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Existence and stability for a visco-plastic
material with
a fractional constitutive equation

M. Fabrizio⇤, B. Lazzari, R. Nibbi

The well posedness of the evolutive problem for visco-plastic materials represented by two di↵erent fractional constitutive
equations is proved. We show that, for these materials, we can observe permanent deformations. So that, as it is usual
in plasticity, when the stress goes to zero, then the strain assumes a constant non zero behavior. Moreover, we prove the
compatibility of our models with the classical laws of thermodynamics. For the second model, described through a fractional
derivative with an exponential kernel, we obtain the exponential decay of the solutions by means of the semigroup theory.
Copyright c� 2009 John Wiley & Sons, Ltd.

Keywords: Visco-plasticity; fractional derivative; asymptotic behavior; stability.

1. Introduction

In this paper, we study the existence, uniqueness and asymptotic behavior of a visco-plastic material described by a constitutive
equation with memory, which makes use of the fractional Caputo derivative CaD

↵
t [1, 2]. In this framework, the material is

described by the constitutive equation

�(x, t) = A(x) CaD
↵
t "(x, t) =

A(x)

�(1� ↵)

Z t

a

@
@⌧ "(x, ⌧)

(t � ⌧)↵
d⌧ , (1.1)

where � denotes the stress, " = 1
2

⇥
ru+ (ru)T

⇤
= sym{ru} the infinitesimal strain tensor, while � is the gamma function, A

a suitable symmetric and positive definite tensor and a  0. Finally, ↵ is a scalar parameter, which defines the degree of the
Caputo fractional derivative.
The results presented in this paper hold for ↵ 2 (0, 1); however, we observe that the constitutive equation (1.1) describes

plastic solid materials if ↵ 2 (0, 12 ). The plastic behavior of this model is evident when we work with strain processes defined by

"(x, t) = "0(x) 6= 0 , t > t0 > 0 .

Indeed, for these processes, from (1.1), we have

lim
t!1
�(x, t) = lim

t!1

A(x)

�(1� ↵)

Z t

a

@
@⌧ "

0(x, ⌧)

(t � ⌧)↵
d⌧ = 0 ,

describing a visco-plastic behavior of the material, because the stress goes to zero, even if the deformation remains constant
and di↵erent from zero.
This analysis suggests that the study of an equation with memory of the type (1.1) needs a certainly di↵erent approach from

that followed for viscoelastic materials with fading memory [13, 14], as fatigue phenomena [3, 11].
So that, it is suitable to observe that, for visco-plastic solid materials with a constitutive equation (1.1), with 0 < ↵ << 1

2 ,
the natural unknown is not the displacement u, but its fractional derivative, because the permanent deformations, due to the
visco-plastic nature of the material, involve di↵erent asymptotic behaviors for u towards the zero solution.
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This new position requires a di↵erent formulation of the initial value problem as presented in Section 2.
In the second part of the work, we propose a di↵erent constitutive equation which makes use of a new definition of fractional

derivative presenting an exponential memory kernel (see [5]). In this model the plastic e↵ects are faster to stabilize, compared
with constitutive equation (1.1), because the memory e↵ects are less evident.
Finally, for this model, following [9], we prove the exponential decay of the solutions.

2. Free energy and Dissipation Law

In this paper, we prefer to use a di↵erent formulation of the Caputo fractional derivative.
Let f be a function belonging to a suitable subset of the bounded continuous functions on (a,1) with f (a) = 0 and consider

its Caputo fractional derivative:

C
aD

(↵)
t f (t) =

1

�(1� ↵)

Z t

a

d
d⌧ f (⌧)

(t � ⌧)↵
d⌧ (2.1)

If f is Hölder continuous with exponent � > ↵, an integration by parts of (2.1) leads to

C
aD

(↵)
t f (t) =

1

�(1� ↵)


f (t)

(t � a)↵
+ ↵

Z t

a

f (t)� f (⌧)

(t � ⌧)1+↵
d⌧

�
, t > a. (2.2)

By observing that
1

(t � a)↵
=

Z a

�1

↵

(t � ⌧)1+↵
d⌧ ,

and extending the function f to R as follows

af (⌧) =

(
f (⌧) , ⌧ � a

0 , �1 < ⌧ < a
,

the operator (2.1) can be rewritten in the following way

C
aD

(↵)
t f (t) =

↵

�(1� ↵)

