
(
−p + α θ 1

1

)
= − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (2.7)

− k2 (−p + α θ 2
2

) = e−λ

4

(
2 ν′′ + ν′2 − λ′ ν′ + 2

ν′ − λ′

r

)
.

(2.8)

The conservation equation (2.4), which is a linear combina-
tion of Eqs. (2.6)–(2.8), yields

p′ + ν′

2
(ρ + p) − α

(
θ 1

1

)′ + ν′

2
α

(
θ 0

0 − θ 1
1

)

+ 2 α

r

(
θ 2

2 − θ 1
1

)
= 0, (2.9)

where f ′ ≡ ∂r f . We then note the perfect fluid case is for-
mally recovered for α → 0.

The system (2.6)–(2.8) contains seven unknown func-
tions, namely: two physical variables, the density ρ(r) and
pressure p(r); two geometric functions, the temporal metric
function ν(r) and the radial metric function λ(r); and three
independent components of θμν . These equations therefore
form an indefinite system. In the particular case where θμν

depends only on the density and the pressure, we need to
prescribe only an additional equation to close the system
Eqs. (2.6)–(2.8), just as we do for the perfect fluid in stan-
dard GR. However, at this stage we want to emphasise that it
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is not enough to know the space-time geometry to determine
the gravitational source {ρ, p, θμν} in general.

In order to simplify the analysis of the system (2.6)–(2.8),
and by simple inspection, we can identify an effective density

ρ̃ = ρ + α θ 0
0 , (2.10)

an effective isotropic pressure

p̃r = p − α θ 1
1 , (2.11)

and an effective tangential pressure

p̃t = p − α θ 2
2 . (2.12)

These definitions clearly illustrate that the source θμν could
in general induce an anisotropy,


 ≡ p̃t − p̃r = α
(
θ 1

1 − θ 2
2

)
, (2.13)

inside the stellar distribution. The system of Eqs. (2.6)–
(2.8) could indeed be treated as an anisotropic fluid [45,46],
which would require one to consider five unknown functions,
namely, the two metric functions ν(r) and λ(r), and the effec-
tive functions in Eqs. (2.10)–(2.12). However, we are going
to implement a different approach, as explained below.

3 Gravitational decoupling by MGD

We shall implement the MGD in order to solve the system of
Eqs. (2.6)–(2.9). In this approach, the system will be trans-
formed in such a way that the field equations associated with
the source θμν will take the form of the “effective quasi-
Einstein” Eqs. (3.12)–(3.14).

Let us start by considering a solution to Eqs. (2.6)–(2.9)
with α = 0, namely, a GR perfect fluid solution {ξ, μ, ρ, p},
where ξ and μ are the corresponding metric functions. The
metric (2.5) now reads

ds2 = eξ(r) dt2 − dr2

μ(r)
− r2

(
dθ2 + sin2 θ dφ2

)
, (3.1)

where

μ(r) ≡ 1 − k2

r

∫ r

0
x2 ρ dx = 1 − 2m(r)

r
(3.2)

is the standard GR expression containing the mass function
m. Now let us turn on the parameter α to consider the effects
of the source θμν on the perfect fluid solution {ξ, μ ρ, p}.
These effects can be encoded in the geometric deformation
undergone by the perfect fluid geometry {ξ, μ} in Eq. (3.1),
namely

ξ �→ ν = ξ + α g, (3.3)

μ �→ e−λ = μ + α f, (3.4)

where g and f are the deformations undergone by the tem-
poral and radial metric component, respectively. Among all

possible deformations (3.3) and (3.4), the so-called minimal
geometric deformation is given by

g �→ 0 (3.5)

f �→ f ∗. (3.6)

In this case, the metric in Eq. (3.1) is minimally deformed by
θμν and its radial metric component becomes

μ(r) �→ e−λ(r) = μ(r) + α f ∗(r), (3.7)

whereas the temporal metric component eν remains
unchanged. (More precisely, ν(r) becomes ν(r, α), as can
be seen, for instance, in Eq. (5.16) below.) Upon replacing
Eq. (3.7) in the Einstein equations (2.6)–(2.8), the system
splits into two sets of equations:

(i) The first one is given by the standard Einstein equations
for a perfect fluid (the one with α = 0 we started from),
whose metric is given by Eq. (3.1) with ξ(r) = ν(r):

k2ρ = 1

r2 − μ

r2 − μ′

r
, (3.8)

k2 p = − 1

r2 + μ

(
1

r2 + ν′

r

)
, (3.9)

k2 p = μ

4

(
2ν′′ + ν′2 + 2ν′

r

)
+ μ′

4

(
ν′ + 2

r

)
, (3.10)

along with the conservation equation (2.4) with α = 0,
namely ∇ν T (m)μν = 0, yielding

p′ + ν′

2
(ρ + p) = 0, (3.11)

which is a linear combination of Eqs. (3.8)–(3.10).
(ii) The second set contains the source θμν and reads

k2 θ 0
0 = − f ∗

r2 − f ∗′

r
, (3.12)

k2 θ 1
1 = − f ∗

(
1

r2 + ν′

r

)
, (3.13)

k2 θ 2
2 = − f ∗

4

(
2ν′′ + ν′2 + 2

ν′

r

)

− f ∗′

4

(
ν′ + 2

r

)
. (3.14)

The conservation equation (2.4) then yields ∇ν θμν = 0,
which explicitly reads

(
θ 1

1

)′ − ν′

2

(
θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0. (3.15)

Equations (3.11) and (3.15) simply mean that there is
no exchange of energy-momentum between the perfect
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fluid and the source θμν , so that their interaction is purely
gravitational.

As was previously remarked in Ref. [1], Eqs. (3.12)–(3.15)
look very similar to the standard spherically symmetric Ein-
stein field equations for an anisotropic fluid with energy-
momentum tensor θμν , that is, {ρ = θ 0

0 ; pr = −θ 1
1 ; pt =

−θ 2
2 }. The corresponding metric would be given by

ds2 = eν(r) dt2 − dr2

f ∗(r)
− r2

(
dθ2 + sin2 θ dφ2

)
. (3.16)

However, the right-hand sides of Eqs. (3.12) and (3.13) are
not the standard expressions for the Einstein tensor compo-
nents G 0

0 and G 1
1 , since there is a missing −1/r2 in both.

Nonetheless, the system of Eqs. (3.12)–(3.15) may be for-
mally identified as Einstein equations for an anisotropic fluid
with energy-momentum tensor θ∗

μν , whose effective energy
density ρ̃, effective isotropic pressure p̃r and effective tan-
gential pressure p̃t are given, respectively, by

ρ̃ = θ∗ 0
0 = θ 0

0 + 1

k2 r2 , (3.17)

p̃r = θ∗ 1
1 = θ 1

1 + 1

k2 r2 , (3.18)

p̃t = θ∗ 2
2 = θ 2

2 = θ∗ 3
3 = θ 3

3 , (3.19)

which can be written more concisely as

k2 θ∗ ν
μ = k2 θ ν

μ + 1

r2

(
δ 0
μ δ ν

0 + δ 1
μ δ ν

1

)
. (3.20)

With the transformation (3.20), the conservation Eq. (3.15)
takes the standard form
(
θ∗ 1

1

)′ − ν′

2

(
θ∗ 0

0 − θ∗ 1
1

)
− 2

r

(
θ∗ 2

2 − θ∗ 1
1

)
= 0 (3.21)

and therefore the interpretation of Eqs. (3.12)–(3.15) as stan-
dard spherically symmetric Einstein equations for the source
θ∗
μν in Eqs. (3.17)–(3.19) is now complete.

As was pointed out in Ref. [1], since Eqs. (3.12) and (3.13)
do not contain the standard Einstein tensor components, we
should expect that the conservation equation (3.15) for the
source θμν is no longer a linear combination of Eqs. (3.12)–
(3.14). However, Eq. (3.15) still remains a linear combina-
tion of the system (3.12)–(3.14). The MGD approach there-
fore turns the indefinite system (2.6)–(2.8) into the set of
equations for a perfect fluid {ρ, p, ν, μ} plus a simpler sys-
tem of four unknown functions { f ∗, θ 0

0 , θ 1
1 , θ 2

2 } satisfying
the three equations (3.12)–(3.14) [at this stage we suppose
that we have already found a perfect fluid solution, thus ν is
determined], or the equivalent anisotropic system of equa-
tions (3.17)–(3.19). Either way, the system (2.6)–(2.8) has
been successfully decoupled.

