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Phragmites australis is a cosmopolitan grass and often the dominant species in the
ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity,
P. australis has an extensive ecological amplitude and a great capacity to acclimate
to adverse environmental conditions; it can therefore offer valuable insights into plant
responses to global change. Here we review the ecology and ecophysiology of
prominent P. australis lineages and their responses to multiple forms of global change.
Key findings of our review are that: (1) P. australis lineages are well-adapted to regions
of their phylogeographic origin and therefore respond differently to changes in climatic
conditions such as temperature or atmospheric CO2; (2) each lineage consists of
populations that may occur in geographically different habitats and contain multiple
genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a
genotype determine the responses to global change factors; (4) genotypes with high
plasticity to environmental drivers may acclimate or even vastly expand their ranges,
genotypes of medium plasticity must acclimate or experience range-shifts, and those
with low plasticity may face local extinction; (5) responses to ancillary types of global
change, like shifting levels of soil salinity, flooding, and drought, are not consistent within
lineages and depend on adaptation of individual genotypes. These patterns suggest that
the diverse lineages of P. australis will undergo intense selective pressure in the face of
global change such that the distributions and interactions of co-occurring lineages, as
well as those of genotypes within-lineages, are very likely to be altered. We propose that
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the strong latitudinal clines within and between P. australis lineages can be a useful tool
for predicting plant responses to climate change in general and present a conceptual
framework for using P. australis lineages to predict plant responses to global change
and its consequences.

Keywords: atmospheric CO2, climate change, eutrophication, global distribution, intraspecific variation, invasive
species, salinity, temperature

INTRODUCTION

One of the greatest challenges in ecology is to understand,
predict, and mitigate the consequences of climate change (IPCC,
2014). Climate change will affect species interactions, community
structure, and biodiversity, and will induce major shifts in plant
phenology and geographic ranges (e.g., Post, 2013; Visser, 2016).
However, not all species will respond similarly to changing
climatic conditions (Springate and Kover, 2014). In a highly
variable and changing environment, globally distributed species
will likely have the genetic variation needed to acclimate to a
broad spectrum of environmental and climatic gradients (Jump
and Peñuelas, 2005). So far, however, most efforts to assess
species changes have focused on climate modeling (e.g., Thuiller
et al., 2005; Munguia-Rosas et al., 2011; Niu et al., 2014) or
experiments using plants that are unlikely to have widespread
impacts on community diversity or ecosystem processes (e.g.,
Chapman et al., 2014; Springate and Kover, 2014).

Species with the high genetic diversity and heritable
phenotypic variation typically seen in cosmopolitan species are
likely to have more inherent flexibility to evolve in response
to climate change than species with low intraspecific diversity
and restricted geographic ranges (Lavergne and Molofsky, 2007).
Moreover, genotypes with high phenotypic plasticity (i.e., a high
capacity of a genotype to produce distinct phenotypes in response
to environmental variation; Bradshaw, 1965) typically have a
greater capacity to adapt to altered environmental conditions
than species with low plasticity (Franks et al., 2014; Valladares
et al., 2014). Despite the fact that intraspecific variation is
the basis of evolutionary change (Hiesey et al., 1942), it has
only recently gained notice in studies of species responses to
global change (Violle et al., 2012; Aspinwall et al., 2013; Pauls
et al., 2013; Meyerson et al., 2016a; Münzbergová et al., 2017).
Widespread and genetically diverse species, including those that
are invasive, may be buffered against the adverse effects of global
change (Oney et al., 2013). Truly cosmopolitan species, such as
Phragmites australis (Cav.) Trin. ex Steud. (common reed), have
global distributions, high genetic and phenotypic variation, and
occur in a wide range of environments. The high intraspecific
diversity usually found within P. australis stands may provide
the species with the ability to cope with and benefit from a
rapidly changing climate (Jump and Peñuelas, 2005; Kettenring
et al., 2010, 2011). However, some populations may experience
decreased genetic diversity during the acclimation and adaptation
processes (Almeida et al., 2013). At the community and
ecosystem scales, local extinction (Bolnick et al., 2011) and the
alteration of small-scale environmental conditions and species-
interactions (Crutsinger et al., 2008; Schöb et al., 2013) may be

the ultimate consequences of the loss of intraspecific diversity.
Whilst it is highly unlikely that species with high intraspecific
diversity could be threatened with total extinction, shifts in
genetic composition, including the genetic impoverishment of
a population, may occur (Franks et al., 2014; Valladares et al.,
2014). Therefore, a key challenge awaiting future research is
determining how intraspecific variation drives local species
composition and mediates the effects of rapid environmental
change.

Phragmites australis is a cosmopolitan species that has strong
effects on the ecosystems it inhabits; it therefore can offer
valuable insights into plant responses to global change (Den
Hartog et al., 1989; Chambers et al., 1999; Koppitz, 1999;
Engloner, 2009; Mozdzer and Megonigal, 2012; Caplan et al.,
2015; Hughes et al., 2016). It is a robust and highly productive
grass in the Poaceae family that occurs in a wide range of
freshwater and brackish wetlands (Brix, 1999a; Meyerson et al.,
2000) spanning temperate and tropical regions (Den Hartog
et al., 1989). The success of P. australis as a cosmopolitan
species is related to its high productivity, its rapid stand-scale
expansion through both clonal and sexual reproduction, and
its ability to evolve rapidly in new ranges (Kettenring et al.,
2010, 2011, 2012, 2015; Douhovnikoff and Hazelton, 2014; Eller
et al., 2014a; Saltonstall et al., 2014). Changes in the distribution
and growth patterns of P. australis have strong socioeconomic
and environmental impacts that may be influenced by, and
also feedback on, changing climatic conditions (Kim et al.,
1998; Dukes and Mooney, 1999; Brix et al., 2001; Windham
and Meyerson, 2003). The species has undergone an almost
exponential range-expansion in North America (Chambers et al.,
1999), where it is considered one of the worst invasive species on
the continent (Saltonstall, 2002; Hazelton et al., 2014). Its global
distribution and ability to proliferate in a wide range of habitats,
especially in areas where physical disturbances are abundant,
appear to derive from its distinct ecophysiological strategies,
broad ecological amplitude, high evolutionary potential, and
high phenotypic plasticity (Eller and Brix, 2012; Kettenring and
Mock, 2012; Mozdzer and Megonigal, 2012; Mozdzer et al., 2013;
Guo et al., 2014; Kettenring et al., 2015, 2016; Bhattarai et al.,
2017a; Packer et al., 2017b). Like other cosmopolitan invasive
plant species (Lavergne and Molofsky, 2004), P. australis has
recently been suggested as a model organism for studying plant
invasions (Meyerson et al., 2016b; Packer et al., 2017a). Given
its highly plastic physiological and morphological responses to
interacting global change factors (Eller and Brix, 2012; Mozdzer
and Megonigal, 2012; Eller et al., 2013, 2014a,b; Caplan et al.,
2015), P. australis may also provide insights into global change
responses of other plant species.
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Despite the large body of knowledge generated by prior
research on P. australis, it is perhaps surprising that there is
no global synthesis of the genetic variability of P. australis, its
functional traits, its ecophysiology, and how the performance
of the species is expected to change in a rapidly changing
environment, especially under the expected scenarios of global
climate change. Our goal here is to provide a comprehensive
review of the high intraspecific variation of the ecophysiological
processes that allow P. australis, as a cosmopolitan species,
to respond to global change factors such as temperature,
atmospheric CO2 concentrations, drought, flooding, salinity,
and eutrophication. We further aim to highlight the value
of P. australis as a model species both for plant invasions,
a widespread phenomenon with accelerating dynamics (van
Kleunen et al., 2015; Pyšek et al., 2017) and also for cosmopolitan
species’ responses to environmental change. Moreover, our
review identifies and resolves knowledge gaps to further elucidate
plant responses to global change.

