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Summary. In business surveys, estimates of means and totals for subnational regions, indus-
tries and business classes can be too imprecise because of the small sample sizes that are
available for subpopulations. We propose a small area technique for the estimation of totals for
skewed target variables, which are typical of business data. We adopt a Bayesian approach
to inference. We specify a prior distribution for the random effects based on the idea of local
shrinkage, which is suitable when auxiliary variables with strong predictive power are available:
another feature that is often displayed by business survey data. This flexible modelling of ran-
dom effects leads to predictions in agreement with those based on global shrinkage for most of
the areas, but enables us to obtain less shrunken and thereby less biased estimates for areas
characterized by large model residuals.We discuss an application based on data from the Italian
survey on small and medium enterprises. By means of a simulation exercise, we explore the
frequentist properties of the estimators proposed. They are good, and differently from methods
based on global shrinkage remain so also for areas characterized by large model residuals.

Keywords: Local shrinkage priors; Log-normal distribution; Regional studies; Robust
estimation; Variance gamma distribution

1. Introduction

Regional economic decisions and policies rely on accurate business information regarding sub-
national regions and business categories. The relevance of regional estimates of business aggre-
gates and the interest in regional disparities in terms of firm competitiveness and productivity is
demonstrated by the growing number of scientific papers in this field (see Breinlich et al. (2014)
for a review).

Regional statistics are produced by the national statistical institutes, and governments use
them to allocate funds coherently (for examples of this, see Organisation for Economic Co-
operation and Development (2013) and Eurostat (2011, 2015a)). For instance, the (gross) value
added, i.e. the total value of new goods produced and services provided in a given time period,
is routinely estimated at the national and subnational levels. For the European Union, Euro-
stat releases regional estimates of the value added at levels as detailed as the European Union
‘Nomenclature des unités territoriales statistiques’ (NUTS) 3 (Eurostat, 2015b), and industries
(‘Nomenclature statistique des activités dans la Communauté européenne’ (called ‘NACE’), revi-
sion 2, one digit, following the ‘Statistical classification of economic activities in the European
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2 E. Fabrizi, M. R. Ferrante and C. Trivisano

Community’). Subnational estimates of value added would be even more informative if they
were disaggregated in terms of both industry and firm size for measuring the relative contri-
bution of an industry and of certain firm size classes to the regional economy. Unfortunately,
sample sizes of official business surveys are too small for the standard design-based estimators
(known as ‘direct estimators’) to be sufficiently precise in small domains.

This limitation can be overcome by model-based small area estimation methods. The small
area estimation literature has until very recently focused largely on the analysis of social surveys,
with estimation goals such as poverty mapping (see Pfeffermann (2014) and Pratesi (2016) for
a review) and few applications for business statistics. In recent years, awareness of this field of
application has grown (Burgard et al., 2014; Ferrante and Trivisano, 2010; Militino et al., 2015),
as well as the availability of reliable administrative archives for firms that can be used to obtain
auxiliary information.

Small area models may be broadly classified into area level and unit level. In area level models,
survey-weighted (direct) estimates that are obtained for each domain are related to auxiliary
information at the same level of population disaggregation. In unit level models, the target vari-
ables and unit level information on auxiliary variables are related at this microlevel. Area level
models straightforwardly incorporate information on survey weights, leading to design consis-
tent estimators whenever direct estimators are design consistent (Rao (2003), page 117). Design
consistency is a general purpose form of protection against model failures, as it guarantees that,
at least for large domains, estimates make sense even if the model assumed completely fails. Area
level modelling is less demanding in terms of data disclosure and overcomes potential problems
of record linkage between the survey sample and the administrative archive. For these reasons,
area level models will be considered in this paper.

Many business survey variables are positive and positively skewed (Rivière, 2002), so normal-
ity is not a tenable assumption in most of the cases. Log-transformation can then be introduced
to apply normal linear mixed models on the log-scale. Predictions on the original data scale re-
quire back-transformation that is a potential source of bias. Positive skewness of survey variables
may cause estimators of means and totals to have non-normal (positively skewed) sampling dis-
tributions, when calculated on small samples (see Fay and Herriot (1979) and Karlberg (2000)).
Literature on area level modelling on the log-scale includes Fay and Herriot (1979) and Slud
and Maiti (2006) which both consider an empirical Bayes approach to inference. In this paper
we propose a full Bayes approach, accounting for all sources of uncertainty, effectively dealing
with back-transformation bias and implementable with widely available Markov chain Monte
Carlo (MCMC) software.

When predicting means or totals for business survey variables, strong covariates from ad-
ministrative archives are often available. For instance, in our application, aimed at predicting
gross value added at the domain level, we can exploit knowledge of turnover for each firm in
the population. Area level totals of turnover are strongly correlated with those of value added.
Nonetheless, a minority of the areas will typically deviate from the relationship that charac-
terizes most of the others. If we think of modelling in terms of mixed models, we have that
random effects would be needed for a subset of the areas (Datta, 2011) or alternatively that
there are subsets of random effects characterized by different variances. The specification of
spike-and-slab priors can be useful in this case (Datta and Mandal, 2015).

We contribute to the small area literature by proposing an approach based on local shrinkage
priors for the random effects (Frühwirth-Schnatter and Wagner, 2010), where spike-and-slab
priors are replaced by continuous gamma scale mixture-of-normal distributions (Griffin and
Brown, 2010) that lead to marginal variance gamma distributions for the random effects. This
flexible modelling of random effects leads to predictions that are close to those that we can
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Small Area Estimation for Business Survey Variables 3

obtain by using standard priors for non-outlying areas, and to less biased predictors for the
areas that can be labelled as outliers.

