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Abstract

We characterize the subRiemannian cut locus of the origin in the free Carnot
group of step two with three generators, giving a new, independent proof of a result
by Myasnichenko [Mya02]. We also calculate explicitly the cut time of any extremal
path and the distance from the origin of all points of the cut locus. Furthermore,
by using the Hamiltonian approach, we show that the cut time of strictly normal
extremal paths is a smooth explicit function of the initial velocity covector. Finally,
using our previous results, we show that at any cut point the distance has a corner-like
singularity.

1. Introduction and statement of the results

One of the most interesting aspects of subRiemannian analysis is the study of the cut locus
of a given distance. It is well known that a correct understanding of the cut locus is crucial
in problems concerning subRiemannian optimal transport (see [AR04, AL09, FR10] and
analysis of the subelliptic heat kernel (see [BBN12]).

In this paper, we introduce a very explicit technique which provides the calculation
of the subRiemannian cut locus of the origin in the free Carnot group of step two with

∗2010 Mathematics Subject Classification. Primary 53C17; Secondary 49J15. Key words and Phrases.
Carnot groups, Cut locus, SubRiemannian geodesic.
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three generators. We are also able to explicitly calculate the cut time of any extremal path
and the distance from the origin of all points of the cut locus. Furthermore, we show the
presence of Lipschitz singularities at any point of the cut locus.

To state our results, let us introduce the free Carnot group of step two with three
generators. Let V be a three dimensional vector space equipped with an inner product 〈·, ·〉.
Consider the six-dimensional linear space F3 := V× ∧2V with the Lie group law

(x, t) · (ξ, τ) =
(
x+ ξ, t+ τ +

1

2
x ∧ ξ

)
, (1.1)

where (x, t) and (ξ, τ) ∈ V × ∧2V. Let d be the left invariant subRiemannian distance
defined on the Lie group (F3, ·) by the data (V, 〈·, ·〉) and denote by Cut0 the cut locus of
the origin (see Section 2 for detailed explanations).

The first result of this paper can be stated as follows:

Theorem 1.1. Let F3 be the free two step Carnot group with three generators. Then

Cut0 =
{

(x, t) : t 6= 0 ∈ ∧2V and x ⊥ supp t
}
. (1.2)

Here, if y, y′ ∈ V, given the bivector t = y ∧ y′ ∈ ∧2V, we denote by supp(t) =
span{y, y′} its support (see the discussion in Section 2.1). The set Cut0 is a smooth four
dimensional submanifold of F3 (see Remark 4.3). The cut locus of any point (x, t) 6= (0, 0)
can be easily obtained from Cut0 by group translation.

Remark 1.2. Some comments on this theorem are in order.
1. The cut locus Cut0 has been already described by Myasnichenko [Mya02] with a

technique based on the analysis of conjugate points. Our technique is completely
independent from the analysis of the conjugate locus and it allows us to get several
more information on the subRiemannian distance (see the theorems below).

2. In [RT09, Lemma 2.11], Rifford and Trélat prove that Cut0 ∪{0} is closed in absence
of abnormal minimizers. In our model, which contains abnormal minimizers, it turns
out that Cut0 ∪{0} is not closed. Indeed, points of the form (x, 0) ∈ V×∧2V (which
belong to the abnormal set, see [DMO+16]) are never cut points, but they belong to
the closure of Cut0.

3. If we think of the Heisenberg group as the free two step Carnot group with two
generators F2,2 (i.e. dimV = 2), then formula (1.2) reduces as expected to the known
fact Cut0 = {(0, t) ∈ V × ∧2V ∼ V × R}. Formula (1.2) is dimension free and one
could conjecture that such structure of the cut locus holds in any dimension. We
plan to come back to these generalizations in a subsequent project.1

Fine properties of subRiemannian length-minimizing curves and of the related distance
in Carnot groups of step two are studied by [ABB12] and [BBG12] in the corank one and
two. The case of h-type groups is discussed in [AM16]. Analysis in step three examples
has been performed in [ABCK97], for the Martinet case, and in [AS11, AS15] for the Engel
group. We also mention the very recent paper [BBN16], where a detailed discussion of the
cut locus in the biHeisenberg group is performed. Outside of the setting of Carnot groups,

1After the submission of this paper, a precise conjecture for the cut locus on the free group in higher
dimension has been formulated by Rizzi and Serres [RS16].
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we mention [Sac11] and [PS16]. Finally, we quote the results in [AF07] on the cut locus
from surfaces in the Heisenberg group.

Our further results involve a calculation of the cut time of any extremal curve and an
explicit computation of the distance from the origin of points (x, t) ∈ Cut0. To describe
such result, we recall that, up to a reparametrization, length-minimizers for the subRie-
mannian length have the form s 7→ γ(s) = (x(s), t(s)), where ẋ(s) =: u(s) has the form

u(s) = a cos(2ϕs) + b sin(2ϕs) + z (1.3)

and ṫ(s) = 1
2x(s) ∧ u(s). Here the vectors a, b, z ∈ R3 must be pairwise perpendicular,

|a| = |b| > 0 and ϕ can be assumed to be nonnegative. The vector z can possibly vanish
(this corresponds to a curve which lives in a “Heisenberg subgroup”). See the discussion in
Section 2.2 for a precise description. We will calculate the cut time of any such extremal
curve in terms of the following explicit functions:

S(θ) :=
sin θ

θ
, U(θ) :=

θ − sin θ cos θ

4θ2
, V (θ) :=

sin θ − θ cos θ

2θ2
. (1.4)

More precisely, letting

Q(θ) = −U(θ)S(θ)

V (θ)
, (1.5)

and denoting by ϕ1 ∈ ]π, 3
2π[ the first positive zero of the function V in (1.4), we will

show that the function Q is a strictly increasing bijection from [π, ϕ1[ to [Q(π), Q(ϕ1−)[ =
[0,+∞[ (see Lemma 4.1 and the plot in figure 4.1). Then we will prove the following
theorem.

Theorem 1.3. Let a, b, z ∈ V be orthogonal vectors with |a| = |b| > 0 and let ϕ > 0.
Consider the control

u(s) = a cos(2ϕs) + b sin(2ϕs) + z

and let s 7→ γ(s, a, b, z, 2ϕ) be the corresponding curve. Then γ(·, a, b, z, 2ϕ) minimizes
length up to the time

tcut(a, b, z, ϕ) =
Q−1(|z|2/|a|2)

ϕ
.

Observe that, if we choose z = 0 we get tcut(a, b, 0, ϕ) = π
ϕ , which is the familiar case

of the Heisenberg group. However, it is interesting to remark that the cut time displays
the following “discontinuous” behavior. If a, b, z, ϕ are fixed with a, b, z 6= 0 pairwise
orthogonal, |a| = |b| and ϕ > 0, it turns out that

tcut(εa, εb, z, ϕ) =
1

ϕ
Q−1

( |z|2
ε2|a|2

)
→ Q−1(+∞)

ϕ
=
ϕ1

ϕ
,

as ε→ 0+. However, the cut time of the limit curve γ(s) = (sz, 0) is +∞. Note that such
limit curve is abnormal (see Section 2). Using the Hamiltonian approach, we will express
the cut time as an explicit function of the initial velocity covector (see Section 5).

Our further result involves the explicit computation of the distance from the origin
and an arbitrary point of the cut locus. To state our result we introduce the real valued
functions

P (θ) := −S(θ)

V (θ)

√
W (θ)

U(θ)
and R(θ) :=

1− S(θ)2√
U(θ)W (θ)

,
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where W (θ) := U(θ) − S(θ)V (θ). The function R is well defined and positive for θ > 0,
because W (θ) > 0 for all θ > 0 (see Lemma 3.1). Furthermore, we will show that if ϕ1 ∈
]π, 3

2π[ denotes the first positive zero of the function V in (1.4), then P : [π, ϕ1[→ [0,+∞[
is an increasing bijection. We denote by P−1 the inverse function of P

∣∣
[π,ϕ1[

. Then we will
prove the following formula:

Theorem 1.4. Let (x, t) ∈ Cut0. Then

d
(
(0, 0), (x, t)

)2
= |x|2 +R(θ)|t|, where θ = P−1

( |x|2
|t|

)
∈ [π, ϕ1[. (1.6)

We will see that the equation P (θ) = |x|2
|t| has a countable family of solutions θk ∈

]kπ, ϕk[, where ϕk ∈
]
kπ, (k + 1

2)π
[
is the k-th positive solution of tan θ = θ. See the

discussion after (3.3). In Theorem 1.4 we prove that the minimizing choice is the smallest
one θ1.

If we specialize formula (1.6) to the case x = 0, we must take θ = P−1(0) = π and
then S(θ) = 0, U(θ) = 1

4π and we find

d((0, 0), (0, t))2 = 4π|t|,

which is the familiar formula for the distance between the origin and a point in the center
in the Heisenberg group (for a complete description of geodesics in Heisenberg group see
[Mon00]). The value θ = ϕ1 is never achieved.

Our final result concerns the regularity of the subRiemannian distance from the origin
in the cut locus. Observe that weak regularity properties (like semiconcavity) have been
discussed in [CR08, FR10, MM16, LN15]. Concerning smooth regularity properties, it is
well known that the subRiemannian distance from a point 0 cannot be smooth in any
pointed neighborhood of 0. However, it is known that the subRiemannian distance is
smooth outside of the abnormal set and of the cut locus. In our model, it turns out that
the abnormal set has the form Abn0 = V× 0∧2V (see Section 2.3) and it has been proved
that the distance from the origin d is not differentiable at any abnormal point (see [MM16]
for precise estimates). As a byproduct of our Theorem 3.2 it is easy to see that d is
not differentiable at any point of Cut0 (see Remark 3.7). In the present paper we obtain
more precise estimates using the description of the profile for the subRiemannian spheres
(Corollary 4.4). Indeed, we are able to exhibit the presence of a kind of two-dimensional
corner-like singularities at cut points. Our estimates also ensure that the distance cannot
be semiconvex at any point of the cut locus.