The MGD-decoupling can be summarised in a more for-
mal way as follows: consider a static spherically symmetric

gravitational source Tμν containing one isotropic perfect

fluid T̂μν and n other gravitational sources T (i)
μν , namely

Tμν = T̂μν +
n∑

i=1

αi T
(i)
μν , (3.22)

then the diagonal metric gμν , solution of the Einstein equa-
tion Gμν = −k2 Tμν , reads

gμν = ĝμν = g(i)
μν for μ = ν 
= 1, (3.23)

g11 = ĝ11 + α1 g
(1)11 + · · · + αn g

(n)11. (3.24)

This metric gμν is found by first solving the Einstein equa-
tions for the source T̂μν ,

Ĝμν = −k2 T̂μν, ∇ν T̂
μν = 0, (3.25)

and then by solving the remaining n quasi-Einstein equations
for the sources T (i)

μν , namely

G̃(1)
μν = −k2 T (1)

μν , ∇ν T
(1)μν = 0,

...

G̃(n)
μν = −k2 T (n)

μν , ∇ν T
(n)μν = 0, (3.26)

where the divergence-free quasi-Einstein tensor G̃μν is
related with the standard Gμν by

G̃ ν
μ = G ν

μ + � ν
μ (g), (3.27)

with � ν
μ (g) a tensor that depends exclusively on gμν to

ensure the divergence-free condition. In the spherically sym-
metric representation it reads

� ν
μ = 1

r2

(
δ 0
μ δ ν

0 + δ 1
μ δ ν

1

)
. (3.28)

The explicit components of G̃ ν
μ in terms of the metric in

Eq. (3.16) are shown in the right-hand side of Eqs. (3.12)–
(3.14).

4 Matching condition for stellar distributions

A crucial aspect in the study of stellar distributions is the
matching conditions at the surface of the star (r = R)
between the interior (r < R) and the exterior (r > R)
space-time geometries [47,48]. In our case, the interior stel-
lar geometry is given by the MGD metric,

ds2 = eν−(r) dt2 −
(

1 − 2 m̃(r)

r

)−1

dr2

− r2
(

dθ2 + sin 2θdφ2
)

, (4.1)

where the interior mass function is given by

m̃(r) = m(r) − r

2
α f ∗(r), (4.2)
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with m given by the standard GR expression in Eq. (3.2) and
f ∗ the yet to be determined MGD in Eq. (3.7).

The inner metric (4.1) should now be matched with an
outer geometry where there is no isotropic fluid, that is, p+ =
ρ+ = 0. The exterior r > R may, however, not be a vacuum
anymore since we can, in general, have new fields coming
from the sector described by θμν . The general outer metric
can be written as

ds2 = eν+(r) dt2 − eλ+(r) dr2

− r2
(

dθ2 + sin 2θdφ2
)

, (4.3)

where the explicit form of the functions ν+ and λ+ are
obtained by solving the effective 4-dimensional exterior Ein-
stein equations

Rμν − 1

2
Rα

α gμν = α θμν. (4.4)

The MGD will reduce the exterior Einstein equation (4.4) to
the system (3.12)–(3.14), where the geometric function ν is
given by the Schwarzschild solution instead of a perfect fluid
solution.

Continuity of the first fundamental form at the surface of
the star  defined by r = R reads
[
ds2

]


= 0, (4.5)

where [F] ≡ F(r → R+) − F(r → R−) ≡ F+
R − F−

R ,
for any function F = F(r), which yields

ν−(R) = ν+(R) (4.6)

and

1 − 2 M0

R
+ α f ∗

R = e−λ+(R), (4.7)

where M0 = m(R) and f ∗
R is the minimal geometric defor-

mation at the surface of the star.
Likewise, continuity of the second fundamental form

reads
[
Gμν r

ν
]


= 0, (4.8)

where rμ is a unit radial vector. Using Eq. (4.8) and the gen-
eral Einstein equations (2.1), we then find
[
T (tot)

μν rν
]


= 0, (4.9)

which leads to[
p − α θ 1

1

]


= 0. (4.10)

This matching condition takes the final form

pR − α (θ 1
1 )−R = −α (θ 1

1 )+R , (4.11)

where pR ≡ p−(R). The condition in Eq. (4.11) is the gen-
eral expression for the second fundamental form associated
with the Einstein equations given by Eq. (2.1).