The paper is organized as follows. Model specification is described in Section 2. Specifically
in Section 2.1 closed formulae for posterior means conditionally on variance components are
illustrated as posterior means are proposed as point predictors. In Section 3, we apply our
methodology on real survey data. We use data on the small and medium enterprise (SME) sample
survey (1–99 employees) conducted by the Italian Statistical Institute (ISTAT), which provided
us with this information within the framework of the BLUE-ETS project; this project has
been financially supported by the European Union Commission within the Seventh framework
programme. For these data we motivate the recourse to a log-normal likelihood for the direct
estimators. In Section 4, we introduce a simulation exercise to explore the frequentist properties
of the proposed predictor in comparison with some alternatives, including the estimator of Slud
and Maiti (2006). Section 5 presents the study’s conclusions.

2. Small area estimation model

Let Y be the target variable, which we assume positive with a positively skewed distribution.
Assume that Y is defined on a population U of N units, partitioned into a set of m non-
overlapping domains of size Nd.d =1, : : : , m; N =Σm

d=1Nd/. A random sample of overall size n is
taken by using a possibly complex design: samples of sizes nd are drawn from each domain. The
small area nature of the problem lies in nd being too small to enable reliable inference for most
of the domains. We assume that individual weights wdj, j =1, : : : , nd , are attached to responses
ydj to account for unequal selection probabilities and possibly other selection adjustments.

The normal distribution is not suitable to describe either the distribution of Y in the population
nor the sampling distribution of the domain totals’ direct estimators Ŷ d =Σnd

j=1wdjydj. Although
these are linear combinations of individual observations and can be assumed to be approximately
normally distributed in large samples, in samples of small size, the sum of a few positively skewed
variables remains positively skewed. We assume that the total direct estimators are log-normally
distributed:

Ŷ d

∣∣θd , Vd ∼LN .[θd ], [Vd ]/ .1/

where [·] is used to denote a parameterization in terms of the mean and variance of the dis-
tribution. Exact or approximate design unbiasedeness of totals’ estimators is typical in survey
sampling. The distributional assumption in expression (1) can be motivated directly assuming
the log-normality of Y . Log-normal approximations of sums of independent log-normals have
been justified by several researchers (e.g. Fenton (1960) and Cobb et al. (2012)). Moreover, Maz-
manyan et al. (2009) proposed a log-normal central limit theorem for the approximation of the
sum of positively skewed random variables, although not necessarily log-normal. Eventually,
the assumption of normality on the log-scale when dealing with mean or total estimators of
skewed variables became common in the small area literature (as in Fay and Herriot (1979)).

On the log-scale, a specification that is consistent with the sampling model (1) is given by

log.Ŷ d/|ηd , δd ∼N.ηd − δd=2, δd/ .2/

where ηd = ln.θd/ and δd = var{log.Ŷ d/}. E{log.Ŷ d/}= ηd − δd=2 is in line with assuming the
availability of an unbiased estimator on the original scale of the data: if E.Ŷd/ = θd , then
E{log.Ŷ d/}< log.θd/. Note that Vd = exp.2θd + δd/{exp.δd/−1} will depend on both parame-
ters of the log-normal distribution.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48



4 E. Fabrizi, M. R. Ferrante and C. Trivisano

In the small area literature, variances that are associated with direct estimators are usually
treated as known constants. In practice, estimates that are obtained with methods such as
linearization or the bootstrap are smoothed by using a model involving unknown parameters.
In line with the literature on area level models, we shall assume that variances on the log-scale
are known and denote them as δ̂d .

We assume a multiplicative linking model for θd that links the outcome parameter to the
auxiliary information to improve the direct estimators:

θd = exp.xt
dβ+ud/: .3/

The p-row vector xt
d contains the covariates that are known for domain d from external sources,

and ud is a random intercept that is associated with θd . Let us assume that ud ∼N.0,ψd/, which
implies that

θd ∼LN.xt
dβ,ψd/ .4/

or, equivalently, ηd ∼N.xt
dβ,ψd/. We denote the model that is defined by sampling model (1)

and linking model (4) as the log-normal–log-normal model.

2.1. Analysis conditional on the variance components
To analyse the model that is defined by expressions (1) and (4), note first that, assuming δd as
known .δd = δ̂d/ we can rewrite expression (2) as Ẑd ∼N.ηd , δ̂d/, where Ẑd = log.Ŷ d/+ 1

2 δ̂d . We
can use standard results from the analysis of linear mixed models (see Rao (2003), chapter 5) to
prove that, conditionally on the regression coefficients β and the variances ψd ,

ηd |β,ψd , data∼N.η̂B1
d , g1,d/

where η̂B1
d = xT

dβ+γd.Ẑd −xT
dβ/, g1,d =γd δ̂d and γd =ψd=.ψd + δ̂d/. Note that, as a function

of the shifted direct estimates Ẑd , η̂B1
d is a convex linear combination of a direct component

Ẑd and a synthetic component xT
dβ, known as the linear composite estimator in the small area

literature. If we assume quadratic loss and define θ̂
B1
d =E.θd |β,ψd , data/ as the point predictor

for θd , we have that

θ̂
B1
d = exp{xT

dβ+γd.Ẑd −xT
dβ/+ 1

2γd δ̂d}
= exp[xT

dβ+γd{log.Ŷ d/−xT
dβ}+γd δ̂d ]: .5/

This predictor is the product between exp.η̂B1
d / and a factor that corrects for the main bias term

in the back-transformation; it is in line with formula (4) of Slud and Maiti (2006).
It can also be shown that

E.θ̂
B1
d /= exp.xT

dβ+ 1
2ψd/=EM.θd/ .6/

where E.θ̂
B1
d / is the expectation taken with respect to both linking and sampling models, whereas

with EM.·/ we denote the expectation with respect to linking model (4). This result means that
θ̂

B1
d is an unbiased predictor of θd in the same sense that best linear unbiased predictors are

unbiased: the unconditional frequentist expectation of the estimator and the expectation of
the estimand under the linking model are the same. A proof of equation (6) can be found in
Appendix A.