Theorem 1.5. Let (x, t) ∈ Cut0. Then, there is C > 0 and a C1-smooth two-dimensional
submanifold Σ containing (x, t) such that

d(x, t) ≤ d(x, t)− C|(x, t)− (x, t)| for all (x, t) ∈ Σ. (1.7)

Furthermore, for any open neighborhood Ω of (x, t) we have the estimate

inf
(x,t),(x+h,t+k),(x−h,t−k)∈Ω

d(x+ h, t+ k) + d(x− h, t− k)− 2d(x, t)

h2 + k2
= −∞. (1.8)
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Estimate (1.8) gives a positive answer in our model to a question raised by Figalli and
Rifford (see the Open problem at p 145-146 in [FR10]).

The paper is structured as follows. Section 2 contains preliminaries. In Section 3 we
prove the inclusion Σ ⊂ Cut0 and Theorem 1.4. In Subsection 4.1 we prove Theorem 1.3
and we conclude the proof of Theorem 1.1 (inclusion Cut0 ⊂ Σ). In Subsection 4.2 we
describe the profile of subRiemannian spheres. Section 5 contains some remarks on the
Hamiltonian point of view. Using such approach we show that in the strictly normal
case, the cut time of extremal paths is a smooth explicit function of the initial covector.
In Section 6 we state and prove Theorem 1.5, on the singularity of the subRiemannian
distance at cut points.

2. Preliminaries

2.1. Bivectors

Let V = span{e1, . . . , em} be a linear space. Define ∧2V := span{ej ∧ek : 1 ≤ j < k ≤ m}.
Given two vectors x, y ∈ V, the elementary bivector t = x ∧ y ∈ ∧2V can be expanded as

x ∧ y =
∑
j

(xjej) ∧
∑
k

(ykek) =
∑

1≤j<k≤m
(xjyk − xkyj)ej ∧ ek =:

∑
1≤j<k≤m

(x ∧ y)jkej ∧ ek.

If e1, . . . , em is an orthonormal basis with respect to some inner product 〈·, ·〉 on V, we
define the related product on ∧2V by requiring that the basis ej ∧ ek with 1 ≤ j < k ≤ m
is orthonormal. It turns out that, on elementary bivectors,

〈x ∧ y, ξ ∧ η〉 = 〈x, ξ〉〈y, η〉 − 〈x, η〉〈y, ξ〉 for all x, y, ξ, η ∈ Rm. (2.1)

The inner product 〈z, ζ〉 can be extended linearly to general bivectors.
Concerning the three dimensional case, dimV = 3, it is well known that any bivector

t ∈ ∧2V can be written in the elementary form t = x ∧ y, for suitable x, y ∈ V. Although
the choice of x and y is not unique, the subspace span{x, y} does not depend on such
choice and it is called support of the bivector. See the discussion in [MM16], where the
higher dimensional case is treated.

Finally, it is easy to check that if V is a finite dimensional vector space and if x0 and
y0 are independent in V, then x ∧ y = x0 ∧ y0 implies that x, y ∈ span{x0, y0}.

2.2. The free group F3

Let V be a three-dimensional vector space with an inner product 〈·, ·〉. Denote by (x, t)
variables in V×∧2V. If e1, e2, e3 is an orthonormal basis of V, then x = x1e1+x2e2+x3e3 ∼
(x1, x2, x3) and t = t12e1 ∧ e2 + t13e1 ∧ e3 + t23e2 ∧ e3 ∼ (t12, t13, t23) ∈ R3. Introduce the
law

(x, t) · (ξ, τ) =
(
x+ ξ, t+ τ +

1

2
x ∧ ξ

)
, (2.2)

Denote by F3 the Lie group (V× ∧2V, ·).
Fix an orthonormal basis e1, e2, e3 of V and corresponding coordinates (x1, x2, x3, t12, t13, t23)

in V× ∧2V. Define the family of three vector fields

X1 = ∂1 −
x2

2
∂12 −

x3

2
∂13, X2 = ∂2 +

x1

2
∂12 −

x3

2
∂23, X3 = ∂3 +

x1

2
∂13 +

x2

2
∂23.
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Note the commutation relations [Xj , Xk] = ∂jk for all j, k such that 1 ≤ j < k ≤ 3. The
vector fields X1, X2, X3 are homogeneous of degree 1 with respect to the family of dilations
(δr)r>0 defined by

δr(x, t) = (rx, r2t) ∀ (x, t) ∈ V × ∧2V. (2.3)

Namely, we have Xj(f ◦ δr)(x, t) = rXjf(δr(x, t)) for all function f .
A path γ ∈W 1,2((0, T ),F3) is said to be horizontal if there is a control u ∈ L2((0, T ),R3)

such that we can write γ̇(s) =
∑3

j=1 uj(s)Xj(γ(s)) for a.e. s ∈ (0, T ). The length of the
horizontal path γ is length(γ) :=

∫ T
0 |u(t)|dt. If γ is arclength, then we have length(γ) =√

T (
∫ T

0 |u(t)|2dt)1/2. Given points (x̂, t̂) and (x, t), define d((x̂, t̂), (x, t)) = inf
{

length(γ)},
where the infimum is taken among all horizontal curves γ such that γ(0) = (x̂, t̂) and
γ(T ) = (x, t). It is well known that for any pair of points (x, t), (x̂, t̂) ∈ F3 the infimum
is a minimum, i.e. there is a length-minimizing path. Constant speed length-minimizing
paths in F3 are curves γ associated with controls (which we call extremal) of the form

u(s) = a cos(λs) + b sin(λs) + z, (2.4)

where a, b, z ∈ V is an admissible triple. By admissible triple we mean an ordered triple of
vectors a, b, z ∈ R3, where the vectors are pairwise orthogonal and such that |a| = |b| � 0.
These facts are well known (see [AGL15, DMO+16]). Here we refer to the self-contained
discussion in [MM16, Section 3.1.3]. Without loss of generality, we can always assume that
λ ≥ 0. The case λ < 0 can be recovered by an adjustment of the sign of b. In many
computations below, controls will be written in the form a cos(2ϕs) + b sin(2ϕs) + z, and
we will use the variable ϕ.

The curve s 7→ γ(s) = (x(s), t(s)) corresponding to the control u in (2.4) is obtained
integrating the ODE

ẋ = u, ṫ =
1

2
x ∧ u (2.5)

with initial data (x(0), t(0)) = (0, 0). An elementary computation gives the general form
of extremal curves

γ(s, a, b, z, λ) = (x(s, a, b, z, λ), t(s, a, b, z, λ))

=

(
sin(λs)

λ
a+

1− cos(λs)

λ
b+ sz,

λs− sin(λs)

2λ2
a ∧ b+

2(1− cos(λs))− λs sin(λs)

2λ2
a ∧ z

+
λs(1 + cos(λs))− 2 sin(λs)

2λ2
b ∧ z

)
.

(2.6)

For integration of similar systems in higher dimension, see [MPAM06]. On sufficiently
small intervals, γ is a length-minimizer (see [LS95], [Rif14] and [ABB16]). Under linear
change of parameter and dilation in (2.3), γ behaves as follows

γ(µs, a, b, z, λ) = γ(s, µa, µb, µz, µλ) for all µ > 0, (2.7)
γ(s, ra, rb, rz, λ) = δrγ(s, a, b, z, λ) for any r > 0. (2.8)

Observe that γ(s, a, b, z, λ) tends smoothly to γ(s, a, b, z, 0) = (a+ z, 0), as λ→ 0. Finally,
observe the following rotation invariance property of the distance: if M ∈ O(3), then
d(x, y ∧ z) = d(Mx,My ∧Mz) for all x, y, z ∈ R3.
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2.3. Abnormal curves in F3

Let u ∈ L2((0, 1),R3). It is easy to see that the solution s 7→ γu(s) =: (xu(s), tu(s)) of
the ODE (2.5) with initial data γu(0) = (0, 0) is defined globally on [0, 1] for any choice of
u ∈ L2((0, 1),R3). Denote by E(u) such solution at time s = 1. The map E : L2 → F3 is
called end point map.

Let u(s) be an extremal control of the form (2.4). By definition, the control u is
abnormal if the differential dE(u) : L2((0, 1),R3) → F3 is not onto. The corresponding
curve γ(·, a, b, z, λ) is called abnormal extremal curve. Denote by Abn0 the set of points
(x, t) = γ(1), where γ : [0, 1]→ R3 is an abnormal extremal curve with γ(0) = (0, 0). From
the discussion in [DMO+16] (see also [MM16, Section 3.1.3]), we know that

Abn0 = {(x, 0) ∈ V× ∧2V} = V× 0∧2V.

2.4. Cut time

Definition 2.1. Let a, b, z be an admissible triple, fix ϕ > 0 and let s 7→ γ(s, a, b, z, 2ϕ)
be the curve defined in (2.6). Define

tcut(a, b, z, ϕ) = inf
{
s ≥ 0 : γ(·, a, b, z, 2ϕ) does not minimize length on [0, s]

}
= sup

{
s > 0 : γ(·, a, b, z, 2ϕ) is a length minimizer on [0, s]

}
.

(2.9)

It is well known that tcut > 0 for all such curve. Moreover, if tcut < ∞, then the
supremum is a maximum.

