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Introduction

In Section S1 we provide the completeness magnitude and b-value estimations for the catalog under study, together with

the conversion of local magnitudes into moment magnitudes. In Section S2 we derive the lower and upper bounds for the

moment released by the seismic swarm under the assumption that also non detected earthquakes follow the Gutenberg-Richter

law. In Section S3 we describe the steps to obtain the GPS position time series. In Section S4 we give an overview of the

variational bayesian Independent Component Analysis (vbICA) methodology adopted in this work to decompose the GPS

position time series. In Section S5 we present the results of the inversion performed on the fourth Independent Component

(IC4) derived from the vbICA decomposition. In Section S6 we furnish an estimation of the range for the aseismic moment

needed to explain the observed geodetic transient signal. The Figures S1 to S6 conclude this file.

S1. MC and b-value

The frequency-magnitude distribution of earthquakes is shown in Figure S1a. From the Gutenberg-Richter (GR) law we

estimate the time-dependent completeness magnitude MC for the overall catalog by applying the Goodness of Fit (GFT) and

the Magnitude and B-value Stability (MBS) methods (Woessner and Wiemer, 2005), both based on the maximum likelihood
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estimation of the b-value. To balance the temporal evolution of seismicity with the number of events, we apply the GFT and

MBS methods in overlapping time windows of one month, daily updated. The results are shown in Figure S1b.

The conversion from ML to Mw is given by equation (11) of Munafó et al. (2016), that we report here:

Mw =
2

3
ML + 1.15 (S1)

and the inverse of it is:

ML =
3

2
(Mw − 1.15) (S2)

The b-value has been obtained from the GR law adopting the local magnitudes ML. If we use the moment magnitudes

Mw instead we obtain:

LogN = aL − bLML = aL − bL
3

2
(Mw − 1.15) = aL − 1.15

3

2
bL −

3

2
bLMw = aw − bwMw (S3)

where we find that the GR law is still valid but the b-value is now bw = 3
2bL. We are neglecting the uncertainties in the

relation that converts ML into Mw, so the uncertainty on bw is just 3
2 of the uncertainty on bL. Since the GR law is still

valid also when using Mw after the conversion from ML, we can convert the completeness magnitude MC into Mw C just

using equation S1.

S2. Seismic moment lower and upper bounds

Let us consider the earthquakes in the space and time windows where geodetic and seismic data overlap, i.e. ∼ 30 km

from the barycenter of clustered seismicity and from 2012.0 to 2015.7566. In this Section we want to estimate lower and

upper bounds for the seismic moment released during the seismic swarm.

A lower bound can be obtained ignoring the contribution of small earthquakes (Mw < Mw C) and considering only the

clustered events with Mw ≥Mw C . This quantity is easy to be calculated, and it is Mmin
0 seismic = [0.80± 0.23]× 1016 Nm, i.e.

Mmin
w = 4.53 ± 0.08. The uncertainty on the cumulative seismic moment is calculated summing linearly the uncertainties

on the moment of every single earthquake, that corresponds to an upper bound for the final uncertainty. From now on, all

the uncertainties are estimated following the approach described in Taylor (1982), where calculations are carried retaining

all available digits, and only the presented results are rounded to the significant figures.

An upper bound for the seismic moment associated with the swarm activity (Mmax
0 seismic) can be calculated summing: 1)

M0 seismic for clustered events having Mw ≥ Mw C (i.e., Mmin
0 seismic), 2) the upper limit of the seismic moment for small

earthquakes under the hypothesis that the GR relation holds with the same b-value also for Mw < Mw C (e.g., Gualandi

et al., 2016b).