If we remove the conditioning onβ and assume a non-informative flat prior onβ, i.e. p.β/∝1,
then we have that
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Small Area Estimation for Business Survey Variables 5

ηd |ψd , data∼N.η̂B2
d , g1,d +g2,d/

where

η̂B2
d =xT

d β̂gls +γd.Ẑd −xT
d β̂gls/,

β̂gls =
(∑

d

1

ψd + δ̂d

xdxT
d

)−1 ∑
d

1

ψd + δ̂d

xT
d log.Ŷ d/

and

g2,d = .1−γd/2 xT
d

(∑
d

1

ψd + δ̂d

xdxT
d

)−1

xd:

As a consequence, the point predictor under quadratic loss will be given by

θ̂
B2
d = exp{xT

d β̂gls +γd.Ẑd −xT
d β̂gls/+ 1

2 .g1,d +g2,d/} .7/

(see Appendix A for a proof). Unlike the empirical Bayes approach that was advocated by Slud
and Maiti (2006), who plugged estimates of unknown parameters into equation (7), a full Bayes
approach accounts for the effect that the extra variation that is implied by the estimation of β
has on the point predictor; in fact, the expectation of a log-normal variable depends on both
the expectation and the variance on the log-scale.

To account fully for all sources of uncertainty, we should remove the conditioning on the vari-
ance components ψd ; unfortunately, for sensible choices of the prior, this leads to posterior dis-
tributions for θd that cannot be written in closed form and should therefore be explored by means
of computational algorithms such as the MCMC algorithm that is considered in this paper.

2.2. The distribution for the random effects and specification of hyperpriors
The main difference between model (4) and the linking model that has been adopted by most
of the small area literature on Fay–Herriot-type models (Jiang and Lahiri, 2005; Pfeffermann,
2014) is that the variances that is associated with random intercepts are in model (4) domain
specific, implying local shrinkage instead of the ordinary global shrinkage that we would have
had assuming that ψd =ψ, ∀ d. In a different context, the specification of a distribution for
random intercepts based on local shrinkage is discussed in Frühwirth-Schnatter and Wagner
(2010).

Datta et al. (2011) noted that, in the presence of good covariates, the variability of the small
area parameters may be accounted for by a synthetic estimator, and the inclusion of a random-
effect term may be unnecessary. When random effects are needed for a subset of the areas, the
specification of spike-and-slab priors can be useful (see Datta and Mandal (2015)). Spike-and-
slab priors amount to assuming that random intercepts are sampled from a mixture of two
normal distributions.

When analysing business data, it is quite likely that auxiliary variables with strong predictive
power are available. When this is so, the bulk of the direct estimates will be well fitted by the
synthetic model (without random intercepts), so the associated ψd are likely to be small, with a
minority of areas that require larger area-specific intercepts (and thereby larger ψd).

Our specification for the distribution of ud , d =1, : : : , m, is based on infinite mixtures of normal
distributions. Following Griffin and Brown (2010), our specification uses gamma mixtures of
normal distributions. Specifically, we assume that
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6 E. Fabrizi, M. R. Ferrante and C. Trivisano

ud |ψd
ind∼ N.0,ψd/, .8/

ψd |a,λ
ind∼ gamma.a,λ/, .9/

λ|b0, c0 ∼gamma.b0, c0/: .10/

This leads to spiked priors for the random effects that at the same time have tails that are
heavier than those of the normal distribution. Griffin and Brown (2010) observed that, for
small values of the shape parameter a, the prior specification (8)–(10) leads to a marginal prior
distribution for ud that mimics the behaviour of spike-and-slab priors based on finite mixtures.
This infinite mixture specification is computationally easier to deal with.

Other choices for the mixing distribution such as the popular inverse gamma distribution
would lead to platikurtic distributions with heavy tails, such as those in the t-family; this con-
trasts with the idea of severe shrinkage for most of the areas, which is consistent with a large
probability mass close to 0.

Specifically, prior specification (8)–(10) implies that ud

∣∣a,λ follows a Variance Gamma dis-
tribution, i.e.

ud ∼VG{a,
√

.2λ/, 0, 0}
(see Bibby and Sørensen (2003) for more details on this distribution). This marginal prior
distributions is symmetric and has expectation E.ud/=0 and variance V.ud/=a=λ. It belongs
to the family of generalized hyperbolic distributions (Barndorff-Nielsen, 1977). The conjugate
hierarchy in specification (8)–(10) also facilitates MCMC sampling.

In line with Frühwirth-Schnatter and Wagner (2010), we set the shape parameter a to a fixed
(small) value, whereas we specify a prior on the global parameter λ. As far as a is concerned,
we focus on two choices: a=1 and a=0:5.

The choice a=1 implies that ud is a priori distributed as a double-exponential distribution or
Laplace, which, combined with the normal prior conditional on ψd , recalls the Bayesian lasso
of Park and Casella (2008).

The case a=0:5 represents a more peaked prior distribution and encourages more shrinkage
towards 0 of small random intercepts (Fig. 1). Moreover, it leads to a half-t marginal prior on√
ψd . The half-t-prior for standard deviations is discussed in Gelman (2006) and recommended

whenever it makes sense to put a sizable mass of prior probability close to 0. It can be shown
that once ψ= {ψd} and τ = {√

ψd}, d = 1, : : : , m, have been defined, under prior (8)–(10) and
a=0:5,

τ |b0, c0 ∼Mht
(

0,
2b0

c0
I, 2b0

)
: .11/

With Mht.·/ we denote the multivariate distribution (with support R+n) that is obtained from
a multivariate t-distribution applying the absolute value transformation on each component of
the random variable. We can also prove that each prior

√
ψd |b0, c0 is a (univariate) half-t-priors

and the priors for two different variance components are uncorrelated, i.e. cov.ψd ,ψdÅ|b0, c0/=0
whenever d �=dÅ. See Appendix A for a proof of result (11) and the other statements.

As for the prior specification of the remaining parameters, diffuse independent normal priors
can be specified for the components of β. We can set b0 = 2, which implies that E.λ−1/ = c0.
This helps to interpret c0 as a scaling constant for the random-effects variance V.ud/ = a=λ.
The choice of c0 depends on the scale for the random effects in the problem being considered.
According to result (11), the parameter b0 can be interpreted in terms of degrees of freedom of
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Fig. 1. (a) Density and (b) log-density functions of the variance gamma distribution VG.a,
p

.2λ/, 0, 0/ for
λD1 and various values of a: , aD0.5; , aD0.75; , aD1; , aD1.5; , normal
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8 E. Fabrizi, M. R. Ferrante and C. Trivisano

the marginal prior p.τ /, so the choice of b0 =2 is in line with selecting half-t-priors with a very
small number of degrees of freedom (Gelman, 2006).