By using Eq. (3.13) for the interior geometry in the con-
dition (4.11), the second fundamental form can be written
as

pR + α
f ∗
R

k2

(
1

R2 + ν′
R

R

)
= −α (θ 1

1 )+R , (4.12)

where ν′
R ≡ ∂rν

−|r=R . Moreover, using now Eq. (3.13) for
the outer geometry in Eq. (4.12) yields

pR + α
f ∗
R

k2

(
1

R2 + ν′
R

R

)

= α
g∗
R

k2

⎡
⎣ 1

R2 + 2M
R3

1(
1 − 2M

R

)
⎤
⎦ , (4.13)

where g∗
R is the geometric deformation for the outer

Schwarzschild solution due to the source θμν , that is,

ds2 =
(

1 − 2M
r

)
dt2

−
(

1 − 2M
r

+ α g∗(r)
)−1

dr2 − d�2. (4.14)

Equations (4.6), (4.7) and (4.13) are the necessary and suffi-
cient conditions for the matching of the interior MGD met-
ric (4.1) to a spherically symmetric outer “vacuum” described
by the deformed Schwarzschild metric in Eq. (4.14). Note
that this exterior could be filled by fields contained in the
source θμν .

The matching condition (4.13) yields an important result:
if the outer geometry is given by the exact Schwarzschild
metric, one must have g∗(r) = 0 in Eq. (4.14), which then
leads to the condition

p̃R ≡ pR + α
f ∗
R

k2

(
1

R2 + ν′
R

R

)
= 0. (4.15)

It is important to remark that the star will therefore be in equi-
librium in a true (Schwarzschild) vacuum only if the effec-
tive (in general anisotropic radial) pressure at the surface
vanishes. In particular, if the inner geometric deformation
f ∗(r < R) is positive and weakens the gravitational field
[see Eq. (4.2)], an outer Schwarzschild vacuum can only be
compatible with a non-vanishing inner θμν if the isotropic
stellar matter has pR < 0 at the surface of the star. This may
be interpreted as regular matter with a solid crust [12]. Oth-
erwise, the condition pR = 0 can be obtained by imposing
the requirement that the right-hand side of Eq. (4.15) be pro-
portional to pR , namely, α (θ 1

1 )−R ∼ pR in Eq. (4.11), which
leads to a vanishing inner deformation f ∗

R = 0.

5 Interior solutions

Let us now solve the Einstein field equations (2.6)–(2.8) for
the interior of a self-gravitating anisotropic system by the
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MGD-decoupling. The physical variables {ρ̃, p̃r , p̃t } defined
by Eqs. (2.10)–(2.12) and the two metric functions {ν, λ} in
Eq. (2.5) will be derived. The first step is to turn off α and
find a solution for the perfect fluid Einstein Eqs. (3.8)–(3.10).
In particular, we can simply choose a known solution with
physical relevance, like the well-known Tolman IV solution
{ν, μ, ρ, p} for perfect fluids [49], namely

eν(r) = B2
(

1 + r2

A2

)
, (5.1)

μ(r) =
(

1 − r2

C2

) (
1 + r2

A2

)

1 + 2 r2

A2

, (5.2)

ρ(r) = 3A4 + A2
(
3C2 + 7r2

) + 2r2
(
C2 + 3r2

)

k2 C2
(
A2 + 2r2

)2 , (5.3)

and

p(r) = C2 − A2 − 3r2

k2 C2
(
A2 + 2r2

) . (5.4)

The constants A, B and C in Eqs. (5.1)–(5.4) are determined
from the matching conditions in Eqs. (4.5) and (4.8) between
the above interior solution and the exterior metric which we
choose to be the Schwarzschild space-time. This yields

A2

R2 = R − 3 M0

M0
,

B2 = 1 − 3 M0

R
,

C2

R2 = R

M0
, (5.5)

with the compactness M0/R < 4/9, and M0 = m(R) the
total mass in Eq. (3.2). The expressions in Eq. (5.5) ensure
the geometric continuity at r = R and will change when we
add the source θμν .