INTRASPECIFIC VARIATION

Although P. australis is classified as one species, it is
comprised of three main phylogeographic groups. These can
be identified by their chloroplast DNA sequences (Lambertini
et al., 2012c) and include: (i) the North American group,
which contains Phragmites australis subsp. americanus (hereafter
NAnat; Saltonstall, 2002), (ii) the East Asian/Australian group,
and (iii) the Northern Hemisphere/African group (Figure 1).
Phragmites australis of the latter region is known as European
Phragmites (sensu Lambertini et al., 2012c) and is poised to
benefit the most from global change. It has recently enlarged its
geographic range via two invasive lineages. European Phragmites
includes the lineages “EU” in temperate Europe and elsewhere,
“Med” in the Mediterranean region of Europe and north and
south Africa (Lambertini et al., 2012c; Guo et al., 2013), and
their introduced lineages in North America. The introduced
lineages are known as “Haplotype M” (hereafter NAint M),
which occurs across the North American continent in sympatry
with NAnat, and the “Delta-type” (NAint Delta), which occurs
in the Mississippi River Delta and in isolated populations in
Florida (Lambertini et al., 2012b). Populations of the invasive
lineages are genetically and ecophysiologically distinct from their
native populations in Europe (Saltonstall, 2002; Lambertini et al.,
2012b,c; Tho et al., 2016). They are reported in the literature
under these specific names, which is why they are referred to
here as NAint M and NAint Delta. European Phragmites also
occurs across the continents of Africa and Asia in sympatry with
other Phragmites species and P. australis lineages of the East
Asian/Australian phylogeographic group in East Asia. The ranges
of the P. australis East Asian/Australian and North American
groups have been more stable than the range of European
Phragmites. However, this pattern might reflect isolation or a
lower research effort rather than these genotypes having lower
fitness to establish in new ranges. More lineages have been found
outside of the three groups, but these are not well-described and
consist of scattered observations, or are Phragmites species other

than P. australis (Figure 1). In the absence of an updated revised
systematics reflecting the genetic structure of the species, we use
the above names to refer to the above described lineages and
phylogeographic groups of P. australis.

Phragmites australis lineages and genotypes can be very
diverse within and among populations, and genes from relatives
in other phylogeographic regions or species can become
incorporated into populations. This is due to a combination of
inter- and intraspecific hybridization (McCormick et al., 2010a;
Meyerson et al., 2010b; Chu et al., 2011; Paul et al., 2011;
Lambertini et al., 2012b,c; Saltonstall et al., 2014; Saltonstall
and Lambert, 2015; Wu et al., 2015), polyploidy (Clevering and
Lissner, 1999; Meyerson et al., 2016a), genome size variability
(Suda et al., 2015; Meyerson et al., 2016a), heteroplasmy
(Lambertini, 2016), and long-distance dispersal.

INFLUENCES OF ENVIRONMENTAL
GRADIENTS AND PHENOTYPIC
PLASTICITY ON P. australis
PHENOTYPIC DIVERSITY

The phenotypic diversity of globally dispersed species derives
from adaptations to environmental factors such as climate or
day length; phenotypes are therefore expected to vary over
broad latitudinal ranges (Wilson, 1988; Coomes and Grubb,
2000; Poorter et al., 2009). Differences among distinct lineages
of P. australis reflect adaptations to the environment of their
geographic origin and include differences in plant traits, the
degree of phenotypic plasticity, and the environmental drivers to
which these traits respond (Eller and Brix, 2012; Mozdzer and
Megonigal, 2012; Eller et al., 2013; Mozdzer et al., 2013, 2016a,b;
Bhattarai et al., 2017a).

Phenotypic differences within P. australis are apparent along
clines within lineages and phylogeographic groups (Bastlová
et al., 2006; Reich and Oleksyn, 2008; Cronin et al., 2015; Mozdzer
et al., 2016a; Allen et al., 2017; Bhattarai et al., 2017a). A general
observation is that shoots increase in height with decreasing
latitude and altitude (Haslam, 1973; Clevering et al., 2001; Hansen
et al., 2007; Mozdzer et al., 2016a), but these trends are non-
linear across broad latitudinal ranges (Mozdzer et al., 2016a). In
the Mediterranean region P. australis can reach heights of up
to 5 m, while temperate European Phragmites usually has stem
heights of 2–3.5 m (Haslam, 1972; Eid et al., 2010; Packer et al.,
2017b). European Phragmites populations from lower latitudes
allocate relatively little biomass to leaves and more to stems;
they also produce fewer shoots than populations originating
from higher latitudes (Hansen et al., 2007; Eller and Brix, 2012).
Also, northern populations have an earlier onset of flowering, a
shorter growing season, and greater resistance to winter frosts,
which is even more pronounced in populations from continental
climates (Clevering et al., 2001; Bastlová et al., 2006; Lambertini
et al., 2012c). On the local scale, water availability and soil
properties such as salinity are important controls of P. australis
morphology and biomass; this derives from the high phenotypic
plasticity of the species (Vretare et al., 2001; Achenbach et al.,

Frontiers in Plant Science | www.frontiersin.org 3 November 2017 | Volume 8 | Article 1833

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-01833 November 14, 2017 Time: 15:48 # 4

Eller et al. Global Change Responses of Phragmites australis

FIGURE 1 | Global distribution of three main phylogeographic groups (North American, European, and East Asian/Australian) of the cosmopolitan wetland grass
Phragmites australis, including several distinct lineages within the groups. More lineages or groups could possibly exist but have not been described yet. Points
represent the collection locations of herbarium specimens analyzed by Lambertini et al. (2012c) and Guo et al. (2013) as well as the collection locations of several
additional specimens at the Aarhus University herbarium.

2013; Hughes et al., 2016; Mozdzer et al., 2016a). Plastic
and genetically determined differences in P. australis below-
ground structures yield considerable differences in seasonal shoot
initiation, root organic acid content, rhizome construction costs,
and rhizospheric microbial communities (Dykyjová et al., 1970;
Moore et al., 2012; Zhai, 2013; Caplan et al., 2014).

Several ploidy levels have been identified in P. australis
genotypes, specifically 2n = 3×, 4×, 6×, 8×, 10×, 12×
(Gorenflot et al., 1983). Higher ploidy levels often result in larger
plants (Stebbins, 1971, but see Meyerson et al., 2016b). However,
only the octoploids from Romania, belonging to European
Phragmites, have been found to have giant traits compared to
the other ploidy levels (Hansen et al., 2007; Achenbach et al.,
2012). In the Danube Delta, the octoploids have bigger leaves, are
taller, and have thicker shoots than the tetraploids (Rodewald-
Rudescu, 1974; Hanganu et al., 1999; Pauca-Comanescu et al.,
1999; Clevering et al., 2001). However, gas exchange rates are
not affected by differences in ploidy level (Hansen et al., 2007;
Saltonstall and Stevenson, 2007), and neither are salt tolerance or
a range of growth and ecophysiological traits (Achenbach et al.,
2012, 2013). This suggests that ploidy level has a minor or still
poorly understood role in determining phenotypic characteristics
within the species, particularly when it interacts with genome size
(Meyerson et al., 2016a).