Standard invariance properties give the following general form for the cut time.

Proposition 2.2. There exists a function hcut : [0,+∞[→ ]0,+∞] such that

tcut(a, b, z, ϕ) =
hcut(|z|/|a|)

ϕ
(2.10)

for all admissible triple a, b, z and ϕ > 0.

Note that we do not need to define hcut(∞) because the case z 6= 0 and a = b = 0
corresponds to a constant control u(s) = z. Such kind of control is included in the class of
admissible controls by choosing ϕ = 0. In such case it is easy to see that the corresponding
curve minimizes globally, i.e. tcut = +∞. Observe finally that hcut can never vanish, by a
classical result in control theory (see [LS95], [Rif14] and [ABB16])

One of the main result of our paper is the calculation of the function hcut. Interestingly,
it turns out that the function hcut is bounded.

Proof. In order to show that the cut time of the curve corresponding to the control u(s) =
a cos(2ϕs) + b sin(2ϕs) + z depends on |a|, |z| and ϕ, it suffices to identify V with R3 =
span{e1, e2, e3} where e1, e2, e3 are orthonormal and a = re1, b = re2 and z = ρe3. Then
the control u becomes u(s) = cos(2ϕs)re1 + sin(2ϕs)re2 + ρe3, and it is clear that the cut
time depends on r, ρ and ϕ.

7
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Let now ϕ = 1, i.e. consider the path σ 7→ γ(σ, a, b, z, 2). Let σ(r, ρ) its cut time, where
r = |a| and ρ = |z|. Taking an arbitrary ϕ > 0, the riparametrization invariance (2.7)
shows that the path

s 7→ γ(s, a, b, z, 2ϕ) = γ
(
ϕs,

a

ϕ
,
b

ϕ
,
z

ϕ
, 2
)

is length minimizing up to the time s =
σ(r/ϕ, ρ/ϕ)

ϕ
. By the dilation invariance (2.8), we

also have
σ(r/ϕ, ρ/ϕ) = σ(r, ρ) = σ(1, ρ/r) =: hcut(ρ/r) ∈ ]0,+∞] .

Thus the cut time has the form (2.10), as required.

We know that h(0) = π, because in such case we are in Heisenberg subgroups of the
form span{(a, 0), (b, 0), (0, a ∧ b)}. We will show that hcut(µ) → ϕ1, as µ → +∞, where
ϕ1 ∈ ]π, 3

2π[ denotes the first positive solution of the equation tanϕ = ϕ.
Define for ϕ = λ/2 ≥ 0 and a, b, z admissible triple

F (a, b, z, ϕ) : = γ(1, a, b, z, 2ϕ). (2.11)

Recall the definition of the functions S,U, V introduced in (1.4)

S(ϕ) :=
sinϕ

ϕ
, U(ϕ) :=

ϕ− sinϕ cosϕ

4ϕ2
, V (ϕ) :=

sinϕ− ϕ cosϕ

2ϕ2
.

After some elementary calculations, it turns out that

F (a, b, z, ϕ) =
(
S(ϕ)(a cosϕ+b sinϕ)+z , U(ϕ)a∧b+V (ϕ)(a sinϕ−b cosϕ)∧z

)
. (2.12)

Remark 2.3. After the orthogonal change of variable

a′ = a sinϕ− b cosϕ and b′ = a cosϕ+ b sinϕ (2.13)

we have
F (a, b, z, ϕ) = G(a′, b′, z, ϕ), where

G(α, β, ζ, ϕ) :=
(
S(ϕ)β + ζ, α ∧ (U(ϕ)β + V (ϕ)ζ)

)
for all admissible α, β, z and ϕ > 0. Note that a′, b′, z are admissible if and only if a, b, z
are admissible. Moreover, |a′| = |a|, |b′| = |b| and a′ ∧ b′ = a ∧ b.

3. Extremal paths and the set Σ

Define the set Σ ⊂ R3 × ∧2R3 as

Σ : =
{

(x, t) ∈ R3 × ∧2R3 : x ⊥ supp t and t 6= 0
}

= {(x, y ∧ y′) : x, y, y′ ∈ R3 where y and y′ are independent and x ⊥ {y, y′}}.
(3.1)

Here and hereafter, without loss of generality, we may assume that V = R3 and 〈·, ·〉 is the
Euclidean inner product. We will show in this section that Σ ⊂ Cut0. The proof of the
opposite inclusion will be achieved at the end of Subsection 4.1.
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Define the function

W (θ) = U(θ)− S(θ)V (θ) =
θ2 + θ sin θ cos θ − 2 sin2 θ

4θ3
, (3.2)

where S,U and V are defined in (1.4).

Lemma 3.1. W (θ) > 0 for all θ > 0.

Proof. Let q(θ) = θ2 + θ sin θ cos θ− 2 sin2 θ, for all θ > 0 we get q(θ) > θ2− θ− 2 which is
positive if θ > 2. For θ ∈ (0, 2), write 2θ = x and q(θ) = 1

4(x2 + x sin(x)− 4 + 4 cos(x)) =:
1
4p(x). Differentiating we find p(0) = p′(0) = p′′(0) = 0 and p′′′(x) = sin(x)−x cosx, which
is positive for all x ∈ (0, ϕ1), where ϕ1 > 4 is the first positive solution of tan(x) = x.
Thus the function is increasing in θ ∈ (0, ϕ1/2) ⊃ (0, 2) and the proof is concluded.

Let P : ]0,+∞[ \
⋃
k∈N{ϕk}

P (θ) := −S(θ)

V (θ)

√
W (θ)

U(θ)
(3.3)

where ϕk ∈ ]kπ, (k + 1
2)π[ denotes the k-th positive solution of V (θ) = 0 (i.e. tan(θ) = θ).

Note that P (kπ) = 0 and P (ϕk−) = +∞ for all k ∈ N. We will show that P is strictly
increasing in ]π, ϕ1[. Actually the same happens in any interval ]kπ, ϕk[ for k ≥ 2, but we
do not need such property. A plot of P is exhibited in Figure 3.1.

3.1. Characterization of extremal controls connecting the origin with Σ

Next we find all extremal curves (minimizing or not) which connect the origin with a point
(x, t) ∈ Σ. Without loss of generality we always write a vector t ∈ ∧2R3 in the form
t = y∧y⊥ for a suitable pair of orthogonal vectors with equal length. In such case, it turns
out that |t| = |y|2 (see (2.1)).

Theorem 3.2 (Characterization of extremal paths passing for a given point of Σ). Let
(x, y ∧ y⊥) ∈ Σ, where x, y, y⊥ are pairwise orthogonal and |y| = |y⊥| > 0. Then the
following facts hold.
(i) Let θ > 0 be any solution of the equation

P (θ) =
|x|2

|y|2
. (3.4)

Let σ ∈ R be an arbitrary parameter and choose the corresponding vectors

α′ := α′σ :=
1

(UθWθ)1/4
(y sinσ − y⊥ cosσ)

β′ := β′σ :=
(UθWθ)

1/4

Wθ
(y cosσ + y⊥ sinσ)− Vθ

Wθ
x

ζ := ζσ :=
Uθ
Wθ

x− Sθ
Wθ

(UθWθ)
1/4(y cosσ + y⊥ sinσ)

(3.5)

Then the triple α′σ, β′σ, ζσ is admissible and the path

s 7→ γ(s, α′σ sin θ + β′σ cos θ, β′σ sin θ − α′σ cos θ, ζσ, 2θ) =: γσ(s) (3.6)

satisfies γσ(1) = (x, y ∧ y⊥) (the function γ(s, a, b, z, 2ϕ) is defined in (2.6)).

9
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(ii) If θ, α′, β′, ζ satisfy (3.4) and (3.5), for all σ ∈ R the length of the path γσ in (3.6)
does not depend on σ and is

length2(γσ|[0,1]) = |x|2 +
1− S(θ)2√
U(θ)W (θ)

|y|2.

(iii) If θ, α′, β′, ζ satisfy (3.4) and (3.5), for all σ ∈ R we have

|ζ|2

|β′|2
=
|ζ|2

|α′|2
= −U(θ)S(θ)

V (θ)
=: Q(θ). (3.7)

(iv) Let γ be an extremal path on [0, 1] which satisfies γ(0) = 0 and γ(1) = (x, y ∧ y⊥).
Then there is θ > 0 satisfying (3.4), there is σ ∈ R such that γ has the form (3.6),
where α′σ, β′σ and ζσ are the vectors appearing in (3.5).

Item (i) and (iv) give the characterization of all extremal paths connecting the origin
with points of Σ. The length in (ii) is needed to discuss their minimizing properties and
ratio Q(θ) appearing in (iii) is crucial in the calculation of the cut time.

Figure 3.1: A plot of the positive part of the function P for θ < ϕ2 with a representation
of θ1 and θ2, the first two (of the infinitely many) solutions of the equation P (θ) = |x|2

|t| .

Remark 3.3. If we take a curve γσ(s) = (xσ(s), tσ(s)) and we rearrange the choice of
y, y⊥ to ensure that α′ and β′ take the simple form

α′ =
y

(UθWθ)1/4
β′ =

(UθWθ)
1/4

Wθ
y⊥ − Vθ

Wθ
x ζ =

Uθ
Wθ

x− Sθ
Wθ

(UθWθ)
1/4y⊥, (3.8)

we discover that the corresponding control u(s) takes the simple form

u(s) = (α′ sin θ + β′ cos θ) cos(2θs) + (β′ sin θ − α′ cos θ) sin(2θs) + ζ

= α′ sin(θ(1− 2s)) + β′ cos(θ(1− 2s)) + ζ
(3.9)

where α′, β′, ζ are the vectors in (3.8) and s ∈ [0, 1].