Z t

�1

f (t)� af (⌧)

(t � ⌧)1+↵
d⌧ t > 0 . (2.3)

In the sequel, we restrict " to a set of su�ciently smooth functions and consider the following formulation for the constitutive
equation (1.1)

�(x, t) =
↵A(x)

�(1� ↵)

Z t

�1

"(x, t)� a"(x, ⌧)

(t � ⌧)1+↵
d⌧

=
↵A(x)

�(1� ↵)

Z 1

0

"(x, t)� a"
t(x, s)

s1+↵
ds , t > 0 .

(2.4)

In this model, the state in a point x of the body at the time t is given by

a&
t(x, ·) = "(x, t)� a"

t(x, ·) ,

where a"
t(·, s) = a"(·, t � s) is the extended history of the strain tensor.

Since it is well known the strict connection between the thermodynamic restrictions and stability conditions for the evolutive
problem, in this section we study the expression of the free energy and the related Dissipation Law.

Dissipation Law There exists a state function  , called free energy, such that

⇢0(x)
@

@t
 
�
a&
t(x, ·)

�
 �(x, t) ·

@

@t
"(x, t) . (2.5)

for any mechanical process.
Taking into account the stress constitutive equation (2.4), (2.5) becomes

⇢0(x)
@

@t
 
�
a&
t(x, ·)

�


↵A(x)

�(1� ↵)

Z 1

0

a&
t(x, s)

s1+↵
ds ·

@

@t
"(x, t) (2.6)

and, as proved in [8], we can define the following free energy functional

⇢0(x) 
�
a&
t(x, ·)

�
=

↵

2�(1� ↵)

Z 1

0

A(x)a&
t(x, s) · a&

t(x, s)

s1+↵
ds (2.7)

2 Copyright c� 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–8
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which leads to the dissipation

D(x, t) =
↵(1 + ↵)

2�(1� ↵)

Z 1

0

A(x)a&
t(x, s) · a&

t(x, s)

s2+↵
ds � 0 . (2.8)

In fact, we can prove that

⇢0(x)
@

@t
 
�
a&
t(x, ·)

�
=

↵A(x)

�(1� ↵)

Z 1

0

a&
t(x, s)

s1+↵
ds ·

@

@t
"(x, t)�

↵(1 + ↵)

2�(1� ↵)

Z 1

0

A(x)a&
t(x, s) · a&

t(x, s)

s2+↵
ds (2.9)

and we get (2.6) thanks to (2.8).
Finally, from the symmetry of the tensor A(x), the free energy assumes the new form

⇢0(x) 
�
a&
t(x, ·)

�
=

↵

2�(1� ↵)

Z 1

0

A(x)
⇥
ru(x, t)�rau

t(x, s)
⇤
·
⇥
ru(x, t)�rau

t(x, s)
⇤

s1+↵
ds .

3. Di↵erential problem via Caputo fractional model

Let ⌦ be a bounded domain in R3 with a smooth boundary. We consider the classical momentum balance di↵erential equation

⇢0(x)
@
2

@t2
u(x, t) = r · �(x, t) + ⇢0(x)b(x, t) (3.1)

where ⇢0 denotes the density, u the displacement vector and b the external supply.
Now, we connect equation (3.1) with the constitutive equation (2.4), the homogeneous boundary condition

u(x, t)|@⌦ = 0 (3.2)

and the initial conditions

u(x, 0) = u0(x) ,
@

@t
u(x, 0) = v0(x) , ru

t=0(x, s) = ru0(x, s) , a < s < 0 , (3.3)

where rut=0 denotes the past history of ru in t = 0.
Without loss in generality, we can limit ourselves to study a problem with homogeneous initial conditions and initially null

external sources. To this aim let us introduce an auxiliary smooth function z with the following properties:

z|@⌦(x, t) = 0 , z(x, 0) = u0(x) ,
@

@t
z(x, 0) = v0(x) ,

@
2

@t2
z(x, 0) = b(x, 0) +

↵

⇢0(x)�(1� ↵)
r ·

Z 0

a

A(x)ru0(x, s)

s(1+↵)
ds ,

z(x, t) = 0 for t � t0 .

