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SUMMARY

Small heat shock proteins (HSPBs) contain intrinsi-
cally disordered regions (IDRs), but the functions of
these IDRs are still unknown. Here, we report
that, in mammalian cells, HSPB2 phase separates
to form nuclear compartments with liquid-like prop-
erties. We show that phase separation requires the
disordered C-terminal domain of HSPB2. We further
demonstrate that, in differentiating myoblasts, nu-
clear HSPB2 compartments sequester lamin A.
Increasing the nuclear concentration of HSPB2
causes the formation of aberrant nuclear compart-
ments that mislocalize lamin A and chromatin, with
detrimental consequences for nuclear function and
integrity. Importantly, phase separation of HSPB2 is
regulated by HSPB3, but this ability is lost in two
identified HSPB3 mutants that are associated with
myopathy. Our results suggest that HSPB2 phase
separation is involved in reorganizing the nucleo-
plasm during myoblast differentiation. Furthermore,
these findings support the idea that aberrant
HSPB2 phase separation, due to HSPB3 loss-of-
function mutations, contributes to myopathy.

INTRODUCTION

Mammals have ten small heat shock proteins (HSPBs: HSPB1–

HSPB10), which belong to the family of molecular chaperones.

While some HSPBs are ubiquitously expressed and have been
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widely studied, such as HSPB1 and HSPB5, others are ex-

pressed only in few tissues and are poorly characterized (Bon-

coraglio et al., 2012). One example of the latter category is

HSPB2, which is expressed in differentiated skeletal and cardiac

muscle cells, where it can form a complex with HSPB3 (den En-

gelsman et al., 2009; Sugiyama et al., 2000). Defects in HSPB2

deregulate the expression of metabolic and mitochondrial genes

in response to pressure overload in the mammalian heart (Ishi-

wata et al., 2012). Moreover, myocardial overexpression of

HSPB2 protects, with yet-unknown mechanisms, cardiomyo-

cytes from ischemia (Grose et al., 2015), a pathological condition

characterized by early transcriptional changes aimed at promot-

ing damage repair (Wechsler et al., 1994). However, how

changes in HSPB2 levels affect gene expression is still unknown.

From a structural point of view, HSPBs are composed of a

well-conserved a-crystallin domain (ACD) and less conserved

N- and C-terminal domains. HSPBs are disordered proteins,

which contain domains of low complexity, referred to as intrinsi-

cally disordered regions (IDRs) (Sudnitsyna et al., 2012).

Over the past six years, proteins with low-complexity IDRs

have been intensively studied, because they are able to drive

the formation of liquid droplets in cells via a process known as

liquid-liquid phase separation (Zhu and Brangwynne, 2015; Ba-

nani et al., 2017). These liquid droplets have been proposed to

function as membrane-less organelles (MLOs) (Zhu and Brang-

wynne, 2015; Banani et al., 2017). Examples ofMLOs are nuclear

bodies such as nucleoli, promyelocytic leukemia protein (PML)

bodies, Cajal bodies, speckles and paraspeckles, and cyto-

plasmic ribonucleoprotein particles, such as stress granules

and P bodies (Banani et al., 2017). These MLOs differ in size,

number, and composition, but they are all highly dynamic and

show liquid-like behavior.
rs.
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Our understanding of the signals that drive self-assembly of

MLOs in mammalian cells is still limited; however, it is known

that specific stressors and an increase in the concentration of

IDR-containing proteins can induce the formation of liquid drop-

lets in the cytoplasm (Patel et al., 2015) and nucleus (Schmidt

and Rohatgi, 2016). For example, overexpression of TDP-43

drives the assembly of nuclear droplets that segregate portions

of the nucleoplasm and regulate specific nuclear functions

(Schmidt and Rohatgi, 2016).

Recruitment of HSPBs into MLOs was documented previ-

ously. For example, HSPB1, HSPB5, and HSPB7 are recruited

into nuclear speckles, which are splicing factor compartments

(Bryantsev et al., 2007; van den IJssel et al., 2003; Vos et al.,

2009), while HSPB8 and, to a lesser extent, HSPB1 are recruited

inside cytoplasmic stress granules, ribonucleoprotein particles

that store and protect mRNAs upon stress (Ganassi et al.,

2016). What drives the recruitment of these HSPBs into MLOs

and whether recruitment depends on the presence of IDRs in

HSPBs are largely unknown. Moreover, direct evidence that

members of the HSPB family can phase separate and form liquid

droplets has not yet been provided.

Here, we demonstrate that, in differentiating myoblasts,

HSPB2 forms cytoplasmic and nuclear spherical foci. While

HSPB2 cytoplasmic foci partly colocalize with HSPB3, nuclear

foci partly colocalize with the nuclear intermediate filament

protein lamin-A/C (LMNA). LMNA exerts different nuclear func-

tions, including the regulation of nuclear stability, genome orga-

nization, and transcription. Moreover, mutations in the LMNA

gene cause skeletal and cardiac myopathy (Davidson and

Lammerding, 2014). Overexpression of HSPB2 in several cell

types, including human myoblasts, promotes HSPB2 assembly

into cytoplasmic and nuclear compartments, which behave as

liquid droplets. Aberrant phase separation of HSPB2 changes

LMNA and chromatin distribution with detrimental conse-

quences for nuclear function and integrity. Importantly,

HSPB2 phase separation is negatively regulated by its binding

partner HSPB3. Depletion of HSPB3 enhances HSPB2 com-

partmentalization, decreases myogenin expression, and leads

to micronuclei formation. Finally, we identified two mutations

in the HSPB3 gene in myopathic patients. Both myopathy-

linked mutations disrupt the binding of HSPB3 to HSPB2 and

trigger phase separation of HSPB2 into aberrant compart-

ments. Our data suggest that a developmentally regulated in-

crease in HSPB2 concentration reorganizes nucleoplasmic

LMNA distribution during myoblast differentiation. Deregulation
Figure 1. HSPB2 Forms Nuclear Compartments that Sequester LMNA

(A) Immunofluorescence on differentiating (diff.) LHCNM2 cells showing HSPB2

(B) Immunofluorescence on cycling and diff. LHCNM2 cells overexpressing HSP

(C) Immunofluorescence on HeLa cells overexpressing HSPB2 for 48 hr. Based

diffuse, foci, and compartments. The representative graph reports HSPB2 fluores

in the cytoplasm. n = 70–122. Data indicate mean ± SEM; p < 10�26 (compartme

(D) Representative graphic showing HSPB2 critical threshold required for nuclear c

SEM; p < 10�52 (foci versus diffuse HSPB2).