INTRASPECIFIC DIVERSITY
DETERMINES RESPONSES TO GLOBAL
CHANGE DRIVERS – THE CRC (CAUSE-
RESPONSE-CONSEQUENCE)-MODEL

Dominant and invasive species can modify community traits
and ecosystem processes (e.g., species richness or primary
productivity), thereby affecting regional and biogeographic
patterns of species distribution and interactions (Wright and
Jones, 2004; Vilà et al., 2011; Pyšek et al., 2012; Hughes et al.,

2016). High genetic diversity provides P. australis with a broad
ecological amplitude, which may be especially important when
it colonizes new habitat or faces environmental stresses (van der
Putten, 1997; Clevering, 1999; Koppitz, 1999). The capacity of
P. australis to acclimate and eventually adapt to environmental
change depends not only on the degree and nature of the
change, but also on the genetic composition of the lineage
itself (Hiesey et al., 1942; Eller and Brix, 2012). A lineage
can be described as an entity consisting of several genetically
distinct genotypes, each of which shares a part of the genome
with the genotypes of the same lineage, but is also comprised
of different genes and phenotypic plasticity toward various
environmental drivers (Bradshaw, 1965). Phenotypic plasticity
is a genetically determined trait-set, and recent studies have
shown that plastic responses are inheritable and determined
by the climatic origin of a plant (Latzel and Klimesova, 2010;
Münzbergová and Hadincová, 2017). The sum of all plastic
responses of a geographic population within a lineage is
determined by genotypes responding to a specific environmental
factor (Figure 2). Genotypes with high or medium plasticity
toward a specific driver of environmental change will be able
to acclimate to that driver, meaning that they will thrive
equally well before vs. after the change. Hence, a population
consisting of mainly highly or moderately plastic genotypes will
change in genetic composition and the resulting population
will consist of genotypes able to thrive under the changed
conditions. Genotypes with low plasticity toward that specific
driver will be subject to local extinction or a range shift if a more
suitable habitat without the change is accessible for establishment
(Figure 2). Global drivers of spatially homogeneous impact,
such as the concentration of atmospheric CO2, therefore pose a
greater challenge than patchy changes such as soil salinity. Some
P. australis lineages show predictable responses to climatic and
environmental scenarios, and are therefore particularly suitable
models for understanding and predicting adaptation processes
and evolutionary dynamics in other plants and plant types. We
describe below the ecophysiological responses to global change
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FIGURE 2 | CRC (cause-response-consequence) model of global change driver acting upon lineages (or geographic populations within a lineage) composed of
different genotypes. A global change driver affects the lineage which consists of highly plastic genotypes with respect to the driver (A), moderate plasticity with
respect to the driver (B), and low plasticity with respect to the driver (C). Plasticity refers to phenotypic plasticity in fitness-related traits (reproduction and
productivity), thus affecting the genotype’s acclimation and adaptation capacity. The genotypes respond differently to the driver depending on their phenotypic
plasticity; likely responses are acclimation, increased fitness, range expansion, range shift, or local extinction. Acclimation is the response to the environmental driver
that results in similar or increased fitness. This scenario will likely lead to range expansion. A range shift occurs from the natural range of occurrence, which is the
current distribution range including the native range for native lineages and the presently invaded range for introduced lineages. The responses can be mediated by
interacting environmental drivers. The ultimate consequence of the responses to the effect are impoverished genetic diversity, including lineages with lower
phenotypic plasticity and fewer, but better adapted genotypes, or a lineage shifting into a new range less or differently affected by the global change driver.

drivers and present a conceptual model (Figure 3) that predicts
how each Phragmites lineage will evolve by acclimation and
adaptation to the drivers. Some reed lineages have not been
described well enough in the literature to be included in the
model, such as NAint Delta and the Far East/Australian (FEAU)
group. The FEAU group is likely to be a suitable model for
highly productive species like tropical grasses, but needs further
investigation, especially with respect to phenotypic plasticity.

The conceptual model presented in Figure 3 is based on the
responses of P. australis lineages to factors associated with global
change that act upon a lineage individually or in combination
(Table 1). Overall, EU and NAint M are the lineages best
adapted to withstand temperature changes and, together with
the MED lineage, elevated CO2, while MED and NAint M will
respond most positively to eutrophication (Figure 3). NAnat
is the lineage with the least acclimation capacity. However,
interactions with other environmental factors may change the
above predictions (Figure 3). In the following sections, we review
the main ecophysiological processes of P. australis to illustrate
the diversity of these processes as a function of intraspecific
variation and phenotypic plasticity, as well as the breadth of
ecological niches that the species inhabits. We further describe
ecophysiological responses to environmental factors to which the
species is commonly exposed: temperature, atmospheric CO2
concentration, salinity, flooding, drought, and eutrophication.
All of these factors are currently changing and are expected to
change further in upcoming decades (IPCC, 2014). We also show

how and why P. australis’ responses to global change can be
extrapolated to predict those of other species.

KEY ECOPHYSIOLOGICAL PROCESSES

Gas Exchange
Like biomass production and morphology, gas exchange-related
traits in P. australis are highly plastic. Within a phylogeographic
region, the prevailing climatic conditions have the strongest
effects on gas exchange rates (Lessmann et al., 2001; Hansen
et al., 2007; Mozdzer et al., 2016a). Although the climate of
the area of origin strongly affects physiological responses, there
are also phylogeographic differences in potential responses to
environmental change. For example, the NAint Delta lineage
was less plastic in its ability to modify gas exchange parameters
compared to the highly plastic NAint M lineage when grown
across 14◦ of latitude (Mozdzer et al., 2016a). Furthermore,
tropical and subtropical populations of P. australis have a
higher photosynthetic capacity and photosynthetic pigment
concentration than populations in the temperate zone (Nguyen
et al., 2013). Similarly, NAint P. australis has a higher
photosynthetic capacity and pigment concentrations than NAnat
(Mozdzer and Zieman, 2010; Guo et al., 2014). Nguyen et al.
(2013) proposed the existence of a diversified C3 pathway
within P. australis that is modified to maintain high enzymatic
efficiencies in tropical and Mediterranean climates but can be
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FIGURE 3 | Specific effects of global change drivers on reed lineages. Lineage response is averaged, based on studies conducted on several genotypes from within
these lineages. Well-established interactions with other global change drivers are specified. Curves show ecophysiological amplitude with specific niche-breadth and
response strength to changes. Each lineage response can be extrapolated to different species with similar ecophysiological characteristics. Curves outline a relative
normal distribution of fitness-related parameters of the population. A narrower curve means a narrower niche-breadth with respect to a global change factor (on
x-axis). Advancement here means increased fitness. Blue curves show the current stage while orange curves result from the action of the specific global change
factors. Either solid or dashed curve are expected to appear, but not both simultaneously.

down-regulated to accommodate the lower temperature and
irradiance of temperate regions.

Despite the typical C3-photosynthetic features displayed
by P. australis, C4-like strategies have also been observed.
A prominent sheath layer that is especially pronounced in
young P. australis leaves surrounds the vascular bundles in the
mesophyll, resembling the foliar Kranz anatomy of C4 plants
(Henriques and Webb, 1989). However, due to the lack of
chloroplasts in this layer, there is no functional correlation with
true C4 plants (Henriques and Webb, 1989). Doubts about the
photosynthetic pathway of P. australis have also emerged due
to relatively high PEPcase activities, higher activities of the
decarboxylating NADP-dependent malic enzyme (NADP-ME),
and a possible C3–C4 intermediate pathway associated with
ecotypes from arid or salt-affected habitats (Rintamaki and Aro,
1985; Zheng et al., 2000; Zhu et al., 2012). Most of the known
C4 species occur in the Poaceae, in which C4-evolution has
occurred independently several times and, thus, genes are present
in P. australis that can rapidly develop C4 functions including the
gene coding for NADP-ME (Christin et al., 2009).

Nevertheless, P. australis has, in most studies, been shown
to possess characteristics typical of C3 plants, including a high
Rubisco/PEPcarboxylase ratio, high photorespiration rates, and
a high CO2 compensation point (Antonielli et al., 2002; Hansen
et al., 2007; Eller and Brix, 2012). The photosynthetic pathway

of P. australis therefore remains unresolved, as the range of
the abovementioned studies suggests that the photosynthetic
pathway may vary within the species. The distinct bundle
sheath cells in P. australis leaves also raise the possibility of C2
photosynthesis, which is the evolutionary bridge between C3
and C4 photosynthesis (Sage, 2016); however, evidence of this
possibility has yet to be found.