10
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Proof of Theorem 3.2. We start with the proof of part (iv) of the statement. Let (x, y ∧
y⊥) ∈ Σ and assume that x, y, y⊥ are pairwise orthogonal, |y| = |y⊥| > 0, while x may
possibly vanish. Let s 7→ γ(s, α, β, ζ, 2θ) be the extremal path defined in (2.6) and as-
sume that γ(1) = (x, y ∧ y⊥). We must solve the system F (α, β, ζ, θ) = (x, y ∧ y⊥),
where F appears in (2.11) and (2.12) and the triple α, β, ζ must be admissible. Write for
brevity Uθ, Vθ, Sθ instead of U(θ), V (θ), S(θ). Observe also that θ cannot be 0, because
F (α, β, ζ, 0) = (a + z, 0) cannot belong to Σ. Thus assume that θ is strictly positive (we
can always exclude the case θ < 0, see the discussion after (2.4)). Using the explicit form
of F we find the system{

Sθ(α cos θ + β sin θ) + ζ = x

Uθα ∧ β + Vθ(α sin θ − β cos θ) ∧ ζ = y ∧ y⊥.

Making the change of variable

α′ = α sin θ − β cos θ and β′ = α cos θ + β sin θ, (3.10)

(see Remark 2.3), we get {
Sθβ

′ + ζ = x

α′ ∧
(
Uθβ

′ + Vθζ) = y ∧ y⊥.
(3.11)

Therefore α′ and Uθβ′+Vθζ belong to span{y, y⊥}. Furthermore they must be orthogonal,
by admissibility. This means that we can write

Uθβ
′ + Vθζ = ξy + ηy⊥ (3.12)

α′ = qηy − qξy⊥, (3.13)

where q 6= 0 and ξ, η ∈ R satisfy ξ2 + η2 6= 0. The first line of (3.11) and (3.12) are linear
in β′ and ζ. Solving, we get

β′ =
ξ

Wθ
y +

η

Wθ
y⊥ − Vθ

Wθ
x and ζ =

Uθ
Wθ

x− Sθξ

Wθ
y − Sθη

Wθ
y⊥, (3.14)

where Wθ := Uθ − SθVθ cannot vanish, by Lemma 3.1. On the vectors α′ in (3.11) and
β′, ζ in (3.14), we must require that |α′| = |β′|. Moreover it must be 〈β′, ζ〉 = 0 and finally
α′ ∧ (Uθβ

′ + Vθζ) = y ∧ y⊥. These three conditions become

W 2
θ q

2(ξ2 + η2)|y|2 = (ξ2 + η2)|y|2 + V 2
θ |x|2

Sθ(ξ
2 + η2)|y|2 + UθVθ|x|2 = 0

q(ξ2 + η2) = 1.

We used the fact that x, y, y⊥ are pairwise orthogonal and |y| = |y⊥|. Observe that q > 0
and that the unknown ξ and η appear in the form (ξ2 + η2). Therefore we will find an
infinite family of curves.

Eliminating (ξ2 + η2), the first two equations become

W 2
θ q|y|2 =

|y|2

q
+ V 2

θ |x|2 and
Sθ
q
|y|2 + UθVθ|x|2 = 0. (3.15)

11
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Note that Uθ > 0 for all θ > 0. Moreover, it cannot be Vθ = 0, because in such case
it should be Sθ = 0 too, but this is impossible because V ans S do not have common

zeros on ]0,+∞[. Therefore, q = − Sθ|y|2

UθVθ|x|2
, and since q > 0, we discover that it must be

S(θ)V (θ) < 0. Eliminating q from the first equation of (3.15), we obtain

−W 2
θ

Sθ|y|4

UθVθ|x|2
= −UθVθ|x|

2

Sθ
+ V 2

θ |x|2 = −WθVθ
Sθ
|x|2,

because Wθ = Uθ − SθVθ. Then we have

W (θ)S(θ)2

U(θ)V (θ)2
=
|x|4

|y|4
.

Taking the square root, and remembering that Uθ,Wθ > 0 for all θ > 0, while, as we
already observed, the product SθVθ must be negative, we conclude that (3.4) must hold.

To complete the proof of (iv), we obtain the explicit form of α′, β′ and ζ. We start
from

ξ2 + η2 =
1

q
= −UθVθ

Sθ

|x|2

|y|2
= (UθWθ)

1/2,

where we used (3.4) in the last equality. Thus q =
1

(UθWθ)1/2
, ξ = (UθWθ)

1/4 cosσ and

η = (UθWθ)
1/4 sinσ for some σ ∈ R. Therefore, using (3.13) and (3.14), it turns out that

α′ =
1

(UθWθ)1/4
(y sinσ − y⊥ cosσ)

β′ =
(UθWθ)

1/4

Wθ
(y cosσ + y⊥ sinσ)− Vθ

Wθ
x

ζ =
Uθ
Wθ

x− Sθ
Wθ

(UθWθ)
1/4(y cosσ + y⊥ sinσ).

(3.16)

Inverting the change of variables (3.10), α = α′ sin θ + β′ cos θ and β = β′ sin θ − α′ cos θ,
we conclude the proof of part (iv).

Proof of (i). It suffices to check that, given (x, y ∧ y⊥) ∈ Σ, if θ satisfies (3.4), then for all
σ ∈ R the triple in (3.5) is admissible and the path γ in (3.6) satisfies

γ(1) =: F (α′ sin θ + β′ cos θ, β′ sin θ − α′ cos θ, ζ, θ) = (x, y ∧ y⊥).

But we have F (α′ sin θ + β′ cos θ, β′ sin θ − α′ cos θ, ζ, θ) = G(α′, β′, ζ, θ) by Remark 2.3.
Thus we must check first that α′, β′, ζ is admissible and second that G(α′, β′, ζ, θ) = (x, y∧
y⊥, i.e.

Sθβ
′ + ζ = x and α′ ∧ (Uθβ

′ + Vθζ) = y ∧ y⊥. (3.17)

To check admissibility let us start from a triple as in (3.5) and calculate |α′|2 =
|y|2

(UθWθ)1/2

|β′|2 =
(UθWθ)

1/2

W 2
θ

|y|2 +
V 2
θ

W 2
θ

|x|2 = (eliminating |y|2 by (3.4))

=
(−UθVθ
SθW

2
θ

+
V 2
θ

W 2
θ

)
|x|2 = − Vθ

SθWθ
|x|2.

(3.18)

12
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Then |α′|2 = |β′|2 if (3.4) holds.
From (3.5) it is obvious that 〈α′, ζ〉 = 0 = 〈β′, α′〉. To check that β′ ⊥ ζ, it suffices to

observe that

〈β′, ζ〉 = −Sθ(UθWθ)
1/2

W 2
θ

|y|2 − UθVθ
W 2
θ

|x|2 = 0,

as soon as (3.4) holds. Next we check that the x-component takes the correct value, i.e. the
first equality in (3.17).

Sθβ
′ + ζ = Sθ

[(UθWθ)
1/4

Wθ
(y cosσ + y⊥ sinσ)− Vθ

Wθ
x
]

+
[ Uθ
Wθ

x− Sθ
Wθ

(UθWθ)
1/4(y cosσ + y⊥ sinσ)

]
=
(−SθVθ

Wθ
+
Uθ
Wθ

)
x = x,

as required. To check the t-component (second equality in (3.17)), note that, taking β′

and ζ ′ as in (3.5), we have

Uθβ
′ + Vθζ =

Uθ − SθVθ
Wθ

(UθWθ)
1/4(y cosσ + y⊥ sinσ) = (UθWθ)

1/4(y cosσ + y⊥ sinσ).

Then

α′∧ (Uθβ
′+Vθζ) =

1

(UθWθ)1/4
(y sinσ− y⊥ cosσ)∧ (UθWθ)

1/4(y cosσ+ y⊥ sinσ) = y∧ y⊥,

as desired, and the proof of (i) is concluded.

Proof of (ii). From (3.18) we already know that |β′|2 = − Vθ
SθWθ

|x|2. Moreover,

|ζ|2 =
U2
θ

W 2
θ

|x|2 +
S2
θ

W 2
θ

(UθWθ)
1/2|y|2 = (eliminating |y|2 by (3.4)) =

Uθ
Wθ
|x|2. (3.19)

Summing up, we find

length2(γ|[0,1]) =
|x|2

Wθ

(
Uθ −

Vθ
Sθ

)
=
|x|2

Wθ

(
Wθ + SθVθ −

Vθ
Sθ

)
= |x|2 −

Vθ(1− S2
θ )

SθWθ
|x|2 = |x|2 +

1− S2
θ√

UθWθ
|y|2,

where the last equality follows again from (3.4).

Proof of (iii). It follows immediately from (3.19) and (3.18).

3.2. Minimizing curves and distance on Σ

Here, among the controls described in Theorem 3.2, we will find the minimizing ones.
Observe that sin(θ)V (θ) < 0 if and only if θ ∈

⋃∞
k=1]kπ, ϕk[, where ϕk ∈

]
kπ, (k + 1

2)π
[
is

the k-th positive zero of the function v.
Differentiating the functions S,U, V we find the useful formulas

S′(ϕ) = −2V (ϕ), U ′(ϕ) =
cosϕ

ϕ
V (ϕ), V ′(ϕ) =

S(ϕ)

2
− 2

ϕ
V (ϕ). (3.20)

13
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Lemma 3.4. The function

R(θ) :=
1− S(θ)2√
U(θ)W (θ)

is strictly increasing on A :=
⋃∞
k=1]kπ, ϕk[.