(E and F) Immunofluorescence on cycling and diff. LHCNM2 cells (E) or HeLa ce

(G) Immunofluorescence on diff. LHCNM2 cells showing nuclear foci containing

(H and I) Immunofluorescence on cycling and diff. LHCNM2 cells (H) or HeLa ce

In (A), (B), and (E)–(I), DAPI was used to stain nucleic acid. Scale bars, 10 mm.

See also Figures S1, S2, and S3.
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of HSPB2 assembly, due to HSPB3 mutations, may contribute

to myopathy.

RESULTS

HSPB2 Forms Intranuclear Compartments in
Mammalian Cells
To gain insights in HSPB2 properties, we studied its expression

and subcellular distribution in human immortalized myoblasts

(LHCNM2 cells) (Zhu et al., 2007). Differentiation of myoblasts

follows an ordered sequence of events. The first step is commit-

ment to differentiation, with upregulation of the transcription

factor myogenin, followed by cell-cycle arrest, cell migration,

adhesion, and phenotypic differentiation. This goes along with

expression of genes, coding for contractile proteins, and fusion

of mononucleated cells into multinucleated myotubes (Andrés

and Walsh, 1996).

To characterize our LHCNM2 cells, we compared the expres-

sion levels of myogenin and desmin, markers of myoblast differ-

entiation. MyogeninmRNA and desmin protein were absent from

cycling (non-differentiating) LHCNM2 cells; they were both

induced during differentiation (Figures S1A and S1B) (Kaufman

and Foster, 1988). In agreement with published data (Sugiyama

et al., 2000), HSPB2 and HSPB3 mRNA and protein were unde-

tectable in cycling LHCNM2 cells but upregulated during differ-

entiation (Figures S1A and S1B).

Next, we performed an immunohistochemical analysis of

cycling and differentiating human myoblasts. We found a sur-

prising heterogeneity in HSPB2 subcellular localization. Seven

days post-differentiation, we found many multinucleated cells

with homogeneous distribution of HSPB2 and HSPB3 both in

the cytoplasm and nuclei (Figure S1C). However, some cells

showed nuclear foci containing HSPB2, but not HSPB3; also,

the number and size of these HSPB2-containing foci varied

from dozens of small foci to one or a few large nuclear structures

(Figures 1A and S1C). After 10 days of differentiation, we found

mono- and multinucleated cells with undetectable nuclear

HSPB3 staining and nuclear HSPB2 foci and cells with cyto-

plasmic HSPB2 spherical foci that partly colocalized with

HSPB3 (Figures 1A and S1C). Thus, during the early steps of

myoblast differentiation, HSPB2 forms two types of structures:

nuclear foci that do not colocalize with HSPB3, in mono- and

multinucleated cells, and cytoplasmic spherical foci that partly

colocalize with HSPB3. The functional significance of these

HSPB2 nuclear and cytoplasmic foci is currently unknown.
in Cells

and DAPI. IN, intranuclear.

B2 showing HSPB2 and DAPI. IN, intranuclear.

on HSPB2 intranuclear distribution, cells were grouped into three categories:

cence intensity in each compartment normalized for the fluorescence intensity

nts versus diffuse HSPB2) and p < 10�34 (foci versus diffuse HSPB2).

ompartmentalization in diff. LHCNM2 cells. n = 100–111. Data indicatemean ±

lls (F) overexpressing HSPB2. Staining: HSPB2 and LMNA.

endogenous HSPB2 and LMNA.

lls (I) overexpressing HSPB2. Staining: HSPB2 and prelamin-A.



To further investigate HSPB2 subcellular distribution, we over-

expressedHSPB2 in cyclinganddifferentiating LHCNM2cells us-

ing lentiviral particles. By confocal microscopy, we confirmed

that, similarly to endogenous HSPB2, overexpressed HSPB2

accumulated in thenucleus incyclinganddifferentiatingLHCNM2

cells (Figure 1B). Again,wenoticed heterogeneity inHSPB2distri-

bution. While some cells showed diffuse nuclear HSPB2 staining

(Figure 1B, upper panel), others showed nuclear HSPB2 foci with

variable size, ranging from 0.3 mm to 1.7 mm or more in diameter

(Figure 1B, middle and lower panels; average size, 0.86 mm ±

0.02 mm; n = 167). Because HSPB3 is absent in cycling LHCNM2

cells, these findings suggest that overexpressed HSPB2 forms

nuclear compartments in a HSPB3-independent manner. More-

over, HSPB2 assembly is independent of the developmental sta-

tus of the cell, because we observed HSPB2 compartments in

cycling and differentiating human myoblasts.

We then asked whether the formation of nuclear compart-

ments by HSPB2 is specific to human myoblasts or whether it

could also occur in other cell types. HSPB2 overexpressed in

HeLa cells also showed a heterogeneous distribution: it was

diffusely localized in the cytoplasm and nucleus, or enriched in

nuclear foci of size ranging from ca. 0.4 mm to 3.8 mm in diameter

(average size, 1.17 mm ± 0.03 mm; n = 169), or it accumulated in

one large nuclear compartment (Figure 1C). Because MLO for-

mation is dependent on protein concentration (Banani et al.,

2017), we asked whether there is a critical concentration at

which HSPB2 starts to form nuclear foci and larger compart-

ments. Fluorescence density measurements allowed us to iden-

tify a critical threshold above which HSPB2 assembled into

nuclear compartments (Figure 1C). We also identified a critical

threshold at which endogenous HSPB2 formed nuclear com-

partments in differentiating human myoblasts (Figure 1D). The

latter was similar to the onemeasured in HeLa cells overexpress-

ing HSPB2. This result shows very clearly that compartmentali-

zation by HSPB2 also occurs at endogenous expression levels

and under physiological conditions.

Nuclear compartments of HSPB2 were also observed in

immortalized motor neuronal (NSC34) and HEK293T cells (Fig-

ure S1D). Thus, HSPB2 compartmentalization is not cell type

specific.

HSPB7 isalsomainly expressed inmyoblasts, similar toHSPB2

(Vos et al., 2009). In agreement with Vos et al. (2009), HSPB7 co-

localized with the nuclear speckle marker ASF/SF2 in some

HSPB7-overexpressing HeLa cells (data not shown). However,

no nuclear compartments similar to the ones formed by HSPB2

were observed upon overexpression of HSPB7 in HeLa cells,

even when a nuclear localization signal (NLS) was added to force

HSPB7 nuclear accumulation (Figure S1E). HSPB1 and HSPB5,

which translocate in the nucleus (Bryantsev et al., 2007; van den

IJssel et al., 2003), did not form nuclear foci upon overexpression

in HeLa cells either (Figure S1F). We conclude that compartment

formation is a specific property of HSPB2, which is independent

of the cell type but dependent on HSPB2 concentration.