1) The seismic moment released by clustered earthquakes with Mw ≥ Mw C is the lower bound mentioned above:

Mmin
0 seismic = [0.80± 0.23]× 1016 Nm.
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2) If we have N1 earthquakes with magnitude larger or equal to Mw 1, and N2 > N1 earthquakes with magnitude larger or

equal to Mw 2 < Mw 1, we can express an overestimation of the seismic moment produced by the earthquakes with magnitude

in the range Mw 2 ≤Mw ≤Mw 1 using equation (B6) of Gualandi et al. (2016b):

ν1,2 = M0∗N
3

2bw
∗

2bw
2bw − 3

N
2bw−3
2bw

∣∣∣∣N2

N1

(S4)

where we select for M0∗ = M0 C = 2.69× 1011 Nm, i.e. the moment associated with an earthquake of magnitude Mw C , and

N∗ is the number of earthquakes in the catalog with Mw ≥Mw C .

To evaluate the upper bound to the moment released by earthquakes with Mw < Mw C means to take N1 = N∗ and

N2 →∞:

ν1,2 = M0∗N
3

2bw
∗

2bw
2bw − 3

(N
2bw−3
2bw

2 −N
2bw−3
2bw

1 ) (S5)

We see that for bw ≥ 1.5, ν1,2 diverges. In our case bw = 1.440 ± 0.015 < 1.5, and the integral S4 is well behaved. The

term with N2 tends towards 0, and we have:

ν1,2 = −M0∗N
3

2bw
∗

2bw
2bw − 3

N
2bw−3
2bw

∗ = − 2bw
2bw − 3

M0∗N∗ (S6)

For the clustered events we have N∗ = 3696. Plugging M0 ∗ and N∗ values into equation S6, and using the bw-value from

Section S1, we obtain ν1,2 = [0.64 ± 0.17] × 1016 Nm. The uncertainty has been obtained propagating only the uncertainty

on bw:

δν1,2 =

∣∣∣∣∂ν1,2∂bw

∣∣∣∣δbw =

∣∣∣∣− 6

(2bw − 3)2
M0 ∗N∗

∣∣∣∣δbw =
6

(2bw − 3)2
M0 ∗N∗δbw (S7)

If we sum this upper bound to the moment calculated for the clustered earthquakes with Mw ≥Mw C we obtain:

Mmax
0 seismic = ν1,2 +Mmin

0 seismic = [0.64± 0.17]× 1016 Nm + [0.80± 0.23]× 1016 Nm = [1.44± 0.29]× 1016 Nm (S8)

where the uncertainty is the square root of the sum of the squares of the uncertainties. This value is the same reported in

Section 3.1.

S3. Derivation of GPS position time series

The position time-series have been obtained adopting a three-step procedure approach, as in Serpelloni et al. (2006), that

includes 1) raw phase data reduction, 2) combination of loosely-constrained solutions and reference frame definition, and 3)

estimation of long-term linear trend and Common Mode Error (CME).
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The raw GPS observables have been analyzed using the 10.6 version of the GAMIT/GLOBK package (Herring et al., 2015)

adopting standards defined in the framework of the IGS “Repro2 campaign” (http://acc.igs.org/reprocess2.html). The

GAMIT software is used to estimate station positions, atmospheric delays, satellite orbits, and Earth orientation parameters

from ionosphere-free linear combination GPS phase observables using double differencing techniques to eliminate phase biases

caused by drifts in the satellite and receiver clock oscillators. GPS pseudo-range observables are used to constrain clock timing

offsets and to improve automated editing of the phase data, assisting in the resolution of integer phase ambiguities. GPS

phase data are weighted according to an elevation-angle-dependent error model (Herring et al., 2015) using an iterative

analysis procedure whereby the elevation dependence is determined from the observed scatter of phase residuals.