Nutrient Acquisition
By far the greatest number of scientific studies on P. australis
have been concerned with the species’ tremendous potential for
nutrient removal, which makes it an ideal candidate species
for wastewater treatment in constructed wetlands (e.g., Brix
and Schierup, 1989; Brix, 1997; Bragato et al., 2006; Vymazal,
2013; Hernández-Crespo et al., 2016). Genetically determined
differences in nutrient uptake and assimilation capacity result in
distinct reed ecotypes with differences in productivity (Tho et al.,
2016). Some ecotypes sustain high nutrient assimilation rates and
high allocation to aboveground biomass, while others have high
nutrient translocation rates to rhizomes for storage and thus high
belowground biomass allocation (Kühl et al., 1997; Tripathee
and Schäfer, 2014). Reed genotypes with dissimilar nutrient
demands and productivity can thus grow at similar nutrient
levels in naturally adjacent stands. Such distinct ecophysiological
strategies confer greater population plasticity and performance
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to a genetically diverse stand compared to a monoclonal stand
(Rolletschek et al., 1999). Pronounced differences in the nitrate
uptake kinetics of distinct reed genotypes are possibly caused
by distinct transcript abundances of nitrate transporter genes,
and a likely reason for the genotypic differences in nutrient
acquisition strategies (Araki et al., 2005). In general, P. australis
is well-adapted for growth in nutrient-rich habitats (Mozdzer
et al., 2010; Caplan et al., 2015) but can also acclimate to low
nutrient availability by increasing the affinity for ammonium
uptake (Romero et al., 1999; Tylova-Munzarova et al., 2005;
Mozdzer and Megonigal, 2012).

Gas Transport and Ventilation
Like almost all plants that can grow vigorously in habitats
where soil saturation and flooding are common (Vartapetian and
Jackson, 1997), P. australis aerates flooded tissues by transporting
oxygen through a well-developed network of internal airspaces,
or aerenchyma (Armstrong and Armstrong, 1991; Jackson and
Armstrong, 1999). These internal airspaces are continuous from
the leaf sheaths and culms, through the rhizomes, and into the
root cortex, where aerenchyma are particularly well-developed
through lysigeny (Armstrong et al., 1996a; White and Ganf,
2002). Rhizomes are segmented internally and have secondary
aeration channels in the internode cortex, such that airflow is
maintained even if rhizome cavities become damaged and filled
with water (Soukup et al., 2000). More efficient root aeration also
allows for greater respiration rates and, thus, sustained nutrient
uptake capacity and root development, even in hypoxic soils
(Nakamura et al., 2013).

Phragmites australis is also one of the few wetland species
that does not rely solely on simple diffusion for gas transport;
it supplements its aeration with convective gas flow (Brix, 1989;
Brix et al., 1992, 1996; Armstrong et al., 1996a). Convection is
induced by humidity gradients generated in lacunae (i.e., sub-
stomatal cavities) in leaf sheaths of live culms (Armstrong et al.,
1996a,c). The pressure that builds up in lacunae pushes air down
through live culms and rhizomes; air is vented out of the plant
through damaged or dead culms (Brix, 1989; Armstrong et al.,
1996c; Afreen et al., 2007).

Little attention has been paid to potential intraspecific
differences in gas transport among P. australis lineages. Tulbure
et al. (2012) showed that the ventilation efficiency of the invasive
NAint M lineage in North America was 300 times higher than
that of native P. australis subsp. americanus, when differences
in stem densities between lineages were accounted for. Since gas
flux is a physically determined process and is strongly affected
by internal anatomy (Rolletschek et al., 1999), different gas
flow behavior can be expected in plants with genotype-specific
morphological characteristics. Moreover, gas flow characteristics
of wetland plants affect not only oxygen transport but also
plant-mediated methane emission (Brix et al., 2001), and lineage-
specific differences in factors controlling gas flow are known to
affect methane fluxes (Armstrong et al., 1996b; Kim et al., 1998).
For example, NAint M roots more deeply than other lineages
and, through changes in soil organic matter dynamics, can lead
to increased rates of CO2 losses to the atmosphere (Bernal
et al., 2017). Differences in gas flow capacity and rhizosphere
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oxygenation among lineages are therefore very likely and deserve
greater attention.

EFFECTS OF MAJOR DRIVERS OF
GLOBAL CHANGE ON THE
PERFORMANCE OF P. australis

Contrasting responses to global change drivers have been
reported in North American and European Phragmites.
Phragmites australis of Asia and Australia has received limited
attention, so their responses to such drivers remain poorly
understood. From the 1970s to the 1990s, P. australis in
Europe experienced a decrease in abundance termed ‘reed
dieback,’ largely due to anthropogenic eutrophication and
deeper flooding, especially in Eastern Europe (Ostendorp,
1989; van der Putten, 1997; Brix, 1999b). Increased salinity
caused by land use changes may also have contributed to reed
dieback in northern European brackish marshes, as it may
have allowed halophytes like Spartina alterniflora to displace
less salt-tolerant species like P. australis (Vasquez et al., 2006).
Reductions in P. australis growth have also been associated with
litter accumulation leading to the production of phytotoxins
(Armstrong et al., 1996a; Čížková et al., 1999) and high rates of
anaerobic mineralization stemming from excess organic matter
and the associated increase in biological oxygen demand (Sorrell
et al., 1997). Degraded reed stands have been shown to have an
altered C/N metabolism due to higher rates of photorespiration
and thus, lower carbon fixation (Erdei et al., 2001).

In contrast to the situation in Europe, the species has shown
invasive behavior in North America over the last 50 years. The
invasion is driven by a few lineages originating from European
Phragmites (Hauber et al., 1991; Saltonstall, 2002; Hauber et al.,
2011; Lambertini et al., 2012b) and may depend largely on the
high genetic diversity of the species in its native range (Saltonstall,
2003; McCormick et al., 2010b; Pyšek et al., 2017).

Temperature Effects
Without considerable greenhouse gas reductions, the global rise
in mean surface temperature of Earth is very likely to exceed
1.5–4◦C by the end of the 21st century, with the greatest
increases in the Northern Hemisphere (IPCC, 2014). Heatwaves
and extreme precipitation events are expected to occur more
frequently and with longer durations in many regions, but
occasional cold temperature extremes can also be expected
(IPCC, 2014).

Phragmites australis exhibits lineage-specific responses to
temperature regimes in terms of morphology, growth, and to a
certain extent, photosynthetic traits (Table 1; Clevering et al.,
2001; Lessmann et al., 2001; Eller and Brix, 2012; Eller et al., 2013;
Mozdzer et al., 2016a). Rates of P. australis growth (especially
shoot height and length), as well as rates of transpiration and
photosynthesis, are generally greater at lower latitudes due to
warmer temperature regimes and longer day lengths (Haslam,
1975; Lissner et al., 1999a,b; Zemlin et al., 2000; Lessmann et al.,
2001; Karunaratne et al., 2003; Mozdzer et al., 2016a). Reciprocal
transplant experiments in common gardens have shown that, for

lineages originating from lower latitudes, higher temperatures
are needed to initiate growth and, after being transplanted to
higher latitudes, panicles either emerge late or do not flower
at all (Brix, 1999b; Clevering et al., 2001; Karunaratne et al.,
2003; Lambertini et al., 2012c). Adaptation to the climate in the
region of origin significantly affects plant species’ performance
and plasticity (Franks et al., 2014; Molina-Montenegro et al.,
2016; Allen et al., 2017; Bhattarai et al., 2017a,b; Münzbergová
et al., 2017). Hence, P. australis belonging to the MED lineage
can be a model for Mediterranean, subtropical, and even tropical
plant species, while populations of the EU lineage can be a model
for temperate species found at higher latitudes (Figure 3).