The function eu = u� z it is solution of the problem

⇢0(x)
@
2

@t2
eu(x, t) = ↵

�(1� ↵)
r ·

Z 1

0

A(x)r
⇥
eu(x, t)�0 eut(x, s)

⇤

s1+↵
ds + ⇢0(x)f(x, t)

eu(x, 0) = 0 , @

@t
eu(x, 0) = 0 , eu(x, t)|@⌦ = 0 .

(3.4)

where

⇢0(x)f(x, t) =⇢0(x)b(x, t) +
↵

�(1� ↵)
r ·

Z 0

a

A(x)ru0(x, s)

(t � s)(1+↵)
ds

� ⇢0(x)
@
2

@t2
z(x, t)

↵

�(1� ↵)
r ·

Z t

0

A(x)r [z(x, t)� z(x, ⌧)]

(t � ⌧)1+↵
d⌧

and f(x, 0) = 0.
Moreover, thanks to the properties of z, eu(x, t) = u(x, t) for t � t0. Therefore, in what follows, we restrict our attention to

problem (3.4).
As observed in the Introduction, for this problem permanent deformations are evident. Indeed, in presence of a source f with

limt!1 f(x, t) = 0 it is possible to find a function u, solution of problem (3.4) such that

sym{reu1(x)} = lim
t!1

sym{reu(x, t)} = lim
t!1

sym{ru(x, t)} = sym{ru1(x)} 6= 0 .

Math. Meth. Appl. Sci. 2009, 00 1–8 Copyright c� 2009 John Wiley & Sons, Ltd. 3
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Incidentally, we observe that sym{reu1} coincides with sym{ru1} of the original problem (3.1)–(3.2) and denotes the visco-
plastic deformation depending on the initial conditions and the supply process b.
For this reason, it appears reasonable for materials described by equation (1.1), to state the problem using as unknown the

function

w(x, t) =
↵

�(1� ↵)

Z 1

0

eu(x, t)�0 eut(x, s)
s1+↵

ds := eu(↵)(x, t) .

So, by observing that the null initial conditions assure that

@

@t
eu = w(1�↵) ,

system (3.4) can be rewritten as follows

⇢0(x)
@

@t

h
w(1�↵)(x, t)

i
= r · [A(x)rw(x, t)] + ⇢0(x)f(x, t)

w(x, 0) = 0 , w(1�↵)(x, 0) = 0

w(x, t)|@⌦ = 0

(3.5)

From now on, for simplicity, we suppose ⇢0(x) = 1 and denote with H
↵
0 (R+) the space

H
↵
0 (R+) = {f 2 L2(R+); C0D

↵

t f 2 L
2(R+), f (0) = 0} .

Definition 3.1 A function w 2 H1�↵0 (R+;L2(⌦)) \ L2(R+;H10(⌦)) is a weak solution to problem (3.5) if it satisfies the integral
equality

Z 1

0

Z

⌦


w(1�↵)(x, t) ·

@

@t
�(x, t))� A(x)rw(x, t) ·r�(x, t)

�
dx dt

= �

Z 1

0

Z

⌦

f(x, t) · �(x, t)dx dt

(3.6)

for all � 2 H10(R+;L2(⌦)) \ L2(R+;H10(⌦)).

Let us consider the causal Fourier transform of equation (3.5). For ! > 0, we obtain

(i!)2�↵ŵ(x,!) = r · [A(x)rŵ(x,!)] + f̂(x,!)

ŵ(x,!)|@⌦ = 0
(3.7)

We multiply both sides of (3.7) by
⇥
(i!)1�↵ŵ(x,!)

⇤⇤
, where the symbol ⇤ denotes the complex conjugate, and integrate over

the domain ⌦.
Since

⇥
(i!)1�↵

⇤⇤
= (cos

(1� ↵)⇡

2
� i sin

(1� ↵)⇡

2
)!1�↵ ,

after using the boundary condition, we get

i!

Z

⌦

���(i!)(1�↵)ŵ(x,!)
���
2

dx +

Z

⌦


cos
(1� ↵)⇡

2
� i sin

(1� ↵)⇡

2

�
!
1�↵A(x)rŵ(x,!) ·rŵ⇤(x,!)dx

=

Z

⌦

⇥
(i!)1�↵

⇤⇤
f̂(x,!) · ŵ⇤(x,!)dx .