The function is actually increasing on the whole half-line θ > 0, but the statement of
the lemma is easier to prove and it is enough for our purposes. Observe the limit behaviour
R(θ) ∼ 4θ → +∞, as θ → +∞.

Proof. It suffices to prove that the following function is strictly decreasing on A.

f =
UW

(1− S2)2
=

U2

(1− S2)2
+

U

1− S2
· (−SV )

1− S2
=: F 2 + FG. (3.21)

We are omitting the variable θ in U, V,W . On the functions F and G observe that

F (θ) :=
U

1− S2
=
θ − sin θ cos θ

4(θ2 − sin2 θ)
=

1

8

d

dθ
log(θ2 − sin2 θ) =

1

8

d

dθ
log(θ2(1− S2))

By formula S′ = −2V , we have

G(θ) :=
−SV

1− S2
=

SS′

2(1− S2)
= −1

4

d

dθ
log(1− S2).

Thus,

G+ 2F =
1

4

d

dθ
log(θ2) =

1

2θ
.

We will show that f ′ < 0 on any interval ]kπ, ϕk[ and that f(ϕk) < f((k + 1)π) for all
k ∈ N.

f ′ = (F 2 + FG)′ = F (2F ′ +G′) + F ′G = −F (θ)

2θ2
+ F ′(θ)G(θ). (3.22)

A computation gives

F ′(θ) =
sin2 θ(θ2 − sin2 θ)− (θ − sin θ cos θ)2

2(θ2 − sin2 θ)2

= −(θ2 cos2 θ + sin2 θ − 2θ sin θ cos θ)

2(θ2 − sin2 θ)2
= −(θ cos θ − sin θ)2

2(θ2 − sin2 θ)2
< 0,

on ]0,+∞[ \
⋃
k≥1{ϕk}. Thus F is strictly decreasing on ]0,+∞[. Since G and F are

positive on each interval ]kπ, ϕk[, looking at (3.22), we conclude that f ′ < 0 on each
]kπ, ϕk[.

To conclude the proof, observe that G(kπ) = G(ϕk) = 0 for all k ∈ N. Thus we get

f(ϕk) = F 2(ϕk) > F 2((k + 1)π) = f((k + 1)π)

for each k ≥ 1, because F is strictly decreasing on ]0,+∞[.

Lemma 3.5. The function P defined in (3.4) is strictly increasing on ]π, ϕ1[ and P (π) = 0,
P (ϕ1−) = +∞.

14
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Proof of Lemma 3.5. Since P > 0 on ]π, ϕ1[, we shall prove that P 2 is increasing on ]π, ϕ1[.

P 2 =
WS2

UV 2
=

(U − SV )S2

UV 2
=
(
−S
V

+
S2

U

)
·
(
−S
V

)
.

that V > 0 and S < 0 in ]π, ϕ1[. Thus SV < 0.
To show the statement it suffices to prove that both the positive functions −S/V and

S2/U are increasing on ]π, ϕ1[. Keeping (3.20) into account, we find

V 2
(−S
V

)′
= −S′V + SV ′ = 2V 2 +

S2

2
− 2SV

θ
> 0,

because V S < 0. Furthermore

U2
(S2

U

)′
= 2SS′U − S2U ′ = −4V SU − S2 cos θ

θ
V > 0,

because cos θ < 0 in ]π, ϕ1[. The proof is concluded.

Next we are ready to prove Theorem 1.4. We will denote by P−1 : [0,+∞[ → [π, ϕ1[
the inverse function of P

∣∣
[π,ϕ1[

, which is well defined by Lemma 3.5.

Proof of Theorem 1.4. Let (x, t) ∈ Σ. Let θ ∈ ]π, 3
2π[ be the smallest solution of P (θ) =

|x|2
|t| . Write t = y ∧ y⊥ for some y, y⊥ orthogonal and of equal length. By Theorem 3.2,
item (i), we know that for all σ ∈ R the curve γσ in (3.6) satisfies γσ(0) = (0, 0), γσ(1) =
(x, t). By item (ii) of the same theorem, its length is

length2(γσ|[0,1]) = |x|2 +
1− S(θ)2√
U(θ)W (θ)

|t|.

Finally, by Lemma 3.4, γσ is length minimizing on [0, 1]. The proof is concluded.

We are now ready to prove the following inclusion.

Proposition 3.6. We have the inclusion Σ ⊂ Cut0.

The proof of the opposite inclusion will be achieved at the end of Subsection 4.1.

Proof of Proposition 3.6. Assume by contradiction that a point (x, t) ∈ Σ does not belong
to Cut0. We will show by a standard nonuniqueness argument that we can find a constant-
speed path Γ which minimizes for s ∈ [0, 1+ε], such that Γ(0) = 0,Γ(1) = (x, t) and Γ is not
differentiable at s = 1. This contradicts the known fact that arclength length-minimizers
in two step Carnot groups are normal and then smooth.

To prove the claim, observe first that, since (x, t) ∈ Σ does not belong to Cut0, we can
find y, y⊥ and a minimizer s 7→ γσ1(s) of the form (3.6), i.e.

s 7→ γ(s, α′σ1 sin θ + β′σ1 cos θ, β′σ1 sin θ − α′σ1 cos θ, ζ, 2θ) =: γ(s) =: γσ1(s)

such that γσ1(1) = (x, t) and γσ1 minimizes for s ∈ [0, 1+ε] for some ε > 0. The minimizing
choice of θ ∈ ]π, ϕ1[ is uniquely determined, by Lemma 3.4 and Lemma 3.5.
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Let us consider σ2 6= σ1 and the corresponding path γσ2(s) in (3.6) corresponding to
the same choice of θ. We know that this path minimizes on [0, 1] for any choice of σ2 ∈ R.
Therefore, the new path Γ defined as

Γ(s) =

{
γσ2(s) if s ∈ [0, 1]

γσ1(s) if s ∈ [1, 1 + ε]

is a constant-speed length minimizer on [0, 1 + ε]. To prove the nondifferentiability of Γ,
it suffices to show that γ̇1(1) 6= γ̇2(1). Since γσ1(1) = γσ2(1), this is equivalent to saying
that uσ1(1) 6= uσ2(1) (see (2.5)). But, letting γσ = (xσ, tσ) and ẋσ =: uσ, a computation
shows that for σ ∈ R we have

uσ(1) = cos(2θ)(α′σ sin θ + β′σ cos θ) + sin(2θ)(β′σ sin θ − α′σ cos θ) + ζσ

= −α′σ sin θ + β′σ cos θ + ζσ

= − 1

(UθWθ)1/4
(y sinσ − y⊥ cosσ) sin θ +

((UθWθ)
1/4

Wθ
(y cosσ + y⊥ sinσ)− Vθ

Wθ
x
)

cos θ

+
( Uθ
Wθ

x− Sθ
Wθ

(UθWθ)
1/4(y cosσ + y⊥ sinσ)

)
.

The proof will be concluded as soon as we show that σ 7→ uσ(1) is a nonconstant function.
To prove the claim, write

uσ(1) =
( sin θ

(UθWθ)1/4
y⊥ +

cos θ

Wθ
(UθWθ)

1/4y − Sθ
Wθ

(UθWθ)
1/4y

)
cosσ

+
(cos θ

Wθ
(UθWθ)

1/4y⊥ − sin θ

(UθWθ)1/4
y − Sθ

Wθ
(UθWθ)

1/4y⊥
)

sinσ

− cos θ
Vθ
Wθ

x+
Uθ
Wθ

x

=: A cosσ +B sinσ + C.

It is easy to see that a function H(σ) = A cosσ + B sinσ + C where A,B,C are given
vectors is constant if and only if A = B = 0. Therefore, since y ⊥ y⊥, the function
σ 7→ uσ(1) is constant if and only if

(cos θ − S(θ))

Wθ
(UθWθ)

1/4 = 0 and
sin θ

(UθWθ)1/4
= 0.

But this is impossible, because these condition would imply that cos θ = sin θ = 0 (recall
that Uθ > 0 and Wθ > 0 for all θ > 0).

Remark 3.7. Observe that in the argument of the proof above we have shown by explicit
computation that for any point (x, t) ∈ Σ, we can connect the origin with (x, t) with
multiple minimizing paths with different tangent vectors at (x, t). Thus, by a standard
argument, one can conclude that the distance from the origin cannot be differentiable at
any such (x, t). In Section 6, we will prove some very precise corner-like estimates at cut
points.
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4. Calculation of hcut and consequences

In the first part of this section (Subsection 4.1) we calculate the cut time for any given
extremal and we describe the cut locus. In Subsection 4.2 we describe the profile of
subRiemannian spheres.

4.1. Cut time and cut locus

Lemma 4.1. The function

Q(θ) := −U(θ)S(θ)

V (θ)

is positive and strictly increasing on [π, ϕ1[. Furthermore, Q(π+) = 0 and Q(ϕ1−) = +∞.

Figure 4.1: Plot of the function Q for θ ∈ ]0, ϕ1[.

The function Q is actually increasing on the whole interval [0, ϕ1[, but we need (and
prove) such property only in the sub-interval [π, ϕ1[. See the plot in Figure 4.1.

Proof of Lemma 4.1. Write

2Q(θ) = (−S(θ)(θ − sin θ cos θ)) · 1

sin θ − θ cos θ
=: f(θ) · 1

g(θ)
.