Some lineages seem to be more plastic to changes in
temperature than others, as they show a large acclimation
capacity to both increases and decreases in temperature
(Figure 3; Lessmann et al., 2001; Eller and Brix, 2012). This
is the case for NAint M in North America, for example,
where temperature fluctuations have been shown to enhance its
distribution (Guo et al., 2013). The North American invasion
is therefore likely to accelerate with climate change. It has
previously been suggested that lineages originating in areas
with high fluctuating temperatures also have higher plasticity
to temperature changes, and may therefore be better adapted
to withstand climatic changes (Molina-Montenegro and Naya,
2012). The same has been shown for P. australis lineages; EU
genotypes from higher latitudes in temperate areas have generally
shown higher plasticity toward differences in growth temperature
(Lessmann et al., 2001; Eller and Brix, 2012; Nguyen et al., 2013).
It can be assumed that the high plasticity of NAint M derives
from its origin in the highly plastic EU populations, emphasizing
the potential model role of P. australis lineages from high-
latitudes for temperate plant responses to temperature differences
(Figure 3).

Other lineages appear to be pre-adapted to predicted future
temperature regimes and are therefore likely to extend their range
northward (Clevering et al., 2001; Lessmann et al., 2001; Eller
et al., 2014a,b; Mozdzer et al., 2016a). It is possible that lineages
originating from lower latitudes may expand their distributions
northward in the warming world (Figures 2, 3; Guo et al.,
2013; Mozdzer et al., 2016a), as frost and cool temperatures
limit growth or sexual reproduction at mid and high-latitudes
(Mozdzer et al., 2016a). Also, the expansion of the invasive NAint
Delta lineage can be attributed, in part, to warmer temperatures
in its invasive range than in its native range (Guo et al., 2013),
as advancement of a population can be expected if a high
phenotypic plasticity to temperatures is inherent (Figure 2).
Alternatively, lower-latitudinal lineages may be unable to cope
with the rapidity of temperature changes due to a narrow niche-
breadth or acclimation-capacity, and may become genetically
diminished (Figure 2). Using P. australis as model for global
warming, a two-way scenario can be expected as the species
responds to temperature increases. On the one hand, species with
high phenotypic plasticity, and therefore greater niche breadths,
will likely be able to cope with warming and thrive equally
well or even extend their range northward. Another species in
which this is likey to occur is Nothofagus pumilio (Mathiasen and
Premoli, 2016). On the other hand, species with limited plasticity
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and narrower niche breadths may fail to acclimate, facing local
extinction in the worst case (Figure 2). Some herbaceous alpine
species occurring at high elevation provide a good example of
narrow niche breadth leading to local extinction (Schmid et al.,
2017). Indirect changes and interactions of temperature with
other abiotic factors, such as increased drought and salinity,
may impose additional challenges on P. australis populations in
already warm areas, possibly resulting in more favorable growth
conditions at higher latitudes (Figure 3; Brix, 1999b; Eller et al.,
2014a).

CO2 Effects
Atmospheric CO2-equivalents are likely to exceed 720 ppm, and
possibly reach 1000 ppm, by the late 21st century if greenhouse
gas emissions are not restricted substantially (IPCC, 2014). As a
C3 plant, P. australis will benefit from rising atmospheric CO2
concentrations, but there is growing evidence that the magnitude
of its response may be lineage-specific due to differences in
phenotypic and physiological plasticity (Figure 3). For example,
in an experiment in which CO2 was elevated to ∼700 ppm,
both the NAint M and NAnat lineage responded positively
to CO2 elevation but the NAint M lineage had considerably
greater plasticity in nearly every trait measured (Mozdzer and
Megonigal, 2012; Caplan et al., 2014). In contrast, several studies
focusing on other lineages of P. australis have found no significant
effects of elevated CO2 on biomass or morphological parameters,
though some photosynthetic enhancements have been reported
(Scholefield et al., 2004; Milla et al., 2006; Kim and Kang, 2008;
Eller et al., 2013). We note that these studies either did not
measure below-ground biomass productivity or did not account
for respiration rates, which may partly explain the lack of biomass
stimulation by elevated CO2.

Based on the above, differential responses to elevated CO2 may
result in lineage-specific shifts, increases in competitiveness and
distribution changes. However, interactions with other abiotic
factors such as salinity and nutrients make it more difficult to
predict the effects of elevated CO2 in natural environments. For
example, whilst shoot elongation rates are enhanced by elevated
CO2 and temperature to similar degrees in both the invasive
NAint Delta and the invasive NAint M lineages, the NAint Delta
lineage outperforms the NAint M lineage when grown at 20h
soil salinity (Eller et al., 2014a). The stronger growth response of
NAint Delta is facilitated, in large part, by intrinsically greater
photosynthetic rates (Table 1; Nguyen et al., 2013; Eller et al.,
2014a). Overall, the strongest effects on growth and carbon
assimilation rates are expected to result from changes in CO2
that are accompanied by increases in temperature or nutrient
enrichment, especially nitrogen (N) (Figures 2, 3; Mozdzer and
Megonigal, 2012; Eller et al., 2013, 2014a,b; Caplan et al., 2015),
which has been shown for other C3 species (Ainsworth and
Rogers, 2007).

Changes induced by elevated atmospheric CO2
concentrations may influence ecosystem services in P. australis
dominated wetlands. For example, elevated CO2 increases
the methane emission rate of both NAnat and NAint lineages
(Mozdzer and Megonigal, 2013), which may offset the net
carbon fixation of P. australis wetlands that would otherwise be

greenhouse gas sinks (Brix et al., 2001). Moreover, elevated CO2
induces greater belowground productivity and rooting depths
in the NAint M lineage (Mozdzer et al., 2016b), which are likely
to increase rates of belowground biomass accumulation and
surface elevation gain. Such effects could enhance the ability of
P. australis dominated wetlands to keep pace with sea level rise
(Rooth et al., 2003; Caplan et al., 2015; Mozdzer et al., 2016b).
Responses to elevated CO2 have predominantly been investigated
through short-term studies and have only investigated a few
P. australis lineages (including NAnat, NAint M, NAint Delta,
EU, and Med; Eller et al., 2013; Mozdzer and Megonigal, 2013;
Eller et al., 2014a,b); more research is needed to determine if
enhancement of growth and methane emission rates apply to
the whole species. Due to its high plasticity to atmospheric CO2
concentration, the NAint M lineage can be used as a model for
studying the responses of invasive C3 species to elevated CO2
(Figure 3), as high phenotypic plasticity is a common trait in
invasive species (Drenovsky et al., 2012; Gioria and Osborne,
2014; Colautti et al., 2017).

Salinity Effects
Saltwater intrusion due to global sea level rise is becoming a major
issue in both brackish saltmarshes and tidal freshwater wetlands
(Beckett et al., 2016). Moreover, regions with high salinity and
high evaporation rates are likely to become more saline, while
regions of low salinity and high precipitation will become fresher,
inducing greater extremes in salinity in wetlands globally (IPCC,
2014). Finally, some climate change models predict an increase
in the intensity and frequency of tropical storms and hurricanes
(e.g., Bender et al., 2010; Knutson et al., 2010), which may lead
to flooding and salt intrusion in near-coastal habitats. Hence,
soil salinity regimes are shifting such that salinity tolerance
is of increasing importance to biotic communities in coastal
ecosystems.