In this analysis the satellites orbit parameters are fixed to the IGS final products. We use the IGS absolute antenna

phase center model for both satellite and ground-based antennas, which improves the accuracy of estimates for the vertical

components of site position by mitigating reference frame scale and atmospheric mapping function errors (e.g., Schmid et al.,

2005, 2007). While the first-order ionospheric delay is eliminated by the ionosphere-free linear combination, the second-order

ionospheric corrections are applied based on the formulation of Petrie et al. (2010), using IONEX files from the Center

for Orbit Determination in Europe (CODE). The tropospheric delay is modeled as piecewise linear model and estimated

using the Vienna Mapping Function 1 (VMF1; Boehm et al., 2006) mapping function with a 10◦ cutoff. We use the Global

Pressure and Temperature 2 (GPT2; Lagler et al., 2013) model to provide a priori hydrostatic delays. The pole tide was also

corrected in GAMIT by IERS standards. The Earth Orientation Parameters (EOP) are tightly constrained to priori values

obtained from IERS Bulletin B. Non-tidal atmospheric loading and ocean tidal loading are corrected using MIT filtered

atmospheric displacements files (available at ftp://everest.mit.edu/pub/GRIDS) and the FES2004 (Lyard et al., 2006)

model, respectively. The International Earth Rotation Service (IERS) 2003 model for diurnal and semi-diurnal solid Earth

tides was set. Because of the large number of stations included in our Euro-Mediterranean GPS processing (∼ 3000), this

step is performed for several sub-networks, each made by < 50 stations, with each sub-network sharing a set of high-quality

IGS stations, which are used as tie-stations in the combination step.

In the second step we use the ST FILTER program of the QOCA software (http://qoca.jpl.nasa.gov), which adopts

a Kalman filter estimation algorithm (Dong et al., 1998, 2002), to combine all the daily loosely constrained solutions with

the global solution of the IGS network made available by MIT (http://sopac.ucsd.edu), and simultaneously realize a

global reference frame by applying generalized constraints (Dong et al., 1998). Specifically, we define the reference frame

by minimizing the velocities of the IGS core stations (http://igscb.jpl.nasa.gov), while estimating a seven-parameter

transformation with respect to the GPS realization of the ITRF2008 frame (Altamimi et al., 2011), i.e., the IGb08 reference

frame. In the third step we analyze the position time series in order to estimate and correct offsets due to stations equipment

changes, while simultaneously estimating annual and semi-annual periodic signals and a linear velocity term. In this analysis

we retain only data from GPS stations with an observation period longer than 2.5 years, as shorter intervals may result in

biased estimates of linear velocities (Blewitt and Lavallée, 2002). The model derived from the combination of these signals is

then subtracted from the position time series in order to get the residual positions. The residual time-series are then used to

4



estimate the Common Mode Error (CME) performing a Principal Component Analysis (PCA), as described in Dong et al.

(2006). The PCA is performed at a continental-scale, over the same area used by Serpelloni et al. (2013), and the first two

PCs are here considered as CME. This prevents the removal of the eventual more localized signals of geophysical interests

recorded by the GPS stations in the study region, since the PCA detects the signals common to a much larger region. As

a result, after removing the CME, the typical repeatability in our analysis is ∼ 1 mm for the horizontal components, and

∼ 3 mm for the vertical component, with a 30% gain in the daily repeatability and a significant improvement of the signal

to noise ratio. After the spatial filtering, the estimated seasonal motions are added back to the filtered time-series, obtaining

position time series with a reduced scatter around the adopted model.

The position time series of the 15 cGPS stations used to study the transient signal are available in the files

* GPS.resi.cgps atf raw det nooff.flt.wrmsx3.100km.umbe. The columns are organized as follows:

1. Epoch (decimal yr)

2. East position (mm)

3. North position (mm)

4. Uncertainty in the East position (mm)

5. Uncertainty in the North position (mm)

6. Correlation between East and North position (mm)

7. Up position (mm)

8. Uncertainty in the up position (mm)

9. Correlation between East and up position (mm)

10. Correlation between North and up position (mm)

11. Site name

12. Longitude (decimal degrees)

13. Latitude (decimal degrees)

S4. Decomposition technique

The GPS position time series linear decomposition is performed following the variational Bayesian ICA (vbICA) approach.