HSPB2 Nuclear Compartments Sequester LMNA in
Mammalian Cells
In LHCNM2 and HeLa cells, the large nuclear HSPB2 compart-

ments affected chromatin distribution (judged by DAPI staining)
and, occasionally, nuclear shape (Figures 1B and 1C). Nuclear

shape and chromatin organization are regulated by nuclear lam-

ins, which include LMNA, lamin-B1 (LMNB1), and B2 (LMNB2).

These lamins form separate but interconnected meshwork un-

derneath the nuclear envelope and throughout the nucleoplasm

(Dechat et al., 2010). Thus, we asked whether HSPB2 nuclear

compartments affected nuclear lamin distribution in myoblasts.

Indeed, nuclear HSPB2 compartments colocalized with LMNA

independent of their size; moreover, HSPB2 also changed

LMNA distribution (Figure 1E). The changes in LMNA distribution

induced by overexpressed HSPB2 also occurred in HeLa cells

(Figure 1F).

We next verified whether the nuclear foci that HSPB2 forms

during myoblast differentiation colocalize with LMNA. HSPB2

nuclear foci partly colocalized with LMNA (Figure 1G). These

LMNA-positive HSPB2 foci were only observed in mononucle-

ated cells that were in the process of differentiation. Thus, we

conclude that HSPB2 forms intranuclear compartments in differ-

entiating myoblasts, which sequester LMNA.

Mature LMNA originates from a precursor form, prelamin-A,

which undergoes sequential post-translational modifications

that include farnesylation and C terminus cleavage (Davies

et al., 2011). Prelamin-A processing intermediates contribute to

large-scale chromatin rearrangements, affecting the expression

of specific genes. In particular, during myoblast differentiation,

prelamin-A regulates the expression of key genes such as

caveolin 3 and troponin T (Capanni et al., 2008). We asked

whether HSPB2 nuclear compartments may also sequester

immature forms of LMNA. Due to its rapid processing,

prelamin-A is undetectable in mammalian cells unless its matu-

ration is inhibited with, e.g., a specific farnesyltransferase inhib-

itor (FTI) (Verstraeten et al., 2008). In agreement, using an

antibody specific for prelamin-A, we detected it only after treat-

ment of cycling myoblasts with FTI (Figure S2A). Cycling and

differentiating myoblasts overexpressing HSPB2 were charac-

terized by the accumulation of prelamin-A in the form of nuclear

foci that partly colocalized with HSPB2 compartments (Fig-

ure 1H). In contrast, prelamin-A was undetectable in cycling

myoblasts overexpressing GFP (Figure S2B), excluding any arti-

fact due to cell infection with lentiviral particles. Accumulation of

prelamin-A inside HSPB2 nuclear compartments was also

observed in HeLa cells (Figure 1I). The antibody used recognizes

both non-farnesylated and farnesylated prelamin-A. To deter-

mine whether HSPB2 compartments equally recruit non-farne-

sylated and farnesylated prelamin-A, we co-expressed in HeLa

cells HSPB2 with cDNAs expressing FLAG-prelamin-A (pro-

cessed into mature lamin-A) and two mutants that cannot

undergo complete maturation, FLAG-prelamin-A-C661M (non-

farnesylatable) and FLAG-prelamin-A-L647R (uncleavable

farnesylated) (Mattioli et al., 2011). HSPB2 compartments

sequestered only FLAG-prelamin-A and non-farnesylated

FLAG-prelamin-A-C661M, while leaving the distribution of farne-

sylated FLAG-prelamin-A-L647R unaffected (Figure S2C). Thus,

HSPB2 sequesters immature non-farnesylated LMNA as well as

mature LMNA in nuclear compartments and might interfere with

LMNA maturation. Whether HSPB2-induced changes in prela-

min-A and LMNA distribution have consequences on chromatin

rearrangements and gene expression is unknown.
Cell Reports 20, 2100–2115, August 29, 2017 2103
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During differentiation, the solubility and distribution of LMNA

change and these changes in the properties of LMNA are

required for proper myoblast differentiation (Mariappan and

Parnaik, 2005). Our data demonstrated that HSPB2 and

LMNA colocalize in nuclear compartments during early

myoblast differentiation and that overexpression of HSPB2 in

LHCNM2 cells promotes targeting of nucleoplasmic LMNA,

as well as non-farnesylated prelamin-A, to intranuclear com-

partments. We propose two possible explanations for these

observations. First, HSPB2 forms compartments that directly

sequester LMNA. Alternatively, LMNA itself could be enriched

in nuclear compartments and then recruit HSPB2. To differen-

tiate between these possibilities, we overexpressed HSPB2 in

mouse embryonic fibroblasts (MEFs) derived from LMNA

wild-type mice (Lmna+/+), LMNA-deficient mice (Lmna�/�), or
mice that lack lamin A and express lamin-C only (LCO) (Figures

S2D and S2E) (Lammerding et al., 2006). The absence of

lamin-A (in LCO) and LMNA (in Lmna�/�) did not abrogate

HSPB2 assembly into compartments (Figure S2E). We

conclude that HSPB2 forms intranuclear compartments inde-

pendently of LMNA and that LMNA is recruited into HSPB2

compartments and not vice versa. Our results suggest a

working model in which a local increase in HSPB2 concentra-

tion promotes HSPB2 compartmentalization, which, in turn,

affects the intranuclear distribution of non-farnesylated prela-

min-A and LMNA.

HSPB2 Compartments Behave as Liquid Droplets
HSPBs are disordered proteins because they contain N- and

C-terminal IDRs (Sudnitsyna et al., 2012). However, the func-

tional role of these IDRs is still unclear. Recent studies suggest

that many IDRs promote the assembly of proteins into MLOs

by liquid-liquid phase separation. The intranuclear assemblies

formed by HSPB2 are reminiscent of MLOs. The fact that

compartment formation by HSPB2 only occurs above a critical

concentration (Figures 1C and 1D) is also typical for liquid-liquid

phase separation (Banani et al., 2017; Schmidt and Rohatgi,

2016). Thus, we next tested whether the IDRs promote HSPB2

compartmentalization by phase separation.

We generated two truncated forms of HSPB2, lacking either

the N terminus (dN-HSPB2) or the predicted disordered C-termi-

nal domain (dC-HSPB2; Figure 2A). Both deletion mutants were

expressed at similar levels in HeLa cells (Figure 2B). While

HSPB2 and dN-HSPB2 still formed intranuclear compartments

that sequestered LMNA, dC-HSPB2 showed a diffuse staining
Figure 2. The Intrinsically Disordered C-Terminal Domain of HSPB2 Is

(A) Schematic representation of HSPB2 protein and of dN- and dC-HSPB2 deleti

crystallin domain (ACD); red indicates predicted IDR.