3. Estimation for Italian small and medium enterprise survey data: an application

In this section, we illustrate the methodology that we discussed by using real survey data. We
use data on the SME sample survey, wave 2008, conducted by ISTAT. Specifically, we target
the estimation of the total value added for small domains of the population of Italian small and
medium manufacturing firms (fewer than 100 employees). The domains that we focus on are
smaller than those for which ISTAT provides reliable estimates. Specifically, our domains are
defined by cross-classifying the 20 Italian Nomenclature des unités territoriales statistiques level 2
administrative regions, the economic industrial sector (NACE revision 2, two digit, 22 industries)
and firm size (four classes: fewer than 10 employees; 10–19 employees; 20–49 employees; 50–99
employees). As expected, for domains as small as those that we target, standard design-based
estimators are characterized by unacceptably large variances.

3.1. Direct estimators and sampling model
The SME survey uses a stratified sampling design and strata are defined by cross-classifying
NACE revision 2 (four digits) Italian administrative regions and company size in the four classes
that were defined above. The domains that we are interested in are planned because they are
unions of sampling strata.

Let Ŷ ijr be the direct estimator of the parameter θijr, where i indexes the economic activity
.i=1, : : : , 22/, j the size classes (j =1, : : : , 4/ and r the regions (r =1, : : : , 20/. Given this peculiar
structure of the data the domain index d that was used in Section 2 is now replaced by the triplet
ijr. The potential number of 1760 domains falls to 1165, as some of the populations obtained
by cross-classification are empty and some very small. We excluded all the domains that were
characterized by a sampling rate over 0.75.

The actual sample sizes for the domains that we consider ranges from 2 to 184, with a median
of 8, a mean of 13.5 and 0.75- and 0.9-quantiles equal to 16 and 30 respectively.

Direct estimates can be obtained by using the calibration estimator that ISTAT adopts for
the SME survey. Calibration estimators can be written as weighted sums. ISTAT’s published
weights are obtained by multiplying base weights (the inverse of the inclusion probabilities) by
factors adjusting for non-response and calibrating to known totals. Let the estimated total be
denoted as Ŷ ijr =Σk∈dijr wijr,kyijr,k, where yijr,k is the value added (VA) of the kth firm in sector
i, size class j and region r. We assume that E.Ŷ ijr/=θijr with var.Ŷ ijr/=Vijr. We estimate Vijr

by using linearization-based variance estimators and denote these estimates as V̂ ijr.
In our sampling model we assume log-normality according to model (1). To justify this

assumption for our data we proceed in two steps: first, we check whether log-normality is a
sensible assumption for domain-specific sample data; then we use a simple simulation exercise
to assess whether log-normality is to be preferred to normality as the sampling distribution of
total estimators given the sample sizes that we have in our analysis.

For all the domains with nijr �3, we tested normality and log-normality by using the Shapiro–
Wilk test. Results are reported in Table 1. In reporting the results we consider separately the
smallest 90% of the domains nijr � 30 and the largest 10%. In the smaller domains, for which
the test is relatively less powerful, both normality and log-normality tend to be not rejected, but
normality fails clearly more often. In larger domains, when the test has more power, normality
is rejected in the large majority of cases, whereas log-normality is accepted in more than 70%
of the cases.
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Small Area Estimation for Business Survey Variables 9

Table 1. Checking normality and log-normality within domain-
specific samples by using the Shapiro–Wilk test: percentage of
non-rejections at the 0:01 significance level

nijr Normality (%) Log-normality (%)

�30 0.733 0.959
> 30 0.087 0.713

Overall 0.672 0.943

Table 2. Kolmogorov–Smirnov distances between the Monte
Carlo (R D 10000) distribution of the sample mean and two ref-
erence distributions, for various sample sizes

Reference distribution Results for the following sample sizes ni:

5 10 15 20

Log-normal 0.012 0.014 0.015 0.015
Normal 0.119 0.097 0.081 0.073

From Table 1 we conclude that log-normality is a sensible assumption for the distribution
of VA within domains. We actually assume that direct estimators are log-normally distributed
according to the arguments that were illustrated in previous section. To check this, we consider
a set of log-normal populations Yd ∼ LN.μ̃d , σ̃d/, d = 1, : : : , L, where L = 77 is the number
of domains with nijr > 30 for which log-normality was not rejected and μ̃d and σ̃d are the
parameters according to maximum likelihood for these domains. For each of these populations
we generated simple random samples of sizes R=10000 for each of the following sample sizes:
nd =5, 10, 15, 20. Note that 20 represent the 0.8-quantile of the sample size distribution in our
application.

We evaluate how far is the empirical sampling distribution of the sample mean from the
normal and the log-normal distributions in terms of Kolmogorov–Smirnov distance averaging
over the L populations. In fact, formal hypothesis testing of distributional assumptions with a
sample of replicates as large as 10000 would lead to rejections even in the presence of negligible
departures from the null hypothesis. Results, summarized in Table 2, show how log-normality
is to be preferred to normality for all sample sizes. We can also note that, as the sample size
grows larger, the difference between the two distances decreases.