Let us then turn α on in the interior. The temporal and
radial metric components are given by Eqs. (5.1) and (3.7),
respectively, where the interior deformation f ∗(r) and the
source θμν are related through Eqs. (3.12)–(3.14). Hence, we
need to prescribe additional information in order to close the
system of Eqs. (3.12)–(3.14). We have many alternatives for
this purpose, like imposing an equation of state for the source
θμν or some physically motivated restriction on f ∗(r). In any
case, we must be careful in keeping the physical acceptabil-
ity of our solution, which is not a trivial issue. In the fol-
lowing, this problem is addressed in such a way that three
new, exact and physically acceptable interior solutions will be
generated.

5.1 Solution I: mimic constraint for the pressure

From the matching condition (4.15) we see that the
Schwarzschild exterior solution will be compatible with reg-

Fig. 1 Any perfect fluid solution can be consistently extended to the
anisotropic domain via the MGD-decoupling

ular interior matter as long as α (θ 1
1 )−R ∼ pR . The simplest

choice satisfying this critical requirement is

θ 1
1 (r) = p(r), (5.6)

which, according to Eq. (3.9), can be written as

k2 θ 1
1 = − 1

r2 + μ(r)

(
1

r2 + ν′

r

)
. (5.7)

From Eq. (3.13) we can see that the “mimic” constraint in
Eq. (5.6) is equivalent to

f ∗(r) = −μ(r) + 1

1 + r ν′(r)
. (5.8)

Hence the radial metric component reads

e−λ(r) = (1 − α) μ(r) + α

(
A2 + r2

A2 + 3 r2

)
, (5.9)

where the expressions in Eqs. (3.7) and (5.1) have been used.
The interior metric functions given by Eqs. (5.1) and (5.9)
represent the Tolman IV solution minimally deformed by the
generic anisotropic source θμν . We can see that the limit α →
0 in Eq. (5.9) leads to the standard Tolman IV solution for
perfect fluids. This is represented by a generic way in Fig. 1.

Now let us match our interior metric in Eq. (2.5) with met-
ric functions (5.1) and (5.9) with the exterior Schwarzschild
solution (4.14) with g∗(r) = 0. We can see that, for a
given distribution of mass M0 and radius R, we have four
unknown parameters, namely {A, B,C} from the interior
solution in Eqs. (5.1) and (5.9), and the massM in Eq. (4.14).
Since we have only the three matching conditions (4.6), (4.7)
and (4.11) at the surface of the star, the problem is not closed.
An obvious solution would be to set B = 1 in Eq. (5.1), cor-
responding to the time rescaling t → t̃ = B t . However, we
want to keep B near its expression in the Tolman IV solution
of Eqs. (5.1)–(5.4) in order to see clearly the effect of the
anisotropic source θμν on the perfect fluid. We will there-
fore solve for {A,C,M} with respect to B as shown further
below.
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The continuity of the first fundamental form given by
Eqs. (4.6) and (4.7) leads to

B2
(

1 + R2

A2

)
= 1 − 2M

R
(5.10)

and

(1 − α)μ(R) + α

(
A2 + R2

A2 + 3 R2

)
= 1 − 2M

R
, (5.11)

whereas continuity of the second fundamental form in
Eq. (4.11) yields

pR − α (θ 1
1 )−R = 0. (5.12)

By using the mimic constraint in Eq. (5.6) in the condition
(5.12), we obtain

pR = 0, (5.13)

which, according to the expression in Eq. (5.4), leads to

C2 = A2 + 3 R2. (5.14)

On the other hand, by using the condition in Eq. (5.11), we
obtain for the Schwarzschild mass

2M
R

= 2 M0

R
+ α

(
1 − 2 M0

R

)

−α

(
A2 + R2

A2 + 3 R2

)
, (5.15)

where the expression in Eq. (3.2) has been used. Finally, by
using the expression in Eq. (5.15) in the matching condi-
tion (5.10), we obtain

B2
(

1 + R2

A2

)
= (1 − α)

(
1 − 2 M0

R

)

+α

(
A2 + R2

A2 + 3 R2

)
. (5.16)