(B) Immunoblot showing the expression levels of HSPB2, dC-HSPB2, and dN-H

(C) Immunofluorescence on HeLa cells overexpressing HSPB2, dN-HSPB2, and

(D) Microscopy on HeLa cells overexpressing GFP-HSPB2 with untagged HSPB

(E) Inverted black-and-white images of GFP-HSPB2 in HeLa cells overexpressin

droplets are indicated by arrowheads.

(F) A boxplot showing the sphericity values of GFP-HSPB2 nuclear droplets (n =

(G) Quantification of the fluorescence intensity recovery after bleach of GFP-HS

(1:8 ratio). The timescale of a bleach experiment is shown. n = 18. Data indicate

Scale bars, 5 mm.

See also Figures S3 and S4 and Movies S1, S2, S3, and S4.
in the cytoplasm and nucleus and did not affect the distribution

of LMNA (Figure 2C).

We next used live cell imaging with GFP-tagged HSPB2 to test

whether HSPB2 compartments behave like liquid droplets.

Because the GFP tag could influence the behavior of HSPB2,

we overexpressed GFP-HSPB2 at a very low concentration,

together with higher concentrations of untagged HSPB2,

dN-HSPB2, or dC-HSPB2 (ratio of GFP-HSPB2:untagged

HSPB2 constructs, 1:8). This strategy allowed us to recapitulate

the previously observed subcellular distribution of untagged

HSPB2 constructs (Figure 2; compare Figures 2C and 2D).

Instead, GFP, per se, showed a homogeneous staining in

HeLa cells (Movie S1). Upon co-transfection with full-length

HSPB2 or dN-HSPB2, GFP-HSPB2 formed cytoplasmic and nu-

clear foci as well as large intranuclear assemblies (Figure 2D;

Movies S2 and S3). However, GFP-HSPB2 displayed a diffuse

distribution when co-expressed with dC-HSPB2 (Figure 2D;

Movie S4).

We next characterized the behavior of GFP-HSPB2 compart-

ments by live cell imaging. GFP-HSPB2 compartments have the

typical properties of liquid droplets: they fuse after touching one

another and then relax into one large droplet (Figure 2E; Movie

S2), and they are roughly spherical, presumably due to the sur-

face tension (Figure 2F). We next investigated the mobility of

GFP-HSPB2 in the intranuclear compartments. Photobleaching

analysis revealed that GFP-HSPB2 molecules rapidly redis-

tribute within the nuclear assemblies, in agreement with a liquid

material state (Figure 2G). Based on these data, we conclude

that HSPB2 compartments have all the typical hallmarks of a

liquid state, suggesting that HSPB2 compartments form via

liquid-liquid phase separation.

We then verified whether HSPB2 compartments colocalize

with known nuclear membrane-less organelles or recruit other

IDR-containing proteins that undergo phase separation. The nu-

clear foci formed by overexpressed HSPB2 did not colocalize

with nuclear speckles (SC35), Cajal bodies (SMN), nucleoli (fibril-

larin), or nuclear stress bodies (Sam68) (Figure S3A). Adjacency

and partial colocalization between some, but not all, HSPB2 foci

and PML-nuclear bodies were observed. However, we also

observed nuclear HSPB2 foci that were not adjacent to and

did not colocalize with PML. Thus, HSPB2 nuclear foci can

form independently of the presence of PML nuclear bodies (Fig-

ure S3A). Concerning RNA-binding proteins that undergo phase

separation and are recruited toMLOs such as TIA-1, TDP-43 and

FUS, these were not recruited at HSPB2 foci (Figure S3B).
Required for Phase Separation in Cells

on constructs generated. Blue indicates the N terminus; black indicates alpha-

SPB2 in HeLa cells transfected for 48 hr. TUBA4A: loading control.

dC-HSPB2.

2, dN-HSPB2, or dC-HSPB2 (1:8 ratio).

g GFP-HSPB2 with HSPB2 (1:8 ratio). Fusion events of GFP-HSPB2 nuclear

72). Number 1 represents a sphere.

PB2 nuclear droplets in HeLa cells overexpressing GFP-HSPB2 with HSPB2

mean ± SEM.
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Combined, these results suggest that HSPB2 forms a type of

MLO in mammalian cells.

HSPB2 Phase Separation Affects LMNA and Chromatin
Distribution and Impairs Gene Transcription and
Nuclear Integrity
To further study the functional consequences of HSPB2 phase

separation, we performed live imaging and fluorescence recov-

ery after photobleaching (FRAP) studies in cells co-expressing

untagged HSPB2 and GFP-LMNA. Co-expression of untagged

HSPB2, dN-HSPB2, or dC-HSPB2 with GFP-LMNA recapitu-

lated the previously observed distribution of endogenous

LMNA (compare Figure S4A with Figure 2C).

As expected, GFP-LMNA was almost completely immobile

when expressed alone (Figure S4B; Movie S5), and the majority

of GFP-LMNA was incorporated in the nuclear lamina (Gilchrist

et al., 2004). In contrast, when co-expressedwith HSPB2, a large

fraction of GFP-LMNA formed dynamic droplets in the nucleo-

plasm (Movie S6). The pool of GFP-LMNA accumulating inside

these nuclear droplets was highly mobile, as evidenced by

FRAP measurements (Figure S4C) and droplet fusion events

(Figure S4D). Instead, the pool of GFP-LMNA incorporated in

the nuclear lamina was immobile, also upon co-expression of

HSPB2 (data not shown). These results demonstrate that

HSPB2 changes the intranuclear distribution and mobility of

nucleoplasmic LMNA.

This result prompted us to investigate the localization of

SUN2, an integral protein of the inner nuclear membrane (INM)

whose anchoring to the nuclear envelope depends on LMNA

(Liang et al., 2011). SUN2 was largely absent from the INM in

cells with nuclear HSPB2 compartments (Figure 3A). This corre-

lated with LMNA mislocalization and aggregation in the perinu-

clear region of the cell (Figure 3A, arrowheads). These results

suggest that, by accumulating inside the nucleus, HSPB2 affects

LMNA distribution and mobility, which, in turn, impairs SUN2

anchoring at the nuclear envelope, ultimately damaging its

integrity. Consistently, HSPB2-overexpressing cells showed a

significant increase in the percentage of cells with damaged or

disrupted LMNB1 meshwork, compared to cells overexpressing

HSPB5 (Figure 3B).