To obtain more stable direct variance estimates, we smooth them through the generalized
variance function approach (Wolter, 1986). To begin with, we consider that, under the log-
normality assumption that was introduced in model (1), we have that

var{log.Ŷ ijr/}= log{CV2.Ŷ ijr/+1}: .12/

Thus, the smoothing can be conducted on CV2.Ŷ ijr/ = V̂ ijr=Ŷ
2
ijr. After careful exploratory

analysis, we assume that CV2.Ŷ ijr/ varies with the size class j but not with economic activity i or
with regions r. This leads to the following smoothing equation for the direct estimate of Vijr, V̂ ijr:
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10 E. Fabrizi, M. R. Ferrante and C. Trivisano

V̂ ijr =φj

Ŷ
2
ijr

nijr

(
1− nijr

Nijr

)
+υijr .13/

with E.υijr/= 0 and V.υijr/=κ and where a finite population correction factor is also consid-
ered to account for varying and occasionally non-negligible sample rates. The parameter φj

can be interpreted as the smoothed squared coefficient of variation multiplied by the size of
the domain nijr. The domain sample size nijr in the denominator of equation (13) allows for
the decrease in the coefficient of variation when the sample size increases. Smoothed squared
estimated coefficients of variation are given by

CV2
smooth

(
Ŷ ijr,k

)= φj

nijr

(
1− nijr

Nijr

)
;

the first, second and third quartiles of CV2
smooth.Ŷ ijh,k/ estimated on our data set are 31%, 45%

and 65% respectively. These results confirm the need to adopt a small area model approach.
We can then adapt the sampling model (2) to our problem, changing the index from d to ijr

and δijr with δ̂ijr = log{CV2
smooth.Ŷ ijr/+1} defined according to equation (12).

3.2. Auxiliary information and linking model
As an auxiliary variable, the log-total-turnover in each domain is available. This auxiliary infor-
mation refers to the Italian firms’ population and it is provided by the Italian statistical register
of active enterprises archive. The predictive power of this covariate is quite strong: the squared
correlation coefficient is equal to 0.87 when calculated on variables on their original scale, and
it is equal to 0.79 for the log-transformations. In the original scale the high correlation level is
influenced by few observations with a larger scale with respect to most of the others.

We assume the multiplicative linking model (4) for θijr to link the outcome parameter to
the auxiliary information given by the log-total-turnover for the domain in question. With
reference to the log-scale, we can write ηijr = β0 + lttijrβ1 + uijr. The prior for the vector of
domain-specific random intercepts uijr is specified according to expressions (8)–(10). As for
the prior specifications not already discussed, we set β0 ∼N.0, 105/, β1 ∼N.0, 105/, b0 = 2 and
c0 =1. We chose these values as they provide a reasonable scale for the random-effects variance
in our problem.

We also consider the log-normal–log-normal model with an alternative choice for the prior
distribution on uijr:

uijr

∣∣σ2 ∼N.0,σ2/, σ2 ∼ InverseGamma .c, d/: .14/

This prior specification, which implements global shrinkage, can be considered as a bench-
mark for evaluating the effects of prior specification approximating the spike-and-slab prior that
was introduced in the previous section, and it represents a routine choice in many applications.
We set c=0:01 and d =0:01.

3.3. Markov chain Monte Carlo computational issues
Parameter estimates are obtained by summarizing the posterior distributions approximated by
the output of MCMC integration via the Gibbs sampling algorithm. By assuming a quadratic
loss, the posterior means are adopted as estimates of the area-specific parameters. Posterior
variances are used as a measure of uncertainty. To assess the convergence carefully, we ran
three parallel chains of 25000 runs each, the starting point being drawn from an overdispersed
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Small Area Estimation for Business Survey Variables 11

distribution. The convergence of the Gibbs sampler was monitored by visual inspection of the
chains’ plots and auto-correlation diagrams and by means of the potential scale reduction known
as the Gelman–Rubin statistic (Carlin and Louis (2000), chapter 5). Both models displayed fast
convergence; we discarded the first 5000 iterations from each chain. To obtain estimates, we
used the OpenBugs software package, which can be downloaded for free on the Internet and is
open source.

3.4. Comparing alternative models
To choose between competing models, we compute the deviance information criterion (DIC)
and the logarithm of the pseudo-marginal likelihood LPML (Ibrahim et al., 2001). A model is
preferred if it displays a lower DIC value. Table 3 reports the DIC results for the whole set of
small area models that were estimated. DIC values show that, in line with expectations, the log-
normality assumption at the sampling level performs better in terms of DIC with respect to the
model assuming normality. The ordering of alternative models by using LPML is consistent with
that obtained by using the DIC. The adoption of the variance gamma model for the random
intercepts uijr leads to a further reduction in DIC value with respect to the more common
specification (14).

We also compare the median reduction of the coefficient of variation of estimators with respect
to the direct ones, defined as median.CVRh

k /. CVRh
k is defined as CVRh

k = 1 − CVh
k=CVDIR

k ,
where CVh

k is the coefficient of variation calculated on the posterior of θk (k being a generic
index for the areas) under model h, whereas CVDIR

k is the coefficient of variation of the direct
estimators calculated from the randomization distribution.

The posterior predictive approach can be used to assess the fit of a model (Gelman et al., 1996).
We consider a discrepancy measure that was suggested in the context of small area estimation
by You and Rao (2002) and considered also in Fabrizi and Trivisano (2016):

disijr =P.Ŷ ijr <YÅ
ijr/

where YÅ
ijr is generated from the posterior predictive distribution. The discrepancy measure is

aimed at checking whether, for each area, the posterior predictive distribution is centred near
the direct estimate. Values of disijr far from 0 and 1 would provide evidence of systematic
underestimation or overestimation. For the log-normal model endowed with priors (10)–(12)
and a = 0:5 (i.e. the best model in terms of DIC and LPML), we have that the average of the
discrepancy measure over the set of areas is 0.499 with 0.25- and 0.75-quantiles equal 0.32 and
0.68 respectively, which means an adequate fit. Less than 10% of the areas shows disijr out of
the range (0.2, 0.8). Similar summaries can be obtained for the other models that are considered
in Table 3.