The function g is positive and decreasing on ]π, ϕ1[ ⊂ ]π, 3/2π[, because g′ = θ sin θ < 0.
The function f is instead positive and increasing. To check this property, observe that

f ′(θ) = −S′(θ)(θ − sin θ cos θ)− S(θ)(1− cos2 θ + sin2 θ) > 0,

because −S′(θ) = 2V (θ) > 0. This concludes the proof.
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We restate Theorem 1.3 as follows.

Theorem 4.2 (Calculation of the cut time). Let Q be the function defined in Lemma 4.1
and in (1.5). Let hcut be the function in Proposition 2.2. Then we have

hcut(µ) = Q−1(µ2) ∀µ ∈ ]0,+∞[. (4.1)

As a consequence, if a, b, z is any admissible triple, ϕ > 0 and we consider the corresponding
path s 7→ γ(s, a, b, z, 2ϕ) =: γ(s), the path γ minimizes up to the time

tcut(a, b, z, ϕ) =
hcut(|z|/|a|)

ϕ
=
Q−1(|z|2/|a|2)

ϕ
(4.2)

and not further. Finally

γ(tcut, a, b, z, 2ϕ) ∈ Σ for all admissible a, b, z and ϕ > 0. (4.3)

Remark 4.3. Cut0 is a four dimensional smooth submanifold of the six-dimensional F3.
Indeed it can be parametrized as follows

Cut0 =
{

(λxe1 + λye2 + λze3, ze1 ∧ e2 − ye1 ∧ e3 + xe2 ∧ e3) : λ ∈ R x2 + y2 + z2 > 0
}

and it is easy to check that the map Φ(λ, x, y, z) = (λx, λy, λz, x, y, z) ∈ R6 has full rank
on the open set {(λ, x, y, z) : λ ∈ R x2 +y2 + z2 > 0} ⊂ R4. By Theorem 1.4, we see that
the restriction of the distance from the origin to the cut locus is smooth.

Proof of Theorem 4.2. We first prove that hcut(µ) = Q−1(µ2). Start with an arbitrary
θ ∈ ]π, ϕ1[. Choose any (x, y ∧ y⊥) ∈ Σ such that P (θ) = |x|2

|y|2 . By Theorem 3.2 and
Lemma 3.4, we may choose (infinitely many) admissible triples α′, β′, ζ such that the path
γσ in (3.6) satisfies γσ(1) = (x, y ∧ y⊥), minimizes length up to time tcut = 1 and not
further (we already know from Proposition 3.6 that Σ ⊆ Cut0). Thus,

1 = tcut(α
′ sin θ + β′ cos θ, β′ sin θ − α′ cos θ, ζ, θ) =

hcut(|ζ|/|α′|)
θ

,

where last equality follows from Proposition 2.2. Then hcut(|ζ|/|α′|) = θ. By item (iii) of
Theorem 3.2 we get hcut(

√
Q(θ)) = θ. Since θ ∈ ]π, ϕ1[ is arbitrary, Lemma 4.1 gives the

conclusion hcut(µ) = Q−1(µ2) for all µ ∈ ]0,+∞[. Thus we have proved (4.1) and (4.2).
Next we prove (4.3). Let a, b, z be any admissible triple and let ϕ > 0. Recall that

the admissibility condition ensures that |a| = |b| > 0. By the first part of the theorem, we
know that

tcut(a, b, z, ϕ) =
hcut(|z|/|a|)

ϕ
=
Q−1(|z|2/|a|2)

ϕ
.

To prove (4.3), we claim that, under the choice

θ := Q−1(|z|2/|a|2), (4.4)

(i.e. tcut(a, b, z, ϕ) =: θ
ϕ) we have γ

(
θ
ϕ , a, b, z, 2ϕ

)
∈ Σ.
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To prove the claim, note that the invariance property (2.7) gives

γ
( θ
ϕ
, a, b, z, 2ϕ

)
= γ

(
1,
θ

ϕ
a,
θ

ϕ
b,
θ

ϕ
z, 2θ

)
= F

(
θ

ϕ
a,
θ

ϕ
b,
θ

ϕ
z, θ

)
,

by the definition of F . Since the set Σ is dilation invariant, the latter point belongs to Σ
if and only if its ϕ

θ -dilated F (a, b, z, θ) belongs to Σ. Here we need the dilation invariance
property of F . 2 But

F (a, b, z, θ) =
(
Sθ(a cos θ + b sin θ) + z , Uθa ∧ b+ Vθ(a sin θ − b cos θ) ∧ z

)
=:
(
Sθb
′ + z , a′ ∧

{
Uθb
′ + Vθz

})
,

where a′, b′ are defined (2.13) and we keep Remark 2.3 into account. Since a′, b′, z is an
admissible triple, we have for free that Sθb′ + z ⊥ a′, and ultimately the point F (a, b, z, θ)
belongs to Σ if and only if Sθb′ + z ⊥ Uθb′ + Vθz, i.e. if

UθSθ|b|2 + Vθ|z|2 = 0,

which holds true because our choice of θ in (4.4)

Theorem 4.2 shows that, if a, b, z is admissible and ϕ > 0, then

d(0, γ(s, a, b, z, 2ϕ)) = s
√
|a|2 + |z|2 if 0 ≤ s ≤ 1

ϕ
hcut

( |z|
|a|

)
. (4.5)

Finally we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 4.2 and in particular formula (4.3) imply easily the inclu-
sion Cut0 ⊂ Σ. The opposite inclusion has been proved in Proposition 3.6.

4.2. Profile of the unit sphere

Let for all admissible α, β, ζ and for any θ > 0

G(α, β, ζ, θ) :=
(
S(θ)β + ζ , α ∧ (U(θ)β + V (θ)ζ)

)
.

The profile of the subRiemannian sphere can be described as follows

Corollary 4.4 (Profile of the subRiemannian sphere). Let S(0, r) := {(x, t) ∈ F3 :
d(x, t) = r} be the subRiemannian sphere of radius r. Then

S(0, r) : =
{
G(α, β, ζ, θ) : α, β, ζ admissible triple with |α|2 + |ζ|2 = r2

and 0 ≤ θ ≤ hcut
(
|ζ|/|α|

)}
.

Proof. By dilation invariance we may assume r = 1. Start from (4.5) and observe that

S(0, 1) =
{
γ(s, a, b, z, 2ϕ) | s2(|a|2 + |z|2) = 1 and 0 < s ≤ ϕ−1hcut

(
|z|/|a|

)}
.

=
{
F (sa, sb, sz, sϕ) | s2(|a|2 + |z|2) = 1 and 0 < s ≤ ϕ−1hcut

(
|z|/|a|

)}
.

=
{
F (α, β, ζ, θ) | |α|2 + |ζ|2 = 1 and 0 ≤ θ ≤ hcut

(
|ζ|/|α|

)}
and the required thesis follows. In the last chain of equalities, a, b, z and α, β, ζ are always
admissible triples.

2That is, the property F (rα, rβ, rζ, ϕ) = δrF (α, β, ζ, ϕ) for all r > 0, α, β, ζ admissible and ϕ > 0.
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5. Some remarks on the Hamiltonian point of view

In this section we consider the Hamiltonian point of view. In particular we will calculate the
cut time as an explicit function of the initial covector. In order to look at the Hamiltonian
point of view, it is convenient to represent the group F3 in the form R3

x×R3
t with the group

law
(x, t) ◦ (x′, t′) =

(
x+ x′, t+ t′ +

1

2
x× x′

)
, (5.1)

where × denotes the standard cross product in R3. This law is not scalable to higher
dimensional cases, but it is rather convenient in the rank three case (compare [MM13]).

The standard basis of horizontal vector fields is Yj =
(
ej ,

1
2x × ej

)
∈ R3 × R3, for

j = 1, 2, 3. Namely

Y1 = ∂x1 +
1

2
x3∂t2 −

1

2
x2∂t3 , Y2 = ∂x2 −

1

2
x3∂t1 +

1

2
x1∂t3 , Y3 = ∂x3 +

1

2
x2∂t1 −

1

2
x1∂t2 .

Commutation relations take the form [Y1, Y2] = ∂t3 , [Y1, Y3] = −∂t2 , and [Y2, Y3] = ∂t1 . If
we denote by d the distance generated by Y1, Y2, Y3 and by Cut0 the cut locus of the origin
of the distance d, then it turns out that

Cut0 = {(x, t) ∈ R3 × R3 : t 6= 0 and x = λt for some λ ∈ R}.