LMNA, together with nuclear-envelope-associated proteins,

regulates DNA replication, chromatin organization, and gene

transcription (Andrés and González, 2009). We studied whether

HSPB2 compartments change chromatin distribution. We co-

expressed GFP-HSPB2 in HeLa cells stably expressing histone

H2B-mCherry and monitored the distribution of both proteins

by time-lapse imaging. GFP-HSPB2 droplets displaced H2B-
Figure 3. HSPB2 Aberrant Phase Separation Inhibits RNA Synthesis

(A) Immunofluorescence on HeLa cells overexpressing HSPB2 showing SUN2 re

(B) Immunofluorescence on HeLa cells overexpressing HSPB5 or HSPB2. Damag

rim missing one or more portions in the proximity of HSPB2 compartments. Data

(C) 40 hr post-transfection, HeLa cells, control or overexpressing V5-NLS-HSPB7

Alexa594-Azide, V5, HSPB2, and DAPI. EU intensity was quantified in nucleoli a

indicate mean ± SEM; p < 10�15. n.s., not significant.

(D) Cycling and differentiating (diff.) LHCNM2 cells overexpressing HSPB2 were

Scale bars, 10 mm.

See also Figures S4 and S5 and Movies S5, S6, and S7.
mCherry, changing chromatin distribution. These H2B-mCherry

rearrangements were very dynamic because of the fusion events

of GFP-HSPB2 droplets (Figure S4E;Movie S7). Displacement of

H2B-mCherry and chromatin (judged by DAPI staining) by GFP-

HSPB2 droplets was further confirmed by immunostaining on

fixed cells (Figure S4F).

We then asked whether the changes in chromatin reorganiza-

tion caused by HSPB2 phase separation could have functional

consequences for gene transcription, which we measured using

the uridine analog 5-ethynyl uridine (EU) (Jao and Salic, 2008).

EU incorporation into newly synthesized RNA could be blocked

by co-treatment of HeLa cells with actinomycin D, validating

the experimental setup (Figure S5A). Overexpression of NLS-

HSPB7, used as a negative control, did not affect EU incorpora-

tion, as compared to untreated HeLa cells (Figure 3C). In

contrast, HSPB2 significantly decreased RNA synthesis (Fig-

ure 3C). Similar results were obtained in cycling myoblasts over-

expressing GFP, used as control, or HSPB2. EU incorporation

was not observed in areas that contained HSPB2 droplets,

regardless of their small or larger size, and global RNA transcrip-

tion in the nucleoplasm was reduced by HSPB2 phase separa-

tion (Figure S5B).

Next, we studied whether HSPB2 compartments would also

impair RNA transcription in LMNA knockout cells. Similarly to

what is observed in HeLa and LHCNM2 cells, HSPB2 compart-

ments locally inhibited EU incorporation in LMNA-proficient

MEFs (Figure S5C). In contrast, in LMNA knockout MEFs, EU

was still efficiently incorporated into HSPB2 compartments (Fig-

ure S5C). This result demonstrates that HSPB2 compartmental-

ization leads to a spatial rearrangement of lamin-A and locally

impairs RNA synthesis.

Another indirect measure of RNA transcription is reflected by

the change in the shape of nuclear speckles. Speckles are dy-

namic MLOs that store splicing factors (Lamond and Spector,

2003). While, in resting cells, speckles have an irregular shape,

they reorganize into spherical foci when polymerase-II-mediated

transcription is blocked with actinomycin D (Lamond and Spec-

tor, 2003). Moreover, changes in the levels and distribution

of LMNA inhibit polymerase II-mediated transcription, with

consequences on speckle shape (Shimi et al., 2008; Spann

et al., 2002). These findings open the possibility that HSPB2

phase separation, by changing LMNA and chromatin distribu-

tion, may also indirectly lead to the reorganization of speckles

into spherical foci. To verify this hypothesis, we overexpressed

HSPB2 in myoblasts, and we studied the subcellular distribu-

tion of LMNA and SC35, a speckle marker. Speckles had an

irregular shape in myoblasts with diffuse LMNA distribution
cruitment at the nuclear envelope.

ed LMNB1: irregular and discontinuous nuclear rim; truncated LMNB1: nuclear

indicate mean ± SEM.

or HSPB2, were incubated with 5-ethynyl uridine (EU; 200 mM) for 6 hr. Staining:

nd nucleoplasm; nucleoplasm/nucleoli ratio was calculated. n = 30–36. Data

stained for LMNA, SC35, and DAPI.
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Figure 4. HSPB3 Inhibits HSPB2 Aberrant Phase Separation

(A) Immunofluorescence on HeLa cells overexpressing HSPB2 with myc-HSPB3, HSPB1, or myc-HSPB8.

(B) Quantitation of the percentage of HSPB2-overexpressing cells with diffuse staining or HSPB2 nuclear assemblies. n = 3 experiments/conditions. Data indicate

mean ± SEM; p = 4.17 3 10�6. 143–180 cells per experiment were analyzed.

(C) Immunoblot showing levels of HSPB2, HSPB1, myc-HSPB3, and myc-HSPB8 in transfected HeLa cells. TUBA4A: loading control.

(D) Immunofluorescence on cycling myoblasts overexpressing HSPB2 and HSPB3. One representative image of 478 cells analyzed, all showing diffuse HSPB2.

(E) Immunofluorescence on HeLa cells overexpressing HSPB2 with myc-HSPB3 showing endogenous LMNA.

(F) Microscopy on HeLa cells overexpressing HSPB2 alone or with myc-HSPB3. Quantitation of the percentage of cells with LMNA nuclear compartments is

shown. n = 3–4 experiments/conditions. Data indicate mean ± SEM; p = 3.72 3 10�6. 125–200 cells per experiment were analyzed.

(legend continued on next page)
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and a spherical shape in myoblasts where LMNA was seques-

tered into HSPB2 compartments (Figure 3D). These data further

support the interpretation that HSPB2 phase separation,

by altering LMNA and chromatin distribution, inhibits RNA

transcription.

Based on these results, we define the nuclear droplets formed

in differentiating human myoblasts as ‘‘physiological’’ HSPB2

compartments. In contrast, we refer to HSPB2 droplets that

form upon transient overexpression as ‘‘aberrant’’ HSPB2 com-

partments because they mislocalize LMNA and chromatin, with

detrimental consequences for nuclear integrity and function.

HSPB3 Inhibits Aberrant Compartment Formation by
HSPB2 and Restores Nuclear LMNA Distribution
HSPB2 forms a stoichiometric complex with HSPB3 (3:1), and

their interaction co-stabilizes both proteins (den Engelsman

et al., 2009). Physiological intranuclear HSPB2 compartments

that form in differentiating myoblasts did not colocalize with

HSPB3 but partly colocalized with LMNA (Figure 1G). However,

the cytoplasmic HSPB2 foci partly colocalized with HSPB3 (Fig-

ure S1C).We thus askedwhether HSPB3 could influence HSPB2

phase separation. We co-transfected HSPB2 and HSPB3 in

HeLa cells and compared the propensity of HSPB2 to form intra-

nuclear assemblies in the presence and absence of HSPB3.