Differently from more standard ICA techniques, like FastICA (Hyvärinen and Oja, 1997), that are based on the so-called

mapping approach, the vbICA relies on the so-called modelling approach. In both cases a cost function is built, and since

the actual sources are unknown some approximations are introduced. The mapping approach approximations are usually

based on the definition of mutual information or negentropy (e.g., Comon, 1994; Hyvärinen and Oja, 2000). The modelling

approach instead creates a generative model, and looks for the model parameters that allow the data to be better explained

while maintaining the sources as much statistically independent as possible. The cost function is based on the likelihood or,

in a Bayesian framework, the posterior probability density function of the parameters. The modelling approach allows for
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more flexibility (i.e., a better representation of the original sources) and to take into account missing data in a consistent

manner. Since in GPS measurements we often have gaps in the recording, we adopt a modified version of the multivariate

statistical tool proposed by Choudrey and Roberts (2003), where the missing data are considered following the approach of

Chan et al. (2003).

For every source we use a mix of four Gaussian distributions. The a priori hyperparameters that optimize the Negative

Free Energy (NFE) associated with the generative model are reported in Table S3. The number of ICs retained is derived

from an Automatic Relevance Determination (ARD) criterion and the study of the NFE. We adopt the same notation used in

Gualandi et al. (2016a), where the temporal evolution of the Independent Components (ICs) is indicated by the columns of

the matrix V , while the spatial distribution is associated with the corresponding columns of the matrix U . These two matrices

have unit norm columns but, differently from a PCA, they have not orthogonal columns. A simple linear recombination of

U and V T , with weighting factors expressed by the values of the diagonal matrix S, allows us to reconstruct the observed

displacements at the surface X:

X ' USV T (S9)

where the approximation is due to the hypothesis that only few ICs are necessary to explain satisfactorily the geodetic

observations, excluding eventual noise from the reconstruction. For further details on the vbICA algorithm we refer to

Gualandi et al. (2016a) and references therein.

S5. Inversion

In order to evaluate which structures are necessary to explain the data, we first run an inversion using 4 × 4, 2 × 2,

and 2 × 2 patches along the strike and dip directions for the ATF, synthetic, and antithetic faults, respectively, and fixing

the rake to be −90◦. The number of parameters to be estimated is thus equal to the number of patches P on which we

retrieve the IC of slip (Table S5, column 3). Being the number of parameters (P = 16 + 4 + 4 = 24) less than the number

of inverted data (3 × NGPS = 45) we can find the least square solution to the problem. We weight the solution using the

nominal uncertainties σUIC4
derived from the vbICA analysis on UIC4 . For every geometry configuration we estimate the

misfit to the data (χ2, Table S5, column 2). We perform an F -test for every possible couple of nested models in order to

verify if more complex models are justified by the data or not (Table S6). The null hypothesis is that the unrestricted model

(model 2) does not provide a significantly better fit than the restricted model (model 1). We reject the null hypothesis if

Fcalculated ≥ Ftheoric. The results indicate that, at a significance level of 0.05, the model that uses both the synthetic and

antithetic faults is significantly better then the models that use the synthetic or antithetic fault alone. Instead, at the same

significance level, we have to reject the hypothesis that including the ATF is significantly improving the fit to the data with

respect to the geometry that includes the synthetic and antithetic faults. We conclude that, even if the model with all the

fault structures is the one with the lowest misfit, the displacement signal related to the inverted IC can be explained by slip

on the synthetic and antithetic faults alone (Figure S4b), i.e. by deformation taking place in the ATF hanging wall.
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S6. M0 aseismic bounds

Using the upper bound Mmax
0 seismic = [1.44 ± 0.29] × 1016 Nm (Section S2), we obtain that the moment associated with

aseismic deformation has the following lower bound:

γM0 seismic = M0 aseismic ≥Mmin
0 aseismic = M0 geodetic −Mmax

0 seismic =

= [2.45± 0.22]× 1016 Nm− [1.44± 0.29]× 1016 Nm =

= [1.0± 0.4]× 1016 Nm = [70± 29]%Mmax
0 seismic = γminMmax

0 seismic (S10)

If we consider only the clustered seismicity having Mw ≥Mw C we obtain the upper bound:

γM0 seismic = M0 aseismic ≤Mmax
0 aseismic = M0 geodetic −Mmin

0 seismic =

= [2.45± 0.22]× 1016 Nm− [0.80± 0.23]× 1016 Nm =

= [1.6± 0.3]× 1016 Nm = [200± 70]%Mmin
0 seismic = γmaxMmin

0 seismic (S11)

where 2.45− 0.80 is rounded to 1.6 because the calculations are carried retaining all available digits (2.4463...− 0.80397...),

and only the presented results are rounded to the significant figures, as in Taylor (1982).
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Figure S1: a): Squares: GR plot for the seismic catalog described in Section 3.1. Triangles: Number of earthquakes for every 0.1 binned magnitude.
b): Time-dependent completeness magnitude MC . Horizontal lines: average MC , equal to 0.5 and 0.6 for the GFT and MBS methods, respectively.
These MC values represent an underestimation in the first hours after the occurrence of the relatively strongest events but for the vast majority of
the analyzed time window they are more than conservatives. The related b-values are [0.95 ± 0.01] and [0.96 ± 0.01]. The two methods essentially
give consistent results for most of the time intervals. To be conservative, in the calculations presented in the main text we used MC = 0.6 and the
corresponding bL = [0.96 ± 0.01].
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(Section 4). Yellow dashed lines: Top edge of the fault planes. Blue star: Largest event in the seismic catalog.
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Figure S3: Power Sepctral Density (PSD) of the temporal functions V . For the first three ICs peaks at 1 and 2 1/yr are observed.
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Figure S4: a: Black: Total (seismic + aseismic) cumulative moment released as derived from the slip model of panel b assuming a rigidity
modulus of 30 GPa. The zero is set to the median of the first year of data. Red: low-pass zero-phase filter of total cumulative moment obtained
with a moving window of 90 days. Green: cumulative seismic moment for clustered events with Mw ≥ Mw C . b: Color palette: Cumulative slip
of the model derived on large patches imposing a fixed rake of −90◦. Fault boxes as in Figure 3. Black dashed lines: Faults’ depth. Green arrows:
rake direction for patches with slip > 30% of maximum slip. Red vectors/outer circles: horizontal/vertical cumulative displacement associated
with IC4. Blue vectors/inner circles: horizontal/vertical cumulative displacement associated with slip model.
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Figure S5: L-curve plot. On the x-axis the L2 norm of the model L obtained from the inversion of the linear system UIC4 = GL, where G is
the matrix containing the Greens’ functions; on the y-axis the L2 norm of the misfit between the spatial distribution of the inverted IC and the
predicted value from the model. Both quantities are non-dimensional. Color scale: Different results changing the smoothing parameter λ, ranging
from 0.1 km to 15 km. Red triangle: Selected value for the best model, corresponding to λ = 1 km. All calculations have been performed with an
assumed standard deviation on the a priori model parameters σ0 = 0.2 m.

14



12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

a) b) c)

d) e) f)

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

10 km

12.2˚ 12.4˚ 12.6˚ 12.8˚

43.2˚

43.4˚

43.6˚

1 mm data

−1 0 1

mm
1 mm model

0 5 10 15

slip (mm)

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

5.0 km
0.0 km

1.7 km

3.3 km

0.
0 

km

1.
7 

km

3.
3 

km

Figure S6: As Figure 4c, but for different inversion parameters. a: Fixed rake solution with σ0 = 0.2 m and λ as smoothing parameter. b: Variable
rake solution with σ0 = 0.2 m and λ as smoothing parameter. c: Variable rake and positivity constraint solution with σ0 = 0.2 m and λ as
smoothing parameter. Equivalent to Figure 4c. d: Fixed rake solution with λ = 2 km and σ0 as smoothing parameter. e: Variable rake solution
with λ = 2 km and σ0 as smoothing parameter. f: Variable rake and positivity constraint solution with λ = 2 km and σ0 as smoothing parameter.
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Figure S7: Red lines: Moment associated with the six models shown in Figure S6. Green: Seismic moment as in Figure 4b.
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