Table 3. Comparison of alternative assumptions on the
distributions of the random effects

Shrinkage Prior on random a DIC LPML Median
intercepts uijr CVR

Global (14) – 15340 −7846 0.391
Local (10)–(12) 1 15230 −7808 0.421
Local (10)–(12) 0.5 15220 −7798 0.455
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12 E. Fabrizi, M. R. Ferrante and C. Trivisano

Results on median.CVRh
k /, reported in Table 3, highlight that the whole set of small area

estimators considered considerably reduce the variability of direct estimators, which is consistent
with the availability of a strongly predictive auxiliary variable. Nonetheless, even if exploiting
the same auxiliary information, the models perform differently, as the prior specification has
a non-negligible effect. Prior specifications mimicking the spike-and-slab behaviour enable a
further gain in efficiency with respect to priors that are ordinarily used in this type of analysis.

To evaluate the improvements that are enabled by the model-based proposed predictor we can
compare the number of small areas with values of the coefficient of variation CV less than 16.6%,
between 16.6% and 33.3% and over 33.3% for the direct and the model-based predictor. These
thresholds for CV were suggested by Statistics Canada (2007) to provide quality level guidelines
for publishing small area estimates; those with a coefficient of variation that is less than 16.6% are
considered reliable for general use. Estimates with a coefficient of variation between 16.6% and
33.3% should be accompanied by a warning to users. Estimates with coefficients of variation
larger than 33.3% are deemed to be unreliable. Less than 25% of the direct estimates have
associated CV below the 33.3% threshold, whereas for the model based estimates this number
grows to 70%. Although the uncertainty around the small area estimates remains sizable and
not all estimates would be publishable, the application of the method proposed endows most
subpopulation with a publishable estimate in spite of the small sample sizes.

Fig. 2 displays the effect of alternative prior specifications on the ensemble of the random
intercepts’ posterior means E.uijr|data/ under the normal prior (14) and variance gamma priors
uijr ∼VG{0:5,

√
.2λ/, 0, 0}. On the basis of Fig. 2(a), it is clear that the variance gamma prior

leads to a more peaked distribution of estimated random intercepts, as predicted by theory. As
tail behaviour is difficult to read from density estimates, in Fig. 2(b), we plot the point posterior
expectation under the normal prior versus those obtained under the variance gamma prior.
The peak around 0 is still apparent from the inflection of the points’ cloud approximately at 0;
heavier tails under the variance gamma prior can also be appreciated: under the normal prior,
E.uijr|data/ lies within the interval .−4, 2/, whereas they do not under the variance gamma
specification.

As the purpose of small area estimators is to complement the direct estimates that are obtained
by using ordinary survey-weighted methods, robustness with respect to modelling assumptions
is a major concern. As expected, the recourse to area level model-based methods entails design
consistency. When the area-specific sample sizes are large (and occasionally they are) the small
area estimate will be close to that obtained under standard design-based methods. This offers, at
least for the larger domains, protection against model misspecifications; moreover, it automati-
cally guarantees that, in the case of large domains, model-based and design-based estimates are
automatically in agreement.

4. A simulation assessment of the frequentist properties of the proposed point
estimators

In this section we introduce a simulation exercise with the aim of investigating the frequentist
properties of point estimators (i.e. posterior means) that were introduced in Section 2 and applied
to the analysis of the SME survey in Section 3. We study bias, mean-square error and frequentist
coverage of posterior probability intervals.

The simulation is design based and we do not assume any parametric distribution when
generating the data. We create a synthetic population merging the samples of the 2007 and 2008
SME survey that was discussed in the previous section. We drop from the 2007 wave those firms
that were sampled also in the 2008 wave. We obtain a population of size N = 30451. Domains
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Fig. 2. (a) kernel densities of E.uijr jdata/ over the set of small areas under normal ( ) and variance
gamma ( ) priors and (b) E.uijr jdata/ under a normal prior versus E.uijr jdata/ under a variance gamma
prior: for variance gamma priors, aD0:5 is assumed
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14 E. Fabrizi, M. R. Ferrante and C. Trivisano

are defined by cross-classifying the population by firm size and industry sector; with respect to
the data analysis of the previous section we collapse the regions. By reducing the number of
domains we create subpopulations that are sufficiently large to be sampled by using reasonable
sampling rates. Collapsing by region has a milder effect on subpopulation skewness with respect
to firm size or industry sector. Thereby our synthetic population is divided into m=88 domains
whose sizes Nd (d = 1, : : : , m/ range from 14 to 1339 with an average of 346. The same target
parameters (total value added) and auxiliary variable (turnover) that were studied in Section 4
are considered.

We keep this synthetic population as fixed and we repeatedly draw stratified samples with
proportional allocation and a 4% sampling rate. Resulting domain-specific sample sizes nd are
adjusted so that min.nd/=3. The resulting average domain-specific sample sizes is 14.05, with
a maximum of 54. The mean sample size is very close to that of the application.

The Monte Carlo exercise is based on S =2000 repeated samples. Direct estimates and their
variances are calculated by using analytic formulae. The point estimators that we compare in
the simulation are as follows:

(a) the posterior mean associated with the Fay–Herriot model specified on the untransformed
scale, UFH (the untransformed Fay–Herriot model can be described as Ŷ d ∼N.θd , Vd/,
where Vd is the variance of the direct estimator Ŷ d , θd ∼N.β0 +β1xd ,σ2

v/ , σv ∼Unif.0, A/,
A= 1000 and βi ∼N.0, 105/, i= 0, 1; we consider model UFH as it is probably the most
‘basic’ Bayesian model that a practitioner would think of for analysing these data);

(b) the predictor that was proposed by Slud and Maiti (2006), SM;
(c) the posterior mean obtained from the log-normal model (1)–(3) endowed with the global

shrinkage prior (14) we denote the estimator as LNGS (‘log-normal with global shrink-
age’);

(d) the posterior mean that is associated with model (1)–(3) but endowed with the local
shrinkage prior described in specification (8)–(10) and a = 0:5 (we label the estimator
LNLS (‘log-normal with local shrinkage’).