HSPB3 prevented the formation of nuclear HSPB2 droplets,

because both proteins were homogeneously distributed

throughout the cells (Figures 4A and 4B). This effect was not a

mere consequence of lower HSPB2 expression levels upon its

co-transfection with HSPB3, as confirmed by immunoblotting

(Figure 4C; see also Figure 5G). In contrast, co-expression with

HSPB1 or HSPB8 did not prevent HSPB2 compartmentalization

(Figures 4A and 4B). While HSPB8 was sequestered inside

HSPB2 nuclear compartments, HSPB1 was not (Figure 4A).

This result suggests some additional specificity in sequestering

proteins in HSPB2 compartments. Also, in cycling LHCNM2 cells

co-expressing HSPB3 and HSPB2, the latter showed a homoge-

neous distribution (Figure 4D), further confirming that HSPB3

negatively regulates HSPB2 compartmentalization.

Since LMNA distribution is rearranged due to HSPB2 aberrant

phase separation, we tested whether co-expression of HSPB2

withHSPB3could rescueLMNAdistribution. Indeed,overexpres-

sion of HSPB3 inhibited HSPB2 aberrant phase separation and

maintained proper LMNA distribution (Figures 4E and 4F). These

results demonstrate that nuclear phase separation is a specific

property of HSPB2 that is negatively regulated by HSPB3.

We next asked whether HSPB2 directly binds to LMNA and

whether/how HSPB3 affects HSPB2-LMNA association. We

overexpressed FLAG-tagged LMNA with HSPB2 and HSPB3,

separately or combined. Co-immunoprecipitation studies re-

vealed that HSPB2, but not HSPB3, weakly binds to LMNA (Fig-

ure 4G). When co-expressed with HSPB2, HSPB3 abolished the

association between HSPB2 and LMNA (Figure 4G). These re-

sults support the interpretation that, by directly binding to
(G) Immunoprecipitation with anti-FLAG of HEK293T cells overexpressing for 24 h

Total cell lysates (input) and immunocomplexes (beads) were processed for wes

Scale bars, 10 mm.

See also Figure S6.
HSPB2, HSPB3 prevents both HSPB2 compartmentalization

and association with LMNA.

Identification of Two Putative HSPB3 Mutations in
Myopathy Patients
Mutations in the HSPB1, HSPB5, and HSPB8 genes cause

myopathy and/or neuropathy (Boncoraglio et al., 2012).

Recently, the missense variant p.R7S (rs139382018) in HSPB3

was linked to axonal motor neuropathy (HMN2C). However,

the underlying mechanism is yet unknown (Kolb et al., 2010).

Because of the high expression of HSPB2 and HSPB3 in skeletal

muscles (Sugiyama et al., 2000), we hypothesized that mutations

in this complex could cause (neuro)muscular diseases. There-

fore, we sequenced the genomic DNA of 400 myopathy patients

of unknown origin to identify potential mutations in the coding

regions of HSPB2 and HSPB3. We identified two variants

in HSPB3 in two independent cases that included the

A33AfsX50-HSPB3 truncation variant and the R116P-HSPB3

rare missense variant (rs150931007), with a minor allele fre-

quency of 0.0001730 in the ExAC browser (assessed March

2017) (Figures 5A and S6A–S6C). Unfortunately, we were unable

to test the parents of case 1 (Figure S6A); the father of case 2

(Figure S6B), who also carried the R116P-HSPB3 variant, dis-

played only moderate symptoms at the time of testing. The

R116P-HSPB3 variant affects a highly conserved, key amino

acid in the a-crystallin domain of HSPB3 (Figure S6C), whereas

the A33AfsX50-HSPB3 mutation disrupts the reading frame at

alanine 33, leading to a premature stop codon 50 amino acids

later. This event very likely leads to a non-functional protein.

The A33AfsX50-HSPB3 mutation was found in a 70-year-old

Italian man who presented shoulder-girdle muscle weakness

and atrophy. The R116P-HSPB3 mutation was found in a

25-year-old woman of Italian origin. The father of the affected

patient, carrier of the R116P-HSPB3mutation, was pauci-symp-

tomatic and presented sciatic irregular pains, similar to his

daughter with intermittent myalgia. By the age of 32 years, the

affected patient developed weakness of the upper and lower

limbs, along with neurogenic changes in the lower limbs compat-

ible with axonal neuropathy. Electron microscopy of her muscle

biopsy showed severe myofibrillar disarray with loss of Z-disk,

enlargements of sarcoplasmic reticulum cisternae, few lyso-

somes, and sub-sarcolemmal and intermyofibrillar glycogen ac-

cumulations in several fibers (Figure 5B). Importantly, the nuclei

were plurisegmented with marginated chromatin (Figures 5C

and 5D), a hallmark reminiscent of cells overexpressing HSPB2.

These two cases join the growing list of disease-causing mu-

tations reported in HSPB genes.

R116P-HSPB3 and A33AfsX50-HSPB3 Disrupt
HSPB2-HSPB3 Complex Formation and Cannot
Regulate HSPB2 Aberrant Phase Separation
Tostudywhether the twonewly identifiedmutationsaffectHSPB3

expression and interaction with HSPB2, we overexpressed
r FLAG-prelamin-A and an empty vector or HSPB2 alone or with myc-HSPB3.

tern blot. Asterisk indicates immunoglobulin G (IgG) or non-specific signal.
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myc-tagged HSPB3, R116P-HSPB3, and A33AfsX50-HSPB3 in

HeLa cells and measured HSPB3 mRNA and protein levels. The

mRNA levels of both mutants were higher compared to those of

HSPB3 (Figure S6D). However, the R116P-HSPB3 protein was

expressed at similar levels compared to HSPB3, whereas

A33AfsX50-HSPB3 was undetectable. This suggested that

A33AfsX50-HSPB3 is rapidly degraded after synthesis. This hy-

pothesis was tested and confirmed using Bortezomib, a protea-

some inhibitor (Figure S6E).

Next, we verified by co-immunoprecipitation whether the

R116P mutation affects HSPB3 binding to HSPB2. While the

wild-type proteins interacted (den Engelsman et al., 2009), no

association was detected between HSPB2 and R116P-HSPB3

(Figure 5E). A33AfsX50-HSPB3 levels were barely detectable;

therefore, its binding to HSPB2 was not tested. Thus, the two

mutations identified in myopathy patients directly (R116P) or

indirectly (A33AfsX50) disrupt the formation of the HSPB2-

HSPB3 complex.

In light of these results, we then tested whether A33AfsX50-

HSPB3 and R116P-HSPB3 can inhibit HSPB2 aberrant phase

separation. Neither A33AfsX50-HSPB3 nor R116P-HSPB3 could

inhibit the formation of HSPB2 nuclear droplets (Figure 5F).