Equations (5.14)–(5.16) are the necessary and sufficient
conditions to match the interior solution with the exterior
Schwarzschild space-time. By using the mimic constraint
in Eq. (5.6) along with Eq. (5.14), the effective isotropic
pressure p̃r in Eq. (2.11) reads

p̃r (r, α) = 3 (1 − α)(R2 − r2)

k2 (A2 + 3 R2)(A2 + 2 r2)
, (5.17)

from which we see that the effective isotropic pressure mim-
ics the (physically acceptable) perfect fluid pressure p(r) in
Eq. (5.4). On the other hand, the effective density and effec-
tive tangential pressure are given, respectively, by

ρ̃(r, α) = (1 − α) ρ(r) + 6 α (A2 + r2)

k2 (A2 + 3 r2)2 , (5.18)

p̃t (r, α) = p̃r (r, α) + 3 α r2

k2 (A2 + 3 r2)2 . (5.19)

Fig. 2 Solution I: effective radial pressure p̃r (r) [10−4] for B2 = 2/5
with α = 0.5 (lower curve) and α = 0.01 (upper curve) for a stellar
system with compactness M0/R = 0.2

Equations (5.1) and (5.9) along with Eqs. (5.17)–(5.19) rep-
resent an exact Tolman IV analytic solution to the system
of Eqs. (2.6)–(2.8) minimally deformed by the anisotropic
source θμν . In particular, according to Eq. (2.13), the source
θμν generates an anisotropy given by


(r, α) = 3 α r2

k2(A2 + r2)2 . (5.20)

We can further solve Eq. (5.16) for A = A(B, α), with B
as a free parameter around the value in Eq. (5.5), in order
to obtain the effective radial pressure p̃r (r, α) in Eq. (5.17)
shown in Fig. 2 for two values of α and B2 = 2/5. It appears
that the anisotropy produced by θμν decreases the effective
radial pressure more and more for increasing α.

5.2 Solution II: mimic constraint for density

An alternative choice leading to physically acceptable solu-
tions is the “mimic constraint” for the density,

θ 0
0 = ρ, (5.21)

which yields the first order differential equation

f ′(r) + f (r)

r
= −r k2 ρ. (5.22)

The solution is given by

f (r) = C0

r
− r2

(
A2 + C2 + r2

)

C2
(
A2 + 2 r2

) , (5.23)

where the density ρ in Eq. (5.3) has been used. To avoid
a singular behaviour at the center r = 0 we must impose
C0 = 0, so that Eq. (3.7) yields

e−λ(r) = μ(r) − α
r2

(
A2 + C2 + r2

)

C2
(
A2 + 2 r2

) . (5.24)
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By using the expression in Eq. (5.24), the matching condi-
tions in (4.6) and (4.7) lead to

2M
R

= 2 M0

R
+ α

R2

C2

(
A2 + C2 + R2

A2 + 2R2

)
(5.25)

and

B2
(

1 + R2

A2

)
= 1 − 2 M0

R
− α

R2

C2

×
(
A2 + C2 + R2

A2 + 2R2

)
, (5.26)

whereas continuity of the second fundamental form in
Eq. (5.12) yields

C2 = (1 + α)(A2 + R2)(A2 + 3R2)

(A2 + R2) − α(A2 + 3R2)
. (5.27)

Equations (5.25)–(5.27) are the necessary and sufficient
conditions to match the exterior Schwarzschild solution with
the interior solution in Eq. (2.5) with metric functions given
in Eqs. (5.1) and (5.24). By using these metric functions in
the field equation (2.7), the effective isotropic pressure in
Eq. (2.11) reads

p̃r (r, α) = p(r) − α
(A2 + C2 + r2)(A2 + 3 r2)

k2 C2(A2 + r2)(A2 + 2r2)
. (5.28)

On the other hand, the mimic constraint for the density in
Eq. (5.21) yields

ρ̃(r, α) = (1 + α) ρ(r), (5.29)

whereas the effective tangential pressure reads

p̃t (r, α) = p̃r (r, α) + α r2

k2 (A2 + r2)2 , (5.30)

with the anisotropy thus given by


(r, α) = α r2

k2 (A2 + r2)2 . (5.31)

We then employ the matching conditions (5.26) and (5.27)
to find A = A(B, α), again leaving B as a free parameter with
values around the expression in Eq. (5.5). Figure 3 shows
the radial pressure p̃r (r, α) and tangential pressure p̃t (r, α)

inside the stellar distribution, showing how the anisotropy

(r, α) in Eq. (5.31) increases towards the surface.