The ecological amplitude of P. australis extends from
freshwater to saline tidal wetlands, with plants persisting at
salinities as high as 65h (recorded in Delaware, eastern
United States; Engloner, 2009), with tolerances of 22.5h
(Lissner and Schierup, 1997) to 35h salinity reported for
juveniles (Engloner, 2009) and a limit of 30h reported for
seed germination (Yu et al., 2012). The mechanisms of salt
tolerance in P. australis include Na+ exclusion or vacuolar
compartmentalization, tissue dehydration or compatible osmotic
solute accumulation, and increased gene expression of oxidative
stress response enzymes (Matoh et al., 1988; Lissner and Schierup,
1997; Lissner et al., 1999a; Pagter et al., 2005; Vasquez et al., 2005;
Achenbach and Brix, 2013; Achenbach et al., 2013; Eller et al.,
2014b). Certain ecotypes of P. australis are more salt tolerant
than others (Table 1), with higher salinities yielding greater
germination rates and better developed root systems (Rechav,
1967; Van der Toorn, 1972). Several controlled experimental
studies have shown that NAint Delta has higher salt tolerance
than NAint M, though both perform better at higher salinities
than Med or the NAnat lineages (Achenbach and Brix, 2013;
Eller et al., 2014a). Since the NAnat lineage has considerably
greater N uptake rates than the invasive NAint M lineage at
salt concentrations up to 20h (Mozdzer et al., 2010), it is
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primarily limited to oligohaline and mesohaline wetlands in
the mid-Atlantic United States (Vasquez et al., 2005; Packett
and Chambers, 2006; Mozdzer et al., 2010). However, in other
regions of the United States, like New England and the Midwest,
native North American populations are not limited by salinity
and occur in brackish river systems as well as in saltmarshes
(e.g., Burdick et al., 2001; Kettenring and Whigham, 2009;
Kettenring and Mock, 2012; Cronin et al., 2015). These results
indicate that salt tolerance is genotype-specific rather than
lineage-specific, and highly variable within the species. Plant
responses to changes in soil salinity can therefore be elucidated
by studying locally adapted genotypes rather than lineages; the
genetic composition of a population exposed to changing salinity
regimes will be altered according to its pre-adaptation for salt
tolerance (Figure 2).

Locally adapted genotypes may, however, not be the only
strategy P. australis employs to persist in saline environments.
Salt avoidance by below-ground labor division may also play a
significant role in acclimation to shifts in salinity regime, as has
also been found in the clonal species Schoenoplectus americanus
in a brackish tidal wetland (Ikegami et al., 2008). An important
component of P. australis’ ability to grow in soils spanning a
wide range of salinities is its extensive rhizome and root system.
Thus, most of the belowground biomass of lineages occurring in
North America has been found in the upper 70 cm of soil (Moore
et al., 2012), though depths can exceed 3 m even at coastal sites
(Mozdzer et al., 2016b). This morphology may grant the species
access to freshwater resources at soil depths less affected by tides.
The importance of belowground organs to salt tolerance has also
been demonstrated in Asia in landscapes with patchy soil salinity,
where the genetic variation of P. australis is closely correlated
with habitat heterogeneity (Gao et al., 2012).

Despite being able to survive and grow in saline soil
conditions, P. australis has historically been considered a fresh
to brackish water species (Raunkiaer, 1893; Haslam, 1973; Matoh
et al., 1988). Several studies have identified negative effects
of greater salinity levels on various traits including biomass
production, culm height, stand density, culm diameter, and
rhizome carbohydrate content (Lissner et al., 1999a; Engloner,
2009; Achenbach et al., 2013; Tang et al., 2013; Eller et al.,
2014a). Physiologically, P. australis responses to high salinity
are associated with decreases in tissue water potential, stomatal
conductance and transpiration rates, photosynthetic efficiency
of PSII, and nitrogen uptake rates (Chambers et al., 1998;
Lissner et al., 1999b; Naumann et al., 2007; Pagter et al., 2009;
Mozdzer et al., 2010; Zhang and Deng, 2012). The photosynthetic
recovery and re-opening of stomata after short-term exposure
to high salinity differs between genotypes of different lineages,
demonstrating that sensing and responding to osmotic stress is
a genotype-specific feature (Achenbach and Brix, 2014). Also,
high-affinity K+ transporters isolated from salt tolerant reed
plants are more efficient in K+ uptake and less permeable to
Na+ than transporters from salt-sensitive plants, offering an
explanation for their difference in salt-sensitivity (Takahashi
et al., 2007).

Salinity increases in freshwater wetlands are likely to affect
the natural distribution of P. australis genotypes and to alter

the competitive dynamics between less and more salt-resistant
plants. Spread of P. australis into salt marshes might also
be accelerated in El Niño years due to temporary decreases
in salinity from heavy rains that open windows for seedling
establishment (Minchinton, 2002) and also due to the expansion
of patches that maintain access to less saline groundwater in other
parts of the stand. Storm surge from tropical storms, cyclones,
and hurricanes can flood near-coastal freshwater wetlands and
greatly elevate salinity levels. In North America, the spread of
invasive NAint M populations is strongly positively correlated
with the frequency of these storms and it has been argued that
NAint M lineage thrives because it is more salt tolerant than
native wetland plants (Burdick and Konisky, 2003; Bhattarai and
Cronin, 2014). Unlike climatic adaptations that can be attributed,
in part, to the phylogeographic origins of P. australis lineages,
salt tolerance cannot simply be ascribed to a specific phylogenetic
background, but is rather a consequence of the single pre-adapted
genotype (Gao et al., 2012; Achenbach et al., 2013). Locally
adapted genotypes of different reed lineages may therefore serve
as models for studying responses to changes in soil salinity.
Depending on the lineage, however, the outcome of interactions
with other global change drivers can be estimated. Overall, future
changes in P. australis salt tolerance are very likely, as responses
to salinity have been shown to interact with temperature and
CO2, and may confer greater salt resistance on P. australis due
to improved osmotic acclimation and higher assimilation rates
(Lissner et al., 1999a; Eller et al., 2014a). A lineage with inherently
high phenotypic plasticity, such as NAint M, can be expected to
benefit more from interactive effects of salinity and elevated CO2
than NAnat.

More research is needed to determine which genetic factors
underlie the high salt tolerance of genotypes within P. australis
lineages, and how and why these factors arise in these genotypes.
Due to their increased likelihood of including salt-resistant
genotypes, populations and stands with high genetic variability
will probably have the strongest prospects of adapting to changes
in salinity. Moreover, individual stands of P. australis will likely
face genetic impoverishment following the extinction of salt-
sensitive genotypes under shifting soil salinity regimes (Figure 2).

Flooding Effects
Climate projections indicate that greater variability in
precipitation will cause more frequent extremes in precipitation
and discharge in many areas. This will increase the frequency
and magnitude of inland and coastal floods, which will be
compounded by larger storm surges and rising sea levels (IPCC,
2014).

Although P. australis seedlings are extremely vulnerable to
flooding (Chambers et al., 2003; Mauchamp and Methy, 2004;
Baldwin et al., 2010; Kettenring et al., 2015), once established,
seedlings and adult plants are highly tolerant of inundation.
Specifically, the survival, physiology, and growth of P. australis
are less affected by submersion than are many other wetland
plants (Gries et al., 1990; Brix et al., 1992; Armstrong et al.,
1996b). Moreover, susceptibility to flooding decreases with
ontogeny in the species (Bart and Hartman, 2003; Chambers
et al., 2003; Whyte et al., 2008; Tulbure and Johnston, 2010).
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P. australis is also tolerant of greater amplitude fluctuations
(±45 cm) in water level than other species, provided that its
elevation is close to the mean water level (White et al., 2007).
However, high water during extreme flooding years caused reed
belts to decline along lakes in southern Germany and Austria;
stands rejuvenated only in low-water years (Ostendorp, 1999;
Ostendorp et al., 2003).

We found no studies that directly assessed genotypic
differences in flooding tolerance. However, the number of
genotypes represented in a lakeshore stand in Hungary decreased
with water depth (Engloner and Major, 2011), which the authors
attributed to genotype-specific flooding tolerance. Another study
found that seasonal profiles of amino acids and carbohydrates
differed by genotype and flooding regime in a German fen
(Koppitz, 2004; Koppitz et al., 2004), though genotype by
flooding regime interactions were not reported. These findings
indicate that responses to flooding are a consequence of pre-
adapted genotypes rather than adaptation at the lineage scale.
Like soil salinity, plant responses to fluctuating water levels can
best be studied in locally adapted genotypes, and the population
response to be expected will be an alteration of its genetic
composition (Figure 2).