In all cases we set β0 ∼N.0, 105/, β1 ∼N.0, 105/, b0 =2 and c0 =1, as in Section 3.
Denote by estds the generic estimator calculated for domain d in replication s. We compare

alternative estimators in terms of relative bias, relative root-mean-square error and frequentist
coverage of probability intervals based on the posterior distribution. Specifically we consider
the frequentist coverage defined by the α=2 and 1−α=2 quantiles’ posterior distribution of the
target parameter (with respect to the coverage probability 1−α/ and set α=0:05. Comparison
tools are defined as follows:

RABIAS= 1
m

m∑
d=1

∣∣ 1
S

S∑
s=1

estds −Yd

∣∣
Yd

,

RRMSE= 1
m

m∑
d=1

√{ 1
S

S∑
s=1

.estds −Yd/2

Y2
d

}
,

COV95= 1
m

m∑
d=1

1
S

S∑
s=1

1[Yd ∈{pθds|data.0:025/, pθds|data.0:975/}]:
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Small Area Estimation for Business Survey Variables 15

As we are interested in the frequentist coverage of Bayes estimators, COV95 is calculated only
for estimators (a), (c) and (d). The results are summarized in Table 4.

Results from Table 4 show how the posterior means based on the log-normal model with either
local or global shrinkage priors and the predictor of Slud and Maiti (2006) perform very closely
in terms of mean-square error. In terms of bias LNLS is better, but its variance is somewhat
bigger, as we can expect from a more flexible, richly parameterized model. Actually, they are
based on similar ideas and models; only the priors or the way that hyperparameters are dealt
with are different, so the results are in line with expectation. We did not expect the bias to be close
to 0: in small area estimation there is a compromise between the efficiency of a biased synthetic
predictor and the unbiasedeness of large variance direct estimators; to some extent estimators
that are associated with areas with very small area-specific sample sizes are naturally biased.

The naive Fay–Herriot model, specified on the untransformed scale, performs worse in terms
of both bias and mean-square error; the frequentist coverage of the posterior intervals is well
below the 0.95 nominal level. This relatively poor performance reflects the misspecifcation of
the model, based on the assumption of normality of the direct estimators. It also assumes a
linear relationship between direct estimators and the auxiliary variable on the original scale
of the data (instead of a linear relationship on the log-scale); we have already noted that this
assumption is not completely unrealistic, so misspecification of the sampling model can be held
responsible for the not completely satisfying results.

The two hierarchical models lead to close performances also in terms of frequentist coverage
of posterior intervals. The advantage of using local shrinkage priors can be appreciated if we
consider the performance for outlying areas, i.e. those characterized by a deviation from the
synthetic component that is much larger than most of the remaining areas. We investigate
performances separataly for the areas that are characterized by the larger (on average) model
residual. Results related to the ‘worst case’ area are presented in Table 5. We note that this
area-specific sample is nd =34, which is well above the average sample size of the simulation.

Predictors LNGS and SM are based on a similar global shrinkage idea. Results in Table 5

Table 4. Comparison of alternative predictors
based on the Monte Carlo experiment

Estimator RABIAS RRMSE COV95

UFH 0.1573 0.2026 0.708
SM 0.1263 0.1733 —
LNGS 0.1240 0.1719 0.929
LNLS 0.1113 0.1723 0.941

Table 5. Comparison of alternative predictors
for area 3, characterized by the largest model
residual

Estimator RABIAS RRMSE COV95

SM 0.4763 0.4790 —
LNGS 0.4414 0.4453 0.505
LNLS 0.0144 0.2515 0.947
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16 E. Fabrizi, M. R. Ferrante and C. Trivisano

show how the common variance parameter that is assumed for the random effects cannot
accommodate the ‘outlier’; the associated model-based estimators are severely shrunken towards
the synthetic component: this implies large bias and poor frequentist coverage of the posterior
intervals. The local shrinkage prior that is associated with LNLS is more flexible and leads to
an almost unbiased predictor and good coverage.

5. Conclusions

We introduced a Bayesian methodology that is useful for small area estimation of means and
totals of variables that are positively skewed. This type of variable is often encountered in
business surveys. We devote special attention to the specification of a prior distribution for the
random effects; our proposal, based on the idea of local shrinkage, is well suited when auxiliary
variables with strong predictive power is available, which is a feature that is often displayed in
business survey data.

The methodology proposed can be easily implemented by using widely available MCMC
software. Openbugs code, as well as formulae for the full conditional distributions that is needed
for an independent implementation of the algorithm, is available on request from the authors.

In summary, we have shown that the predictor based on a local shrinkage prior has overall
acceptable frequentist properties, comparable with the alternatives that we consider in the exer-
cise. If most of the areas are well fitted by the model assumed and only a minority are outlying,
characterized by larger model residuals, we have that, for these areas, local shrinkage priors can
lead to estimators with reduced bias and thereby more efficient.

The strategy that we propose may be applied to estimating business totals based on any
positively skewed variables: value added, turnover, labour cost and income from sales and
services as well as the components of these main aggregates. We discuss the proposed model
with reference to real survey data and, more specifically, to the estimation of the total value
added, giving consideration to the fact that the value added is the input for calculating important
economic aggregates and performance indicators. We address the subpopulations of Italian
small and medium sized manufacturing firms classified according to subnational region, industry
and firm size classes. We limit our attention to SMEs, i.e. on firms with fewer than 100 employees
because in general, as well as in Italy, larger firms are censused, and small area estimation is
therefore not needed.

This research can be extended and complemented in many directions: one important problem
that was not considered here is that of benchmarking of small area estimates to known totals
for more aggregate domains. A second aspect to address is the longitudinal extension of the
model specification to borrow strength not only from covariates but also information repeated
over time. This also makes it possible to produce estimates at different time points.