It is also interesting to investigate the effects of the
anisotropy on the surface redshift [50],

z =
[
g00(R)

g00(∞)

]−1/2

− 1 , (5.32)

which in our case reads

z(α) =
[

1 − 2M(α)

R

]−1/2

− 1 (5.33)

Fig. 3 Solution II: effective radial pressure p̃r (r, α) and tangential
pressure p̃t (r, α) for a stellar system with compactness M0/R = 0.2
and α = 0.2. We can see that 
(r, α) increases towards the surface.
This effect is proportional to α, in agreement with Eq. (5.31)

Fig. 4 Solution II: Gravitational redshift at the stellar surface r = R.
We can see that the anisotropic effects increases the compactness of the
self-gravitating system and therefore the surface redshift z

and is displayed in Fig. 4. In particular, we can see from the
plot that the anisotropy increases the gravitational redshift
at the stellar surface, hence a distant observer will detect a
more compact distribution in comparison with the isotropic
case. This result is in agreement with the fact that M > M0,
as can be seen from Eq. (5.25).

5.3 Solution III: extending anisotropic solutions

So far we have seen how to generate exact and physi-
cally acceptable anisotropic solutions starting from a known
isotropic solution. In order to emphasise the full poten-
tial of the MGD-decoupling, schematically represented
by Eqs. (3.22)–(3.28), we will use the anisotropic solu-
tion {ν, λ, ρ̃, p̃r , p̃t } from Sect. 5.2, and explicitly given
by Eqs. (5.1), (5.24), (5.28)–(5.30), to generate a third
anisotropic and physically acceptable solution {ν, λ, ρ̄,

p̄r , p̄t }.
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Let us start by adding to the energy-momentum ten-
sor in Eq. (2.2) one more anisotropic source with energy-
momentum tensor ψμν , that is,

Tμν → T̄μν = Tμν + β ψμν , (5.34)

where β is a new coupling constant. The Einstein equations
now read

k2
(
ρ̃ + β ψ 0

0

)
= 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (5.35)

k2
(
p̃r − β ψ 1

1

)
= − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (5.36)

k2
(
p̃t − β ψ 2

2

)
= e−λ

4

[
2 ν′′ + ν′2 − λ′ ν′

+ 2
ν′ − λ′

r

]
, (5.37)

where {ρ̃, p̃r , p̃t } are shown in Eqs. (5.28)–(5.30). The tem-
poral metric component ν(r) remains equal to the one in
Eq. (5.1) for the original Tolman IV solution, whereas the
radial metric component is deformed according to

e−λ(r) = μ(r) − α
r2

(
A2 + C2 + r2

)

C2
(
A2 + 2 r2

) + β g∗(r), (5.38)

where g∗(r) represents the geometric deformation. After
decoupling, the source ψμν and the unknown deformation
g∗(r) satisfy the same Eqs. (3.12)–(3.14), which now read

k2 ψ 0
0 = −g∗

r2 − (g∗)′

r
, (5.39)

k2 ψ 1
1 = −g∗

(
1

r2 + ν′

r

)
, (5.40)

k2 ψ 2
2 = −g∗

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− (g∗)′

4

(
ν′ + 2

r

)
.

(5.41)

We then impose the mimic constraint for the pressure,

ψ 1
1 = p̃r , (5.42)

and following the same procedure as in Sect. 5.1, we obtain

e−λ = (1 − β)

[
μ(r) − α

r2
(
A2 + C2 + r2

)

C2
(
A2 + 2 r2

)
]

+β
A2 + r2

A2 + 3 r2 . (5.43)

Continuity of the first fundamental form in Eq. (4.5) again
leads to the expression in Eq. (5.10), where the mass M is
now given by

Fig. 5 Solution III: anisotropy 
(r, α, β)x 105 at the stellar surface
r = R

2M
R

= 2 M0

R
+ β

(
1 − 2 M0

R

)

+ (1 − β) α
R2

(
A2 + C2 + R2

)

C2
(
A2 + 2 R2

)

−β
A2 + R2

A2 + 3 R2 . (5.44)