Intriguingly, R116P-HSPB3 formed intranuclear aggregates,

which were often adjacent but excluded from HSPB2 droplets

(Figure 5F). Importantly, in cells co-expressing R116P-HSPB3

or A33AfsX50-HSPB3 together with HSPB2, LMNAwas seques-

tered into HSPB2 nuclear droplets. The nuclear amount of

HSPB2 was similar in HeLa cells co-expressing HSPB2 with

HSPB3 or R116P-HSPB3; however, HSPB2 formed compart-

ments that sequestered LMNA only in cells co-expressing

R116P-HSPB3 (Figure 5G). In agreement, LMNA could still co-

immunoprecipitate HSPB2 in cells co-expressing R116P-

HSPB3; as an additional control, the neuropathy-linked R7S

mutant of HSPB3, which still binds to HSPB2 as efficiently as

wild-type HSPB3, abrogated the HSPB2-LMNA interaction (Fig-

ures S6F and S6G). These results demonstrate that both HSPB3

mutants cannot negatively regulate HSPB2 aberrant phase

separation.

Formation of nuclear aggregates by R116P-HSPB3 was

confirmed using cycling myoblasts. Similarly to what was

observed in HeLa cells, R116P-HSPB3 nuclear aggregates did

not colocalize with LMNA and LMNB1 (Figure 5H). Since cycling

myoblasts do not express endogenous HSPB2, these results
Figure 5. Two HSPB3 Myopathy Mutants Cannot Inhibit HSPB2 Aberra
(A) Schematic representation of HSPB3 protein structure and position of the two

(B–D) Electron microscopy on the muscle biopsy of the 25-year-old patient carry

(B) Scale bar, 5 mm.

(C and D) Scale bars, 0.1 mm.

(C) Nuclear deformation and chromatin margination.

(D) Chromatin margination.

(E) Immunoprecipitation with anti-V5 on cells overexpressing for 24 hr V

immunocomplexes (beads) were processed for immunoblotting. WB, western bl

(F) Immunofluorescence on HeLa cells overexpressing HSPB2with myc-tagged H

and nucleic acid (DAPI).

(G) Nucleus/cytoplasm fractionation of HeLa cells overexpressing HSPB2 alone

(H) Immunofluorescence on cycling myoblasts overexpressing R116P-HSPB3 an

Scale bars, 10 mm.

See also Figure S6.
demonstrate that formation of nuclear aggregates is an intrinsic

property of R116P-HSPB3.

Depletion of HSPB3 Enhances HSPB2
Compartmentalization and Leads to Nuclear
Morphological Defects
Wedemonstrated that HSPB3 disease-linkedmutants inhibit the

formation of the HSPB2-HSPB3 complex. This result opens the

possibility that the accumulation of a free pool of HSPB2, which

can self-assemble, might affect gene expression and nuclei

morphology, thereby contributing to HSPB3-linked disease. To

address this hypothesis, we silenced HSPB3 in differentiating

myoblasts. LHCNM2 cells were infected with lentiviral particles

expressing a non-targeting short hairpin RNA (shRNA) control

sequence or a specific HSPB3 shRNA sequence and GFP as re-

porter. Five days post-differentiation, cells were processed

for qPCR, immunoblotting, or immunohistochemistry. HSPB3

depletion was efficient and did not affect the expression of

HSPB2, compared to control cells (Figures 6A and 6B). HSPB3

depletion significantly decreased the expression of myogenin,

one of the key genes required for myoblast differentiation (Fig-

ure 6A). Concerning the subcellular distribution of HSPB2,

5 days post-differentiation, it was mainly homogeneous in con-

trol differentiating cells, with few nuclear HSPB2-positive foci

detectable in ca. 34% of the infected cells. In contrast, more

than 67% of HSPB3-depleted cells were characterized by the

presence of HSPB2-positive foci in the nucleus and cytoplasm

(Figure 6C). Besides, compared to control cells, HSPB3-

depleted cells were characterized by nuclear morphology abnor-

malities, with a significant increase of micronuclei (Figures 6D

and 6E). These data support the idea that imbalances in the

expression of HSPB2-HSPB3 and accumulation of a free pool

of HSPB2 correlate with nuclear alterations and impaired myo-

genin expression.

DISCUSSION

Phase separation of IDR-containing proteins drives the assem-

bly of intracellular components into MLOs that behave like liquid

droplets and exert specific functions. Themost extensively stud-

ied MLOs are cytoplasmic stress granules, P bodies, nuclear

speckles, Cajal bodies, and nucleoli (Banani et al., 2017).

Recently, phase separation has also been implicated in the
nt Phase Separation
HSPB3 mutations identified in myopathy patients (p.A33AfsX50 and p.R116P).

ing the R116P mutation of HSPB3.

5-tagged HSPB2 and myc-tagged HSPB3 or R116P-HSPB3. Input and

ot.

SPB3, R116P-HSPB3, or A33AfsX50-HSPB3 showing HSPB2, HSPB3, LMNA,

or with myc-tagged HSPB3 or R116P-HSPB3.

d stained for HSPB3 and LMNA or LMNB1.
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Figure 6. Depletion of HSPB3 Increases HSPB2 Compartmentalization, Decreases Myogenin Expression, and Affects Nuclear Morphology

(A) mRNA levels of HSPB3, HSPB2, and myogenin in LHCNM2 cells infected with non-targeting shRNA (CTL) or HSPB3 shRNA and differentiated for 5 days.

HPRT was used for normalization.

(B) Protein levels of HSPB2, HSPB3, and TUBA4A (loading control) in samples treated as described in (A).

(C) Cells were treated as described in (A) and processed for immunofluorescence using the HSPB2 antibody. The percentage of cells with HSPB2-positive foci is

shown (181 cells expressing shRNA CTL and 179 cells expressing shRNA HSPB3 were analyzed).

(D) Microscopy on LHCNM2 cells infected as described in (A), showing LMNA distribution and nuclear morphology (DAPI).

(legend continued on next page)
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DNA damage response (Aguzzi and Altmeyer, 2016). Poly(ADP-

ribose) (PAR) nucleates liquid demixing of IDR-containing pro-

teins at sites of DNA damage. PAR-seeded liquid demixing

enables the dynamic rearrangement of nuclear architecture,

concentrating and organizing the players that orchestrate DNA

repair (Aguzzi and Altmeyer, 2016). Phase separation is, thus,

emerging as an efficient mechanism by which cells control the

spatio-temporal localization andmobility of specific macromole-

cules, and regulate complex cellular functions.