(3.8)

The real and imaginary components of (3.8) provide

!
1�↵ cos

(1� ↵)⇡

2
kŵ(!)k2A = <

Z

⌦

⇥
(i!)1�↵

⇤⇤
f̂(x,!) · ŵ⇤(x,!)dx

�
(3.9)

!k(i!)1�↵ŵ(!)k2 � sin
(1� ↵)⇡

2
!
1�↵
kŵ(!)k2A = =

Z

⌦

⇥
(i!)1�↵

⇤⇤
f̂(x,!) · ŵ⇤(x,!)dx

�
, (3.10)

where

kŵ(!)k2A =

Z

⌦

Arŵ(x,!) ·rŵ⇤(x,!)dx

is equivalent to the usual norm in H10(⌦).

4 Copyright c� 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–8
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Then, from (3.9) we have

cos
(1� ↵)⇡

2
kŵ(!)k2A 

Z

⌦

��̂f(x,!)
�� |ŵ⇤(x,!)| dx

�

and the Poincaré inequality leads to

cos
(1� ↵)⇡

2
kŵ(!)kA  C1kf̂(!)k , cos

(1� ↵)⇡

2
kŵ(!)k  C2kf̂(!)k (3.11)

with C1 and C2 positive constants depending on the domain ⌦.
By using the Plancherel theorem we can reach the following result:

Theorem 3.2 If f 2 H1�↵0 (R+;L2(⌦)) then problem (3.5) admits one and only one weak solution.

Proof. If f 2 H1�↵0 (R+;L2(⌦)) then kf̂(!)k and k!(1�↵) f̂(!)k belong to L2(R). Since cos (1�↵)⇡2 6= 0, inequalities (3.11) assure

that kŵ(!)kA 2 L
2(R+) and k!(1�↵)ŵ(!)k 2 L2(R+).

From the Plancherel theorem it follows that w 2 H1�↵0 (R+;L2(⌦)) \ L2(R+;H10(⌦)). 2

4. A new fractional model for a visco-plastic material

In this section, we consider a new type of fractional derivative operator proposed in [4]

aD
(↵)
t f (t) =

1

1� ↵

Z t

a

e
� ↵(t�⌧)1�↵

d

d⌧
f (⌧) d⌧ (4.1)

where a 2 [�1, 0], ↵ 2 [0, 1], the function f belongs to a subset of C(a,1) with f (a) = 0.
It is possible to prove that, when ↵ = 1, this fractional derivative coincides with the classical first derivative, whereas it is the

identity operator if ↵ = 0.
We shall now proceed as in Section 2. Observing that

1

1� ↵
=

Z t

�1
e
� ↵(t�⌧)1�↵ d⌧ ,

after an integration by parts the operator (4.1) can be rewritten as follows

aD
(↵)
t f (t) =

↵

(1� ↵)2

Z t

�1
e
� ↵(t�⌧)1�↵ [f (t)� af (⌧)] d⌧ , t > a . (4.2)

We now consider visco-plastic materials where the stress � is related to this new fractional derivative of the infinitesimal
strain through the constitutive equation

�(x, t) =
1

1� ↵
A(x)

Z t

�1
e
� ↵(t�⌧)1�↵

@

@⌧
"(x, ⌧)d⌧

=
↵

(1� ↵)2
A(x)

Z 1

0

e
� ↵(t�⌧)1�↵ ["(x, t)� a"(x, t � s)] ds

(4.3)

with A symmetric and positive definite tensor.
Also for this model, the state in a point x of the body at the time t is given by a&

t(x, ·) = "(x, t)� a"
t(x, ·).