Continuity of the second fundamental form in Eq. (4.9) again
leads to (5.27). The new anisotropic solution to the Einstein
Eqs. (5.39)–(5.41) is given by the Tolman IV temporal metric
component (5.1), the radial metric component (5.43), and the
three physical variables

ρ̄(r, α, β) = (1 − β)(1 + α) ρ(r) + 6 β (A2 + r2)

k2 (A2 + 3 r2)2 , (5.45)

p̄r (r, α, β) = (1 − β)

[
p(r) − α

(A2 + C2 + r2)(A2 + 3 r2)

k2 C2(A2 + r2)(A2 + 2r2)

]
,

(5.46)

p̄t (r, α, β) = p̄r (r, α, β) + 
(r, α, β), (5.47)

with the anisotropy (see Fig. 5)


(r, α, β) = r2
[
3β (A2 + r2)2 + α (1 − β)(A2 + 3 r2)2

]

k2 (A2 + r2)2(A2 + 3 r2)2 .

(5.48)

One can easily check that the solution II of Sect. 5.2 is the
particular case β = 0 of the solution III given by Eqs. (5.1),
(5.43) and (5.45)–(5.47). Likewise, the solution I of Sect. 5.1
(with α → β) is the particular case α = 0 of the solu-
tion III. Eventually, we could set α = β in the solution III
so that the anisotropic sector is determined by a single free
parameter α.

6 Conclusions

By using the MGD-decoupling approach, we presented in
detail how to extend interior isotropic solutions for self-
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gravitating systems in order to include anisotropic (but still
spherically symmetric) gravitational sources. For this pur-
pose, we showed that the Einstein field equations for a
static and spherically symmetric self-gravitating system in
Eqs. (2.6)–(2.8) can be decoupled in two sectors, namely: the
isotropic sector corresponding to a perfect fluid T̂μν shown in
Eqs. (3.8)–(3.10), and the sector described by quasi-Einstein
field equations associated with an anisotropic source θμν

shown in Eqs. (3.12)–(3.14). These two sectors must inter-
act only gravitationally, without direct exchange of energy-
momentum.

The matching conditions at the stellar surface were then
studied in detail for an outer Schwarzschild space-time. In
particular, the continuity of the second fundamental form
in Eq. (4.15) was shown to yield the important result that
the effective radial pressure p̃R = 0. The effective pres-
sure (2.11) contains both the isotropic pressure of the unde-
formed matter source T̂μν and the inner geometric defor-
mation f ∗(r) induced by the energy-momentum θμν . We
recall the latter could also represent a specific matter source,
like a Klein–Gordon scalar field or any other form of matter-
energy, but also the induced effects of extra-dimensions in the
brane-world. If the geometric deformation f ∗(r) is positive
and therefore weakens the gravitational field [see Eq. (4.2)],
an outer Schwarzschild vacuum can only be supported if the
isotropic pR < 0 at the surface of the star. This can in fact be
interpreted as regular matter with a solid crust [12] as long
as the region with negative pressure does not extend too deep
into the star.

In order to show the robustness of our approach, three new
exact and physically acceptable interior anisotropic solutions
to the Einstein field equations were generated from a single
perfect fluid solution. All these new solutions inherit their
physical acceptability from the original isotropic solution.
In particular, it was shown that the anisotropic source θμν

always reduces the isotropic radial pressure p̃(r) inside the
self-gravitating system.

We would like to remark that the MGD-decoupling is
not just a technique for developing physically acceptable
anisotropic solutions in GR, but represents a powerful and
efficient way to exploit the gravitational decoupling in rele-
vant physical problems. The extension of GR solutions into
the domain of more complex gravitational sources is a highly
non-trivial theoretical problem. For instance, it is well known
that a Klein–Gordon scalar field induces anisotropic effects
when it is coupled with the gravitational field through the
Einstein equations. Hence the MGD-decoupling represents
a useful tool for extending GR isotropic solutions for self-
gravitating systems into solutions of the Einstein–Klein–
Gordon system. It could be implemented, for instance, to
investigate the role played by a Klein–Gordon scalar field
during the gravitational collapse. In this respect, it is worth
mentioning that the MGD-decoupling can be generalised for

time-dependent scenarios, as long as the spherical symmetry
is preserved under slowly evolving situations, which means
the stellar system is always in hydrostatic equilibrium [45].
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