Myoblast differentiation is characterized by changes in nuclear

architecture, reorganization of nuclear LMNA, and a transient in-

crease in targeted DNA strand breaks, which enhances muscle

gene expression (Fernando et al., 2002; Larsen et al., 2010; Mar-

kiewicz et al., 2005). DNA damage is followed by caspase-trig-

gered XRCC1 repair foci; the latter allows proceeding along

muscle differentiation (Al-Khalaf et al., 2016). Interestingly,

LMNA promotes DNA repair, stabilizing 53BP1 and preventing

DNA damage and cell senescence (Gonzalez-Suarez et al.,

2009; Lees-Miller, 2006). Moreover, LMNA remodeling is

required for proper gene expression during myoblast differentia-

tion (Markiewicz et al., 2005), and overexpression of LMNA upre-

gulates muscle-specific genes (Lourim and Lin, 1992). Thus,

changes in LMNA concentration and distribution directly affect

chromatin and gene expression, and LMNA remodeling and

DNA repair are interconnected processes, at least during

myoblast differentiation.

Our study shows that HSPB2 forms liquid compartments that

partly colocalize with LMNA in differentiating myoblasts. This

suggests that HSPB2 compartments regulate nucleoplasmic

LMNA rearrangements that take place during the early steps of

muscle differentiation. Phase-separated HSPB2 may tempo-

rarily store discrete pools of LMNA, delaying their incorporation

in the nuclear envelope (Markiewicz et al., 2005). Recruitment of

LMNA into nuclear HSPB2 storage compartments could drive

subtle changes in chromatin organization, influencing transcrip-

tion of specific genes. In line, LMNA remodeling due to HSPB2

phase separation leads to a redistribution of chromatin, with

direct consequences for nuclear transcription.

Muscles are subjected to oxidative and mechanical stress.

LMNA remodeling activates the transcription of genes required

in response tomechanical stress, a process known asmechano-

transduction (Lammerding et al., 2006). HSPB2 may regulate

specific LMNA rearrangements, indirectly regulating chromatin

organization in mechanically stressed cells. Accordingly, upon

exposure to oxidative stress, HSPB2 knockout mice fail to prop-

erly modulate the transcription of metabolic and mitochondrial

regulatory genes required for the stress response; this, in turn,

has detrimental consequences for muscle viability (Ishiwata

et al., 2012). Moreover, HSPB2/HSPB5 double-knockout mice

develop myopathy with aging, supporting the conclusion that

HSPB2 (with HSPB5) is required for myoblast adaptation and

response to chronic stress.
(E) Cells were treated as described in (A). Quantitation of the percentage of cells

expressing shRNA CTL and 390 cells expressing shRNA HSPB3 were analyzed)

Scale bars, 10 mm.

See also Figure S6.
An increasing body of evidence shows that deregulated phase

separation has strong implications in aging and disease,

including, e.g., amyotrophic lateral sclerosis and inclusion

body myopathy (Aguzzi and Altmeyer, 2016; Alberti and Hyman,

2016). Here, we provide further evidence that derailed phase

separation can be a determinant of cellular dysfunction and

human disease. First, deregulated HSPB2 phase separation

mislocalizes LMNA, compromising nuclear architecture and

transcription; however, aberrant compartmentalization by

HSPB2 is counteracted by HSPB3, which is co-upregulated

with HSPB2 during myoblast differentiation (Sugiyama et al.,

2000). Intriguingly, HSPB3 depletion in differentiating myoblasts

decreases myogenin expression and enhances HSPB2 com-

partmentalization and nuclear morphological defects such as

micronucleus accumulation. These observations suggest that

imbalances of HSPB2-HSPB3 expression and enhanced

HSPB2 foci formation may have deleterious consequences on

myoblast viability and differentiation. Second, we identified two

HSPB3 mutations in myopathy patients. While A33AfsX50-

HSPB3 is unstable and rapidly degraded, R116P-HSPB3 can

no longer interact with HSPB2. Thus, both HSPB3 mutants

cannot control HSPB2 aberrant phase separation. Intriguingly,

a muscle biopsy from the patient with the R116P-HSPB3 muta-

tion shows alterations of nuclear morphology with chromatin

margination. Although we do not know whether aberrant

HSPB2 compartmentalization occurred in patient cells, these

changes are similar to the ones induced by HSPB2 overexpres-

sion. Concerning R116P-HSPB3-linked myopathy, we cannot

exclude that R116P-HSPB3 is associated with a gain of toxic

function, as suggested by its propensity to form nuclear aggre-

gates. It is possible that both a gain of toxic function of HSPB3

and a loss of function resulting from deregulated HSPB2 phase

separation and LMNA mobility contribute to disease.

In line, increased retention of LMNA in the nucleoplasm,

increased LMNAmobility and solubility, and accumulation of mi-

cronuclei have been documented in mammalian and patient

cells expressing mutated forms of LMNA associated with lami-

nopathies (Gilchrist et al., 2004; Markiewicz et al., 2002, 2005).

Laminopathies include a variety of human diseases, such as

Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy,

and Hutchinson-Gilford progeria syndrome, that are character-

ized by muscle atrophy, together with other symptoms (David-

son and Lammerding, 2014). Moreover, loss of LMNA disrupts

nuclear envelope integrity and causes muscular dystrophy in

mice (Sullivan et al., 1999). Altogether, these data highlight the

importance of LMNA for muscle cell function and how aberrant

changes in its distribution are detrimental for muscle viability.

In summary, we propose that HSPB2 phase separation regu-

lates dynamic LMNA and chromatin remodeling in response to

differentiation stimuli and upon stress, maintaining myoblast

viability. In contrast, deregulation of HSPB2 compartmentaliza-

tion, due to decreased HSPB3 expression or HSPB3 mutations
with micronuclei. n = 8. Data indicate mean ± SEM; p = 1.23 3 10�5 (423 cells

.
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that disrupt the HSPB2-HSPB3 complex, may contribute to

muscle aging and disease.

EXPERIMENTAL PROCEDURES

Cell Lines

In this study we used: LHCNM2 human myoblasts; HeLa, NSC34, and

HEK293T cells; Lmna+/+, Lmna�/�, and LCO mouse embryonic fibroblasts;

and HeLa-Kyoto cells expressing mCherry-tagged human H2B.

Collection of Human Samples

Procedures for collection of human blood and muscle biopsy were in accor-

dance with the ethical standards of the regional committee (approval received

on 09/10/2007). Informed consent was obtained from all subjects. At the time

of muscle biopsy, the proband was a 25-year-old woman. When she was re-

evaluated at 32 years of age, the proband showed a mild proximal and distal

muscle weakness. Muscle biopsy was done at the left deltoid. Muscle was

flash frozen in isopentane cooled in liquid nitrogen and stored at �80 degrees

until analysis.

Statistical Analysis

Student’s t test was used for comparisons between two groups. One-way

ANOVA followed by a Bonferroni-Holm post hoc test was used for compari-

sons between three or more groups.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures and seven movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2017.08.018.
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