Responses to flooding depend on the interaction of other
drivers of global change in a way that is similar to soil salinity.
For example, belowground, deeper water induces a shallower
rhizome depth distribution (Weisner and Strand, 1996; Vretare
et al., 2001; White and Ganf, 2002; Mozdzer et al., 2016b), but
this rooting depth will deepen with rising CO2 concentrations
(Mozdzer et al., 2016b). Vretare et al. (2001) suggested that
P. australis increases allocation to stem height when growing
in deeper water and simultaneously decreases stem density
and belowground allocation. While stem density appears to be
consistently lower in deeper water (Yamasaki and Tange, 1981;
Vretare et al., 2001; Bodensteiner and Gabriel, 2003), stem height
has been reported to both increase and decrease in response to
deeper flooding (e.g., Hellings and Gallagher, 1992; Coops et al.,
1996; Vretare et al., 2001; Engloner, 2004). Genotypic differences
in the P. australis plants studied may contribute to the variation
in outcomes from these studies, though this has not been
assessed in the majority of cases. Facing more frequent flooding
regimes with global change (IPCC, 2014), natural selection of
flooding-resistant genotypes can be anticipated such that flooded
populations may become genetically impoverished. Previous
studies have often focused on the growth and morphological
acclimation of P. australis to flooding, but there is a need to
investigate the physiological consequences of inundation more
thoroughly. Recent advances in research on photosynthesis
in submerged shoots showed that elevated CO2 can alleviate
flooding stress (Winkel et al., 2014). Although not investigated
in P. australis, this capability would be especially relevant to
determining seedling responses to inundation.

Drought Effects
Phragmites australis is well-adapted for life in flooded
environments but is tolerant of the full range of wetland
hydrological conditions, including drought (Pagter et al., 2005).
Wetland hydrology can be highly variable, with relatively dry

conditions being common or even extreme in times of drought
(Mitsch and Gosselink, 2007). With climate change, drought is
predicted to develop more quickly and increase in intensity in
many regions of the world (IPCC, 2014; Trenberth et al., 2014).
Phragmites australis deals with drought through both short-
term tolerance mechanisms (i.e., by making physiological or
biochemical adjustments) and longer-term avoidance strategies
that affect morphological and developmental traits (Morgan,
1984; Chaves et al., 2002; Pagter et al., 2005; Touchette et al.,
2007). Following extreme low-water conditions, reed stands
employ a “guerilla strategy” to efficiently and quickly occupy
new wet habitats; they produce tillers across the uninhabited
littoral zone as well as “legehalme,” which are rapidly elongating,
horizontal shoots from which new culms emerge at the nodes
(Ostendorp and Dienst, 2012).

Under dry soil conditions (in situ), P. australis substantially
decreases leaf osmotic potential and accumulates more soluble
sugars, amino acids, protein metabolites, proline, and nutrient
elements than under moist conditions (Elhaak et al., 1993).
When subjected to mild water stress, P. australis reduces
total leaf area and biomass, but severe water stress induces
changes in osmolality, leaf proline concentration, leaf chlorophyll
a content, stomatal conductance, and photosynthetic rates
(Pagter et al., 2005). Similarly, terrestrial dryland ecotypes of
P. australis from northwest China increase their capacity for
osmotic adjustment, significantly decrease stomatal conductance,
reduce net photosynthetic rate, and their cover and height
declines (Cui et al., 2010). Compared to wetland ecotypes,
they also exhibit greater water use efficiency, increased activity
of C4 photosynthetic enzymes, protective down-regulation of
photosynthetic enzyme activities, and greater antioxidant enzyme
activity (contributing to oxidative stress protection; Wang et al.,
1998; Zhu et al., 2001, 2003a,b; Gong et al., 2011; Xiang
et al., 2012). With the onset of complete drought (in controlled
experimental studies), P. australis showed signs of drought
in leaf xylem pressure potentials by the second day, stomatal
conductance and photosynthesis by days four to eight, and leaf
rolling and wilting by day five (Saltmarsh et al., 2006; Naumann
et al., 2007). Field-based phenological studies of P. australis
in Great Britain showed that years with spring drought can
induce later emergence and flowering, as well as shorter culms,
compared to years with normally flooding patterns. Also, years
with fall drought may lead to earlier senescence compared
to years when the stand is flooded. Nonetheless, P. australis
rhizomes can penetrate up to 2 m into the soil to access deeper
groundwater (Haslam, 1970).

As with salinity tolerance, it is very likely that some P. australis
genotypes are more drought tolerant than others, even within
lineages (Figure 3). However, drought events are more tightly
coupled to climate than are high salinity periods, with the
implication that drought-resistance could be phylogeographically
determined in the species. It remains to be determined if
phylogenetically determined drought tolerant lineages are also
salt tolerant. For example, it seems that the North American
native lineage is more sensitive to drought in some regions, such
as the southwestern United States, where it is often associated
with small streams and springs, which are sensitive to small
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changes in water availability (Meyerson et al., 2010a; Kettenring
and Mock, 2012; Kettenring et al., 2012). In contrast, short-
term drought that leads to temporary drawdowns may benefit
colonization of the NAint M lineage by fostering seedling
recruitment (Alvarez et al., 2005; Tulbure et al., 2007; Whyte
et al., 2008; Kettenring et al., 2015, 2016). These studies serve
as examples for using P. australis as model to study, whether
physiologically similar responses to different global change
factors result from similar adaptations or are independent of the
plants’ phylogeographic origin.

Eutrophication Effects
Increases in nutrients from atmospheric deposition, agriculture,
and development are a well-known component of global
change (Galloway et al., 2004). The ability of P. australis to
efficiently take up nutrients, especially nitrogen (N; i.e., NO3

−,
NH4

+, and dissolved organic nitrogen), suggests that increased
eutrophication from human activities will have a positive impact
on the spread of the species, particularly its invasive lineages.
Wetland eutrophication is expected to increase in areas such
as in agricultural and densely populated urban and suburban
areas where nutrient loads continue to increase. However, the
distribution of eutrophication under global change is likely
to be spatially heterogeneous across regions. In some places,
increased water resources due to glacier melting or increased
precipitation may dilute N concentrations, whereas, in other
places, evaporation and decreased precipitation could exacerbate
the effects of pollutants and nutrients (IPCC, 2007, 2014).

Although P. australis grown under controlled experimental
conditions generally responds positively to nutrient addition, e.g.,
displaying increased biomass production and a greater shoot
density (Szczepanska and Szczepanski, 1976; Romero et al., 1999;
Tho et al., 2016), eutrophication was a key factor responsible for
reed die-back in Europe during the 1990s (van der Putten, 1997).
However, the detrimental effects were predominantly indirect
and caused by anoxic sediments, phytotoxin production from
algal blooms or increased litter production, callus development
and blockage of gas transport pathways in rhizomes and roots,
and exacerbated by other human-induced impairments of natural
reed habitats (Armstrong et al., 1996c; Brix, 1999b). In general,
the high aeration capacity of the species allows for high root
respiration rates throughout its large root systems, which,
in turn, can facilitate high nutrient uptake rates (Nakamura
et al., 2013). Phragmites australis lineages with inherently
high biomass productivity and high belowground:aboveground
ratios are therefore well-adapted for growth under increasingly
eutrophic and anaerobic conditions, and appropriate models for
investigating nutrient availability responses of highly productive
and ruderal species (Figure 3). Increased nutrient availability
is also likely to increase P. australis inflorescence and floret
production (Kettenring et al., 2011) as well as seedling success
given that seedlings will grow more rapidly beyond a vulnerable
size (Saltonstall and Stevenson, 2007; Kettenring et al., 2015).
Nutrient addition can also alter phenology, inducing culms
to grow more rapidly early and late in the year, increasing
their heights and annual carbon gains (Caplan et al., 2015).
Relative to other wetland species, N affinity is very high for

P. australis, but is usually its limiting nutrient (Chambers
et al., 1998; Clevering, 1998; Romero et al., 1999; Saltonstall
and Stevenson, 2007; Mozdzer et al., 2010). In contrast to
phosphate, nitrate availability has been shown to result in
altered aboveground:belowground biomass ratio of P. australis
by favoring aboveground productivity with increasing N addition
(Ulrich and Burton, 1985).