Appendix A

A.1. Proof of equation (6)
To start with we note that

θ̂
B1
d = exp{xT

dβ+γd.Ẑd −xT
dβ/+ 1

2γd δ̂d}= exp{γdẐd + .1−γd/xT
dβ+ 1

2γd δ̂d}
so

E[exp{γdẐd + .1−γd/xT
dβ+ 1

2γd δ̂d}]= exp{.1−γd/xT
dβ+ 1

2γd δ̂d}E{exp.γdẐd/}:

We note that E.Ẑd/=EM{E.Ẑd |ηd/}=EM{ηd}=xT
dβ; analogously
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V.Ẑd/=VM{E.Ẑd |ηd/}+EM{V.Ẑd |ηd/}=ψd + δ̂d :

As a consequence

E.γdẐd/=γdxT
dβ,

V.γdẐd/=γ2
d .ψd + δ̂d/=ψdγd

and

E{exp.γdẐd/}= exp
(
γdxT

dβ+ 1
2
ψdγd

)
:

This leads to

E.θ̂
B1
d /= exp

{
xT

dβ+ 1
2
γd.ψd + δ̂d/

}
= exp

{
xT

dβ+ 1
2
ψd

}

which coincides with EM.θd/.

A.2. Proof of equation (7)
We introduce some matrix notation. Let z = vec.Ẑd/ be the vector containing, Ψ = diag.ψd/ and Δ=
diag.δ̂d/ the diagonal matrices containing the variance components; let X be the matrix with rows xT

d ,
d =1, : : : , m.

Standard Bayesian analysis of normal linear mixed models leads to β|z,ψ∼ N{β̂gls, V.Ψ/} where
β̂gls = {XT.Ψ+Δ/−1X}−1XT.Ψ+Δ/−1z and V.Ψ/ = {XT.Ψ+Δ/−1X}−1. We can calculate E.η|z, Ψ/ =
Eβ|z,Ψ{E.η|z,β, Ψ/}whereη=vec.ηd/. Eβ|z,Ψ{E.η|z,β, Ψ/}=Eβ|z,Ψ.Xβ/=Xβ̂gls. Analogously V.η|z, Ψ/=
Vβ|z,ΨE.η|z,β, Ψ/ + Eβ|z,Ψ{V.η|z,β, Ψ/}. If we denote the vector of small area predictors (on the log-
scale) conditionally on β as ηB1 = E.η|z,β, Ψ/ = Γz + .I −Γ/Xβ with Γ = Ψ.Ψ+Δ/−1 we have that
V.η|z, Ψ/ = Vβ|z,ΨΓz + .I −Γ/Xβ+ Eβ|z,ΨG1 with G1 =Ψ.Ψ+Δ/−1Δ. Taking expectation with respect
to p.β|z, Ψ/ we obtain V.η|z, Ψ/= .I −Γ/XTβV.Ψ/X.I −Γ/+G1 =G2 +G1: We note that p.η|z, Ψ/ is a
multivariate normal distribution. If we consider an individual ηd we have that E.ηijr|z, Ψ/=xT

d β̂gls,

V.ηd |z, Ψ/=γd δ̂d + .1−γd/2xT
d

(
m∑

d=1

1

ψd + δ̂d

xdxT
d

)−1

xd =g1,d +g2,d :

As θd = exp.ηd/ formula (7) follows.

A.3. Proof of expression (11) and subsequent statements
From assumption (9) we have that

p.ψ|λ/=
m∏

d=1

λa

Γ.a/
ψa−1

d exp
(

−λ
m∑

d=1
ψd

)
∝λmaexp

(
−λ

m∑
d=1

ψd

)
m∏

d=1
ψa−1

d :

Conditioning on a is omitted as it is treated as a known constant; mis a short-cut notation for the overall
number of areas.

We can obtain the marginal prior p.ψ/ by using the integral p.ψ/=∫
R+ p.ψ|λ/p.λ/dλ. As λ∼Gamma

.b0, c0/ we straightforwardly obtain

p.ψ/∝Γ.ma+b0/

/(
m∑

d=1
ψd + c0

)ma+b0 m∏
d=1

ψa−1
d :

Applying the transformation τd =√
ψd on each component of ψ we obtain

p.τ /∝
(

m∑
d=1

τ 2
ijr + c0

)−.ma+b0/ m∏
d=1

τ 2a−1
d :
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For the special case a= 1
2 the density of p.τ / simplifies to p.τ /∝ .Σm

d=1τ
2
d + c0/

−.ma+b0/ or equivalently to

p.τ /∝
(

1+1=c0

m∑
d=1

τ 2
d

)−.m=2+b0/

,

τd >0, ∀ d: This expression can be recognized as the kernel of the density of a multivariate half-t-distribution
with mean vector 0 and diagonal scale matrix. A multivariate half-t distribution is a multivariate t dis-
tribution for which we apply the absolute value transformation on each component. We can then write
formula (13).

To prove that univariate priors p.τd/ we start from p.τd/=∫
: : :

∫
p.τ /dτ−d . We can represent as p.τ /

the result of applying the absolute value transformation on a multivariate t-distribution, i.e. τ =|τÅ| with
p.τÅ/=∫

p.τÅ|ξ/p.ξ/dξ where

p.τÅ|ξ/∼MVN
(

0,
2b0

c0
ξIm

)

and p.ξ/ ∼ Inverse Gamma .b0, b0/. We use the fact that a random vector distributed according to a
multivariate t-distribution can be represented as an inverse gamma mixture of a multivariate normal
distribution.

As the variance covariance matrix of τÅ is diagonal p.τÅ/=∫
Πm

d=1p.τÅ
d |ξ/p.ξ/dξ.

Horrace (2005) studied truncated multivariate normal distributions and showed that univariate marginal
distributions from a multivariate half-normal distribution (obtained applying the absolute value transfor-
mation on each component) are univariate half-normal distributions if and only the variance–covariance
matrix of the parent multivariate normal distribution is diagonal. As a consequence

p.τd/=
∫

: : :

∫ {∫
m∏

d=1
p.τd |ξ/p.ξ/dξ

}
dτ−d

where each p.τd |ξ/ is distributed as a half-normal distribution.
If we change the order of integration and use conditional independence of p.τd |ξ/ we obtain that p.τd/

are marginally half-t distributed.
To prove that τd are linearly independent of each other we write

V.τ /=Eξ{V.τ |ξ/}+Vξ{E.τ |ξ/}
and note that E.τ |ξ/=0 whereas

Eξ{V.τ |ξ/}=E.ξ/
2b0

c0
Im,

which is of course diagonal.
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