To test the compatibility of the constitutive equation (4.3) with the Dissipation Principle, we introduce the functional  ,
depending on a&

t , as follows

⇢0(x) (a&
t(x, ·)) =

↵

2(1� ↵)2

Z 1

0

e
� ↵(t�⌧)1�↵ A(x)a&

t(x, s) · a&
t(x, s)ds (4.4)

and prove that  is a free energy functional which satisfies the inequality (2.5). Observing that

@

@t
a&
t(x, s) =

@

@t
"(x, t) +

@

@s
a"
t(x, s) ,

Math. Meth. Appl. Sci. 2009, 00 1–8 Copyright c� 2009 John Wiley & Sons, Ltd. 5
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the time derivative of (4.4) is

⇢0(x)
@

@t
 (a&

t(x, ·)) =
↵

(1� ↵)2

Z 1

0

e
� ↵(t�⌧)1�↵ A(x)a&

t(x, s)ds ·
@

@t
("(x, t)

+
↵

(1� ↵)2

Z 1

0

e
� ↵(t�⌧)1�↵ A(x)a&

t(x, s) ·
@

@s
a&
t(x, s) ds

=�(x, t) ·
@

@t
"(x, t) +

↵

2 (1� ↵)2

Z 1

0

e
� ↵(t�⌧)1�↵

@

@s

⇥
A(x)a&

t(x, s) · a&
t(x, s)

⇤
ds

=�(x, t) ·
@

@t
"(x, t)�

↵
2

2 (1� ↵)3

Z 1

0

e
� ↵(t�⌧)1�↵ A(x)a&

t(x, s) · a&
t(x, s)ds

=�(x, t) ·
@

@t
"(x, t)�

↵

1� ↵
⇢0(x) (a&

t(x, ·))

so that the dissipation D is given by

D(t) =
↵

1� ↵
⇢0(x) (a&

t(x, ·)) .

5. Exponential energy decay

In this section we study the di↵erential problem (3.1)–(3.2), introduced in Section 3, associated with the constitutive equation
(4.3) for �.
According to the approach followed in Section 3, we introduce the unknown, related to the fractional derivative, defined in

(4.1) and consider the function

w(x, t) = u[↵](x, t) := 0D
(↵)
t u(x, t) =

↵

(1� ↵)2

Z t

�1
e
� ↵(t�⌧)1�↵ [u(x, t)� u(x, ⌧)] d⌧ .

Using the same mathematical technique as in Section 3, we can restrict our attention to the following problem with homogeneous
initial conditions

@

@t

h
w [1�↵](x, t)

i
= r · [A(x)rw(x, t)] + f(x, t)

w(x, 0) = 0 , w [1�↵](x, 0) = 0

w(x, t)|@⌦ = 0

(5.1)

with

f(x, t) = b(x, t) +r ·


↵

(1� ↵)2

Z 0

a

e
� ↵
1�↵ (t�⌧)A(x)r [u(x, t)� u(x, ⌧)] d⌧

�

and ⇢0 = 1.
Denoting with H↵0 (R+) the space

H
↵
0 (R+) = {f 2 L2(R+); 0D(↵)t f 2 L2(R+), f (0) = 0}

we give the following definition

Definition 5.1 A function w 2 H1�↵0 (R+;L2(⌦)) \ L2(R+;H10(⌦)) is a weak solution to problem (5.1) if it satisfies the integral
equality

Z 1

0

Z

⌦


w [1�↵](x, t) ·

@

@t
�(x, t)� A(x)rw(x, t) ·r�(x, t)

�
dx dt = �

Z 1

0

Z

⌦

f(x, t) · �(x, t)dx dt (5.2)

for all � 2 H10(R+;L2(⌦)) \ L2(R+;H10(⌦)).

To obtain the existence and uniqueness result, we proceed as in the previous Section 3 and study the the causal Fourier transform
of system (5.1) for ! > 0.
It is easy to prove that the causal Fourier transform of the fractional derivative of a function f 2 H�0 (R+) is given by

c
f [�](!) =

i!

� � i!(1� �)
f̂ (!) =

![(1� �)! + i�]

�2 + (1� �)2 !2
f̂ (!) .

6 Copyright c� 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–8
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Applying the causal Fourier to equation (5.1)1, we obtain

i!
i!

(1� ↵)� i↵!
ŵ(x,!) = r · [A(x)rŵ(x,!)] + f̂(x,!)

ŵ(x,!)|@⌦ = 0

(5.3)

If we multiply both sides of (5.3)1 by
⇣
\w [1�↵]

⌘⇤
and integrate on the domain ⌦, we get

i!k
i!

(1� ↵)� i↵!
ŵ(!)k2 �

i!

(1� ↵) + i↵!
kŵ(!)k2A = �

i!