In North America, both native and introduced P. australis
lineages have the capacity to rapidly take up and assimilate
nutrients including inorganic N (Meyerson et al., 2000; Windham
and Meyerson, 2003; Hazelton et al., 2010; Mozdzer and Zieman,
2010) and organic N (Mozdzer et al., 2010). However, most
studies indicate that, in response to increased N availability, the
NAint M lineage is competitively superior to many other wetland
species (Chambers et al., 1998; Meyerson et al., 2000; Windham
and Meyerson, 2003; Hazelton et al., 2010; Mozdzer et al., 2010,
2013) as well as to the native NAnat lineage (Saltonstall and
Stevenson, 2007; Holdredge et al., 2010; Mozdzer et al., 2010,
2013; Mozdzer and Megonigal, 2012). This may be due to its
ability to substantially increase carbon assimilation in response
to greater N availability (Caplan et al., 2015). Nevertheless, NAint
M is also able to regulate its N metabolism to outperform
NAnat under low-N conditions (Mozdzer and Megonigal, 2012).
This greater plasticity and ability to use available N in both
eutrophic and oligotrophic ecosystems can enhance this lineage’s
invasiveness by conferring traits such as shifts in phenology as
well as increased height growth, leaf area, specific leaf area, leaf
area ratio, root mass fraction, and foraging distance (Meadows,
2006; Holdredge et al., 2010; Mozdzer and Zieman, 2010;
Mozdzer et al., 2010, 2013; Mozdzer and Megonigal, 2012).

In contrast to NAint M in North America, reeds from the East
Asian/Australian group have lower plasticity, N uptake capacity
and assimilation rates than co-occurring Spartina alterniflora, a
C4 grass that displaces P. australis on the east coast of China
(Zhao et al., 2010). Reed lineages adapted to nutrient-poor sites,
which preferably translocate nutrients to storage organs rather
than the assimilating tissue, may be outcompeted by stronger
competitors for nutrients when in eutrophied settings. They may
also respond by increasing productivity and culm height, which,
due to their inherently lower tissue N allocation, may lead to
poor culm stability and mechanical impairment (Kühl et al.,
1997). Lineages that are capable of utilizing nutrients at higher
concentrations, especially by allocating more biomass and N to
their aboveground organs, may gain competitive advantages that
contribute to invasive behavior in eutrophied habitats (Tho et al.,
2016). The impacts of eutrophication on plants that are adapted
to low vs. high nutrient availability can be studied by using NAnat
and NAint M. Lineages EU and MED are also appropriate model
systems to investigate eutrophication, although to a lesser extent
than the North American lineages (Figure 3).

CONCLUSION AND FUTURE OUTLOOK

Although P. australis has been intensely studied, gaps in
knowledge remain with respect to the effects that global change
will have on community- and ecosystem-level processes. For
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example, it is not clear how global change will affect Phragmites-
herbivore interactions under increased N availability, rising
temperatures, and in some regions, increasing salinity (Cronin
et al., 2015). Also, the increasing availability of phosphorus
may ameliorate the susceptibility of P. australis to physiological
stress induced by increased N availability (Tylová et al., 2013)
and deserves further investigation. Additional research on
wetland soil biogeochemistry and potential changes in nutrient
availability under global change are also critically needed. For
example, deep rooting by P. australis primes soil carbon deep
within the soil profile, accelerating N mineralization under
elevated CO2 and N conditions (Mozdzer et al., 2016b) and
inducing a loss of previously recalcitrant soil carbon (Bernal
et al., 2017). This may offset the concomitant stimulation to
P. australis’ gross primary productivity (Caplan et al., 2015),
such that the net effects on carbon storage potential of wetlands
under global change are unclear. Moreover, there is a need
to investigate the suggested modified photosynthetic pathway
to compare responses to climate change of C3 and C4-like
lineages, including gene-expression patterns and the role of
photorespiration under elevated atmospheric CO2 (Bräutigam
and Gowik, 2016). Warmer temperatures may increase the
impact of P. australis-specific pathogens (Nechwatal et al., 2008),
highlighting that climatic effects on pathogenic and symbiotic
organisms in the rhizosphere, as well as their effects on the
performance of P. australis, deserve further attention. Field
investigations addressing higher trophic levels and changing soil
conditions would extend future projections of the viability and
range distribution of P. australis especially in the plant’s role as
an ecosystem engineer affecting the role of wetland habitats as
carbon sinks (Mitsch et al., 2013; Caplan et al., 2015).

As a species, P. australis has a high phenotypic plasticity,
an extensive ecological amplitude, and capacity to acclimate
to adverse environmental conditions. As such, P. australis is
unlikely to be threatened by the multiple effects of global
change in most regions, but can be expected to benefit from
them in many cases. Here, the occurrence of strong latitudinal
clines within and between P. australis lineages can be a useful
tool for predicting climate change responses, specifically using
populations within the same lineage that are distributed over
a large geographical gradient. Adaptation to the climate of
origin will confer these populations phenotypic plasticity to
climatic drivers, and allow comparisons of climate change
effects. Reverse transplant experiments and common gardens
are particularly amenable to investigations of functional trait
responses to climate change. This is demonstrated by reed
lineages with distinct phylogeographic origins growing in similar
environments, which respond differently to changes in climatic
conditions. As global change will place intense selective pressure
on diverse P. australis lineages, the distribution and interactions
of co-occurring lineages and their within-population variability
is very likely to be altered (Figure 3). The globally high genetic
(Saltonstall, 2002; Lambertini et al., 2006, 2012a,b,c; Meyerson
et al., 2010a, 2012), genomic (Suda et al., 2015; Meyerson et al.,
2016b), and phenotypic diversity within P. australis suggests that
both lineage- and genotype-specific responses to global change
are likely to occur, resulting either in acclimation, advancement

or range-shifts. We have distinguished four lineages that can be
suitable models for plant species from higher latitudinal ranges
(EU), lower-latitudinal ranges (MED), confined ecosystems
(NAnat), and fast-spreading species with high phenotypic
plasticity (NAint M) (Figure 3).

Although some stress tolerance mechanisms are genetically
determined (e.g., those against flooding or salinity), they do
not seem to be consistent within lineages. Hence, selection and
differentiation within reed populations will be affected by their
interactions with local environmental factors. In the worst case,
a directional shift in the environment may result in genetic
impoverishment of those populations or lineages with a few
pre-adapted genotypes and few genotypes with inherently high
phenotypic plasticity toward the specific global change driver
(Figure 2). Ultimately, reduced genetic diversity may even
lead to diminished population viability and local extirpation
(Pauls et al., 2013). It is important to note that locally adapted
populations that would otherwise be maladapted for rapidly
changing future conditions may experience expanded gene-flow
due to hybridization between lineages and could eventually
replenish populations with genetic diversity.

The rapid invasion of non-native P. australis lineages
across North America proves that a selection of well-adapted,
highly plastic genotypes in a novel environment is possible
and may occur elsewhere. The consequences for ecosystem
functioning may be drastic and impossible to reverse. The
replacement of diverse genotypes with a few well-adapted
genotypes or lineages may yield strong competitors with
traits promoting invasion; this may be difficult to detect and
control in a species with a cosmopolitan distribution. As we
have shown, the ecophysiological responses of P. australis to
global change depend on the lineage and genotypes within
it. We suggest that the phylogeographic background has to
be considered when estimating the future distribution of
P. australis populations and populations of cosmopolitan species
in general.
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