Observe also the invariance property d(Mx,My ×Mz) = d(x, y × z) for all x, y, z ∈ R3

and M ∈ O(3).
Denote by q = (x, t) ∈ R6 and p = (ξ, τ) ∈ R6 coordinates in T ∗R6 and define the

subRiemannian Hamiltonian

H(q, p) :=
1

2

3∑
j=1

〈p, Yj(q)〉2 =
1

2

∑
j

〈(ξ, τ), Yj(x, t)〉2 =:
1

2

∑
j

u2
j (x, t, ξ, τ). (5.2)

where 〈·, ·〉 denotes the Euclidean inner product in R6.
Recall the following definition of subRiemannian exponential (see [ABB16]. Let p ∈

T ∗(0.0). Denote by s 7→ (q(s, p0), p(s, p0)) the solution of the Hamiltonian system associated
to (5.2) with initial data q(0) = (0, 0) and p(0) = p0 = (ξ0, τ0). Define

E(p0) = E(ξ0, τ0) = q(1, p0). (5.3)

Note that in our case solutions are defined globally in time for all initial datum p0. Fur-
thermore, by the property (q(s, αp0), p(s, αp0)) = (q(αs, p0), αp(αs, p0), we have E(sp) =
q(s, p) for all p, s. The curve s 7→ q(s, p) = q(s, (ξ, τ)) is minimizing on some interval
[0, Tcut(ξ, τ)], where

Tcut(ξ, τ) = the cut time of the path s 7→ q(s, (ξ, τ)). (5.4)

As usual in this setting, instead of (xj , tj , ξj , τj) we may use coordinates (xj , tj , uj , τj),
where

uj(x, t, ξ, τ) = 〈Yj(x, t), (ξ, τ)〉 = ξj +
1

2
〈τ, x× ej〉 = ξj +

∑
σ∈S3

σ(j, k, `)τkx`,
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where σ(jk`) denotes the sign of the permutation. Hamilton’s equation, see [BBG12], take
the form 

u̇j =
∑
k

〈(ξ, τ), [Yk, Yj ](x, t)〉uk = (τ × u)j

τ̇j = 0

ẋ = u

ṫ =
1

2
x× u

with initial condition x(0) = 0, t(0) = 0, u(0) = ξ(0) = u and τ(0) = τ .
By the Rodrigues’ rotation formula we get that if we consider the skew-symmetric map

R3 3 x 7→ τ × x =

 0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

x1

x2

x3

 =: Aτx

then we have
esAτu = a cos(λs) + b sin(λs) + z, (5.5)

where
λ = |τ |, a = − τ

|τ |
×
( τ
|τ |
× u
)

= u−
〈
u,

τ

|τ |

〉
τ

|τ |

b =
τ

|τ |
× u, z =

〈
u,

τ

|τ |

〉
τ

|τ |
.

(5.6)

(These relations can be obtained easily with a purely analitic argument comparing deriva-
tives of order 0, 1, 2 at s = 0 of the two sides of (5.5)).

Thus we have proved the following facts.

Proposition 5.1. Let s 7→ E(s(ξ, τ)) = E(sξ, sτ) be the (projection of the) solution of
the Hamiltonian associated with (5.2) with (x(0), t(0)) = (0, 0) and (ξ(0), τ(0)) = (ξ, τ) =
(ξ1, ξ2, ξ3, τ1, τ2, τ3). Then the corresponding control u(s) has the form

u(s) =

(
ξ −

〈
ξ,

τ

|τ |

〉
τ

|τ |

)
cos(|τ |s) +

(
τ

|τ |
× ξ
)

sin(|τ |s) +

〈
ξ,

τ

|τ |

〉
τ

|τ |
. (5.7)

In particular

Tcut(ξ, τ) =
2

|τ |
hcut

( |〈ξ, τ〉|
|τ × ξ|

)
, (5.8)

and the function Tcut is C∞ smooth on

Ω := {(ξ, τ) : τ × ξ 6= 0}. (5.9)

Remark 5.2. The function Tcut is singular if ξ is parallel to τ . Namely, Tcut(ξ, τ) ∈
[2π
|τ | ,

2ϕ1

|τ | [ for all (ξ, τ) ∈ Ω, while Tcut(µτ, τ) = +∞ for all τ 6= 0 and µ ∈ R \ {0}. The
corresponding final points E(µτ, τ) = (µτ, 0) belong to the abnormal set Abn0.
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6. Corner-like estimates at cut points

In this section we show that at any point of the cut locus we can construct a two dimensional
C1-smooth surface such that on such surface the distance has a corner-like singularity. Our
estimates give also an affirmative answer in our model to a question raised by Figalli and
Rifford [FR10] on whether the distance fails to be semiconvex at the cut locus.

To show our construction, we work in the model used in the previous section, with the
group law (5.1) and we consider a point (x, t) ∈ Cut0. Then we may write

(x, t) = (Sϕβ + ζ, α× (Uϕβ + Vϕζ)),

where the triple α, β, ζ is admissible and belonging to the cut locus means that ϕ ∈ [π, ϕ1[

satisfies −UϕSϕ
Vϕ

= |ζ|2
|β|2 . In other words, Sϕβ + ζ and Uϕβ + Vϕζ are perpendicular, which

is equivalent to the fact that x and t are parallel. We may also write t = y × y⊥, where
y, y⊥ ∈ span{x}⊥ are orthogonal and have the same length. Finally, recall the formula
d(x, t)2 = |β|2 + |ζ|2 = |α|2 + |ζ|2.

Let σ0 > 0 and let x and t : ]−σ0, σ0[→ R3 be smooth functions of the form

(x(σ), t(σ)) =
(
x+ σ(µ1y + µ2y

⊥) + σ2r(σ), t+ σ(ν1y + ν2y
⊥) + σ2ρ(σ)

)
(6.1)

where r and ρ : ]−σ0, σ0[ → R3 are C∞ vector-valued functions. We always assume that
(µ1, µ2) 6= (0, 0). The vector (ν1, ν2) can possibly vanish. Let R(θ) be the rotation of an
angle θ which leaves fixed x (we can fix the sign by requiring for example that for any
vector ξ ⊥ x, the vector R(θ)ξ × (R′(θ)ξ) points in the same direction of x). Then define
the parametrization

H(σ, θ) := (R(θ)x(σ), R(θ)t(σ))

=
(
x+σR(θ){µ1y + µ2y

⊥}+ σ2R(θ)r(σ), t+ σR(θ){ν1y + ν2y
⊥}+ σ2R(θ)ρ(σ)

)
.
(6.2)

Since (µ1, µ2) 6= (0, 0), for small σ0 > 0, the set Γ = {H(σ, θ) : 0 ≤ σ < σ0, and
0 ≤ θ < 2π} is a C1-smooth two dimensional surface containing (x, t). The expansion (6.1)
shows that T(x,t)Γ = span{(µ1y+µ2y

⊥, ν1y+ν2y
⊥), (−µ2y+µ1y

⊥,−ν2y+ν1y
⊥)}. Further-

more the distance from the origin of points on Γ enjoys the rotational invariance property
d(H(σ, θ1)) = d(H(σ, θ2)) for all θ1, θ2 and σ.

We will show that

Theorem 6.1 (Corner-like estimate for the distance at cut points). For any point (x, t) =
(Sϕβ + ζ, α × (Uϕβ + Vϕζ)) ∈ Cut0 there is σ0 > 0, there are smooth functions x, t as
in (6.1) with (µ1, µ2) 6= (0, 0) and there is C > 0 such that

d(H(σ, θ)) ≤ d(x, t)− Cσ, for all σ ∈ [0, σ0[ and θ ∈ [0, 2π[. (6.3)

This gives a generalization of the well known estimates at cut points (0, t) 6= (0, 0) ∈
C× R of the Heisenberg group H1, namely d(z, t) ≤ d(0, t)− C|z|, for |z| small. One can
recover a similar estimate as a limiting case of Theorem 6.1, as ϕ = π. See Remark 6.3.

As a corollary we get an answer in this setting to the question raised by Figalli and
Rifford (see the Open problem at p 145-146 in [FR10]).
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Corollary 6.2 (Failure of semiconvexity at cut points). At any cut point (x, t) ∈ Cut0,
for any neighborhood Ω of (x, t), we have

inf
p,q,(p+q)/2∈Ω

d(p) + d(q)− 2d((p+ q)/2)

|p− q|2
= −∞. (6.4)

Strictly speaking, to get a complete analogous of the Riemannian estimate (2.6) in
Proposition 2.5 of [?], our infimum should be calculated with p+q

2 = (x, t). Corollary 6.2
will be proved at the end of the section.

We also remark that in [FR10] the authors define the cut locus CutFR0 as the closure of
the set of points (x, t) 6= (0, 0) where the distance is not continuously differentiable. This
set is strictly larger than our set Cut0. Namely, we have CutFR0 = Cut0 ∪Abn0, where the
union is disjoint and Abn0 is the set of final points of length minimizing abnormal curves
and it is known that Abn0 = {(x, 0) ∈ R3×R3} (see [DMO+16, MM16]). At points (x, 0),
in [MM16] we proved that

d(x, σx) ≥ d(x, 0) + C|σ|, for σ close to 0.

Roughly speaking, the presence of abnormals gives rise to the existence of directions where
the Hessian of the distance is +∞, i.e. semiconcavity fails. On the contrary, we are not
aware of the existence of directions where the Hessian is −∞ at abnormal points (x, 0).

Proof of Theorem 6.1. Let (x, t) = (Sϕβ + ζ, α× (Uϕβ + Vϕζ)) ∈ Cut0. We first construct
a smooth curve σ 7→ (x(σ), t(σ)) for σ in a neighborhood of the origin defined as

(x(σ), t(σ)) =
(
Sϕ−σ(1−c1σ)β+(1−c2σ)ζ, (1−c1σ)α×{Uϕ−σ(1−c1σ)β+Vϕ−σ(1−c2σ)ζ}

)
.

Observe that, given ϕ ∈ [π, ϕ1[, the triple α(σ) = (1 − c1σ)α, β(σ) = (1 − c1σ)β and
ζ(σ) = (1− c2σ)ζ is admissible for all σ close to 0. Therefore we have the upper estimate
d(x(σ), t(σ))2 ≤ (1 − c1σ)2|α|2 + (1 − c2σ)2|ζ|2 (which, by our previous results, becomes
an equality if and only if −Uϕ−σSϕ−σ

Vϕ−σ
≤ (1−c2σ)2|ζ|2

(1−c1σ)2|α|2 ).