(1� ↵) + i↵!

Z

⌦

f̂(x,!) · ŵ ⇤(x,!)dx . (5.4)

The real and imaginary components of (5.4) provide

↵!
2
kŵ(x,!)k2A = <


�![↵! + i(1� ↵)]

Z

⌦

f̂(x,!) · ŵ ⇤(x,!)dx

�
, (5.5)

!
3
kŵ(x,!)k2 � (1� ↵)!kŵ(x,!)k2A = =


�![↵! + i(1� ↵)]

Z

⌦

f̂(x,!) · ŵ ⇤(x,!)dx

�
. (5.6)

Then, from (5.5) and (5.6) we have

kŵ(x,!)k2A 
|↵! + i(1� ↵)|

↵!
kf̂(!)kkŵ(!)k

kŵ(x,!)k2A 
|↵! + i(1� ↵)|

1� ↵
kf̂(!)kkŵk+ !2kŵ(x,!)k2

(5.7)

Since

lim
!!0

|↵! + i(1� ↵)|

1� ↵
= 1 , lim

!!1

|↵! + i(1� ↵)|

↵!
= 1 ,

by Poincare inequality, we obtain
kŵ(!)kA  Kkf̂(!)k , 8! (5.8)

with K > 0. The inequality (5.8) assures that w 2 L2(R+;H10(⌦)).
If we require f 2 H1�↵0 (R+;L2(⌦)), then w 2 H1�↵0 (R+;L2(⌦)) or, equivalently, w [1�↵] 2 L2(R+;L2(⌦)).
The previous results can be summarized in the following theorem:

Theorem 5.2 If f 2 H1�↵0 (R+;L2(⌦)) then problem (5.1) admits one and only one weak solution according to the Definition
5.1.

The result on the exponential decay of the energy is established by using the theory of contraction semigroups in Hilbert
spaces. We only provide a very brief outline, because our problem is a particular case of a more general class of material with
memory studied, for example, in [9].
First we introduce the Hilbert space K(R+,⌦) of the pairs

�(x, t) =
⇣
w [1�↵](x, t), a&

t(x, ·)
⌘

with the inner product

< �1(t),�2(t) >=

Z

⌦

w [1�↵]1 (x, t) · w [1�↵]2 (x, t)dx

+
↵

(1� ↵)2

Z

⌦

Z 1

0

e
� ↵s
1�↵A(x)&ta1(x, s) · &

t
a2(x, s)dsdx <1 ,

(5.9)

so that the associated norm is the energy norm, i.e.

E(t) =
1

2
< �(t),�(t) >=

1

2
kw [1�↵]k2 +

Z

⌦

 (a&
t(x, ·))dx .

Then we rewrite problem (3.1)–(3.2), associated to the constitutive equation (4.3) for �, as an abstract Cauchy problem as
follows

@

@t
w [1�↵](x, t) =

↵

(1� ↵)2
r · A(x)

Z 1

0

exp


�

↵s

1� ↵

�
a&
t(x, s)ds

@

@t
a&
t(x, s) = rw [1�↵](x, t) +

@

@s
a&
t(x, s)

w [1�↵](x, 0) = v0(x) , a&
t=0(x, s) = a&

0(x, s) , s � 0

(5.10)
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or, in a compact form,

@

@t
�(x, t) = A(x)�(x, t) , �(x, 0) = �0(x) . (5.11)

The domain of the operator A is the dense subset of K(R+,⌦) defined as follows

D(A) =
�
� 2 K(R+,⌦) ;A� 2 K(R+,⌦)

 
.

Since
1

2
< A�(t),�(t) >=

@

@t
E(t) = �

↵

1� ↵

Z

⌦

 (a&
t(x, ·))dx , (5.12)

employing standard techniques, we can a�rm that A generates a strongly continuous semigroup of linear contractions S(t)
on K(R+,⌦) with respect to the energy norm so that the solution of (5.11) can be written in the form �(t) = S(t)�0 and
E(t) = 1

2 < S(t)�0,S(t)�0 >.
Finally, the equality (5.12) and the previous Theorem 5.2 assure that

Z 1

0

E(t)dt <1 .

The exponential decay of the energy follows from classical theorems of semigroups theory (see, for example, [12]).
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