Step 1. We show that there is a (actually unique) choice of c1, c2 such that x′(0) and
t′(0) ∈ span{y, y⊥}. We start with x′(0). A calculation shows that

x′(0) =
d

dσ

∣∣∣
σ=0

Sϕ−σ(1− c1σ)β + (1− c2σ)ζ = −S′ϕβ − c1Sϕβ − c2ζ

= (2Vϕ − c1Sϕ)β − c2ζ,

by formula S′ϕ = −2Vϕ, where we write S′ϕ = dS
dϕ . We must require that 〈x′(0), x〉 = 0,

where x = Sϕβ + ζ. Thus

0 = 〈x′(0), x〉 = Sϕ(2Vϕ − c1Sϕ)|β|2 − c2|ζ|2 =
Sϕ
Vϕ
|β|2(2V 2

ϕ − c1VϕSϕ + c2Uϕ),

where we used the identity |ζ|2
|β|2 = −UϕSϕ

Vϕ
which holds on the cut locus. Thus we have

found a first linear equation in c1, c2.
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Next we calculate t′.

t′(0) = −c1α× (Uϕβ + Vϕζ) + α× [−(U ′ϕβ + c1Uϕβ + V ′ϕζ + Vϕc2ζ)]

= −α× [(2c1Uϕ + U ′ϕ)β + ((c1 + c2)Vϕ + V ′ϕ)ζ].

Since x = Sϕβ + ζ is orthogonal to Uϕβ + Vϕζ on the cut locus, condition 〈t′(0), x〉 = 0
is equivalent to

〈
(2c1Uϕ + U ′ϕ)β + ((c1 + c2)Vϕ + V ′ϕ)ζ, Uϕβ + Vϕζ

〉
= 0. A calculation of

the inner product gives

(2c1Uϕ + U ′ϕ)Uϕ|β|2 + ((c1 + c2)Vϕ + V ′ϕ)Vϕ|ζ|2 = 0 i.e.

(2Uϕ − SϕVϕ)c1 − SϕVϕc2 = SϕV
′
ϕ − U ′ϕ,

which is again a linear equation in c1, c2. Ultimately we have the linear system{
VϕSϕc1 − Uϕc2 = 2V 2

ϕ

(2Uϕ − SϕVϕ)c1 − SϕVϕc2 = SϕV
′
ϕ − U ′ϕ.

The solution has the form

c1 = c1(ϕ) =
−2SϕV

3
ϕ − UϕU ′ϕ + UϕSϕV

′
ϕ

2U2
ϕ − UϕSϕVϕ − V 2

ϕS
2
ϕ

and c2 = c2(ϕ) =
Vϕ
Uϕ

(Sϕc1 − 2Vϕ). (6.5)

Note that 2U2
ϕ − UϕSϕVϕ − V 2

ϕS
2
ϕ > 0 for all ϕ ∈ [π, ϕ1[, because 2U2

ϕ > 0, SϕVϕ ≤ 0 and
Uϕ + SϕVϕ > 0, as it can be easily seen using the very definition of U, V, S.

Observe that, if we write x′(0) and t′(0) in terms of c1 only, it turns out that

x′(0) =
2Vϕ − c1Sϕ

Uϕ
(Uϕβ + Vϕζ) and t′(0) = −

2c1Uϕ + U ′ϕ
Sϕ

α× (Sϕβ + ζ),

and ultimately, since Uϕβ + Vϕζ and Sϕβ + ζ are orthogonal, x′(0) and t′(0) are parallel.

Step 2. Concerning the curve constructed above, we show that there is C > 0 and σ0 > 0
such that

d(x(σ), t(σ)) ≤ d(x, t)− Cσ for all σ ∈ [0, σ0[.

To prove such estimate, start from the upper estimate

d(x(σ), t(σ))2 ≤ (1− c1σ)2|α|2 + (1− c2σ)2|ζ|2 = |α|2 + |ζ|2 − 2σ(c1|α|2 + c2|ζ|2) +O(σ2).

Thus, we must require that
c1|α|2 + c2|ζ|2 > 0, (6.6)

where c1, c2 have been found in the previous step. This inequality is non trivial, because
we do not know the sign of c1 and c2 (until Step 3 below). Inserting again the cut relation
|ζ|2
|α|2 = −UϕSϕ

Vϕ
, we obtain Vϕc1 − UϕSϕc2 > 0. Inserting the expression of c2(ϕ) obtained

in (6.5), we find

(1− S2
ϕ)c1 + 2SϕVϕ > 0 which gives

(1− S2
ϕ)
−2SϕV

3
ϕ − UϕU ′ϕ + UϕSϕV

′
ϕ

2U2
ϕ − UϕSϕVϕ − V 2

ϕS
2
ϕ

+ 2SϕVϕ > 0.
(6.7)
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We check that the latter (strict) inequality holds on the whole interval [π, ϕ1[. By formu-
las (3.20) for the derivatives U ′, V ′, we get

(1− S2
ϕ)
(
−2SϕV

3
ϕ −

cosϕ

ϕ
UϕVϕ +

UϕS
2
ϕ

2
− 2UϕSϕVϕ

ϕ

)
+ 2VϕSϕ

(
2U2

ϕ − UϕVϕSϕ − V 2
ϕS

2
ϕ

)
> 0.

(Recall again that −1 < S ≤ 0, cosϕ < 0, while U and V are positive on [π, ϕ1[). We
simplify the term with V 3

ϕS
3
ϕ and we observe that

−2SϕV
3
ϕ + (1− S2

ϕ)
(
−cosϕ

ϕ
UϕVϕ +

UϕS
2
ϕ

2
− 2UϕSϕVϕ

ϕ

)
+ 2VϕSϕ

(
2U2

ϕ − UϕVϕSϕ
)

	 (1− S2
ϕ)
(
−2UϕSϕVϕ

ϕ

)
+ 2VϕSϕ

(
2U2

ϕ − UϕVϕSϕ
)

= −2SϕUϕVϕ

((1− S2
ϕ)

ϕ
+ VϕSϕ − 2Uϕ

)
,

where in the first inequality we deleted some positive terms (note that − cosϕ
ϕ UϕVϕ+

UϕS2
ϕ

2 >
0 strictly on the interval [π, ϕ1[). Next, using the definition of U, V, S, we show that the
last parenthesis multiplied by ϕ3 is positive.

ϕ2
(

(1− S2
ϕ) + ϕVϕSϕ − 2ϕUϕ

)
= ϕ2 − sin2 ϕ+

1

2

(
sinϕ(sinϕ− ϕ cosϕ)− ϕ(ϕ− sinϕ cosϕ)

)
= ϕ2 − sin2 ϕ+

1

2

(
sin2 ϕ− ϕ2

)
=

1

2

(
ϕ2 − sin2 ϕ

)
> 0,

as required.

Step 3. We show that x′(0) 6= 0. From the first line of (6.7), which has been already proved
in Step 2 and from the fact that SϕVϕ ≤ 0, we conclude that c1(ϕ) > 0 (this and (6.5) tell
us that c2 < 0). Then, since x′(0) = (2Vϕ − c1Sϕ)β − c2ζ, this vector can never vanish,
because the coefficient (2Vϕ − c1(ϕ)Sϕ) is strictly positive for all ϕ ∈ [π, ϕ1[.

Remark 6.3. If we choose ϕ = π in the proof above, the condition −uϕsϕ
vϕ

= |ζ|2
|β|2 shows

that ζ = 0 and therefore (x, t) = (0, Uπα× β), a point on the “t-axis” of the (Heisenberg)
subgroup span{(α, 0), (β, 0), (0, α × β)}. Since ζ = 0, the constant c2 plays no role, the
condition on x′(0) = 2Vπβ = 1

πβ becomes empty and the condition on t′(0) = −(2c1Uπ +
U ′π)α× β becomes 2c1Uπ + U ′π = 0, i.e. c1 = 1

π . Ultimately, the curve has the form

(x(σ),t(σ)) =
(
Sπ−σ(1− c1σ)β, (1− c1σ)2Uπ−σα× β

)
=
(sinσ

π
β,

1

4π2
(π − σ + sinσ cosσ)α× β

)
=
(β
π
σ +O(σ2),

1

4π
(1 +O(σ2))α× β

)
which gives the corner estimate on the two dimensional surface obtained by rotating the
curve σ 7→ (x(σ), t(σ)) around the vertical axis span{α × β} of the Heisenberg subgroup
span{(α, 0), (β, 0), (0, α× β)}.
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Proof of Corollary 6.2. Let (x, t) = (Sϕβ + ζ, α × (Uϕβ + Vϕζ)) ∈ Cut0 and let σ 7→
(x(σ), t(σ)) =: (xσ, tσ) be the curve constructed in the proof of the theorem above for σ ≥ 0.
LetM ∈ O(3) be the rotation of 180 degrees leaving fixed x. By invariance of the distance,
we have d(Mxσ,Mtσ)) = d(xσ, tσ). Denote by (ξσ, τσ) = 1

2((Mxσ,Mtσ) + (xσ, tσ)). Such
point belongs to span{(x, 0), (0, x)} (i.e. to Cut0) and has coordinates

(ξσ, τσ) =
(
x(1 +O(σ2)), t(1 +O(σ2))

)
,

as σ → 0+. This follows from the property 〈x′(0), x〉 = 〈t′(0), t〉 = 0. By formula (1.6) for
the distance on Cut0, we have

d(ξσ, τσ)2 = |ξσ|2 +R(ϕσ)|τσ|, where ϕσ = P−1
( |ξσ|2
|τσ|

)
.

Since the function P−1 and R are smooth, we have ϕσ = ϕ+O(σ2) and R(ϕσ) = R(ϕ) +
O(σ2), which implies d(ξσ, τσ) = d(x, t) +O(σ2). Ultimately, we have

d(xσ, tσ) + d(Mxσ,Mtσ)− 2d
((xσ, tσ) + (Mxσ,Mtσ)

2

)
≤ −Cσ +O(σ2)

and the theorem is proved by letting σ → 0+.
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