
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A Transprecision Floating-Point Platform for Ultra-Low Power Computing

Published:
DOI: http://doi.org/

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/613674 since: 2018-09-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/
https://hdl.handle.net/11585/613674

This is the post peer-review accepted manuscript of:

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benini, "A transprecision floating-point platform

for ultra-low power computing," 2018 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2018, pp. 1051-1056. doi: 10.23919/DATE.2018.8342167

The published version is available online at: https://doi.org/10.23919/DATE.2018.8342167

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

https://doi.org/10.23919/DATE.2018.8342167

A Transprecision Floating-Point Platform
for Ultra-Low Power Computing

Giuseppe Tagliavini∗, Stefan Mach†, Davide Rossi∗, Andrea Marongiu‡, and Luca Benini∗†
∗ DEI, University of Bologna, Italy / Email: {giuseppe.tagliavini, davide.rossi, luca.benini}@unibo.it

† IIS, ETH Zurich, Switzerland / Email: {smach, luca.benini}@iis.ee.ethz.ch
‡ DISI, University of Bologna, Italy / Email: {a.marongiu}@unibo.it

Abstract—In modern low-power embedded platforms, the ex-
ecution of floating-point (FP) operations emerges as a major
contributor to the energy consumption of compute-intensive
applications with large dynamic range. Experimental evidence
shows that 50% of the energy consumed by a core and its
data memory is related to FP computations. The adoption of
FP formats requiring a lower number of bits is an interesting
opportunity to reduce energy consumption, since it allows to
simplify the arithmetic circuitry and to reduce the memory
bandwidth required to transfer data between memory and
registers by enabling vectorization. From a theoretical point
of view, the adoption of multiple FP types perfectly fits with
the principle of transprecision computing, allowing fine-grained
control of approximation while meeting specified constraints on
the precision of final results. In this paper we propose an extended
FP type system with complete hardware support to enable
transprecision computing on low-power embedded processors,
including two standard formats (binary32 and binary16) and
two new formats (binary8 and binary16alt). First, we introduce
a software library that enables exploration of FP types by
tuning both precision and dynamic range of program variables.
Then, we present a methodology to integrate our library with
an external tool for precision tuning, and experimental results
that highlight the clear benefits of introducing the new formats.
Finally, we present the design of a transprecision FP unit capable
of handling 8-bit and 16-bit operations in addition to standard 32-
bit operations. Experimental results on FP-intensive benchmarks
show that up to 90% of FP operations can be safely scaled
down to 8-bit or 16-bit formats. Thanks to precision tuning and
vectorization, execution time is decreased by 12% and memory
accesses are reduced by 27% on average, leading to a reduction
of energy consumption up to 30%.

I. INTRODUCTION

Nowadays most embedded applications involving numerical
computations with large dynamic range are performed us-
ing binary64 (double-precision) or binary32 (single-precision)
floating-point (FP) formats, described by the IEEE 754 stan-
dard [18]. In these applications, the execution of FP operations
emerges as a major contributor to the energy consumption.
To provide experimental evidence of this insight, we have
executed a set of FP-intensive applications on PULPino [7],
an open-source ULP microcontroller. Results show that 30%
of the energy consumption of the core is actually due to FP
operations. Moreover, an additional 20% is spent in moving
FP operands from data memory to registers and vice versa.
To provide a compromise between energy cost and dy-

namic range, IEEE 754 introduces a 16-bit format referred
to as binary16 (half-precision). The introduction of binary16
represents a first step to increase the energy efficiency of
FP computations, but software development flows for ULP
systems still lack a methodology to evaluate the effect of
reduced-precision FP variables on application requirements.
In practice, programmers often use the maximum precision
provided by target platforms, following the most conservative
principle: guaranteeing numerical precision of each elementary
step also guarantees the precision of final results.
In recent years, significant advances in the field of approx-

imate computing have been made, aimed at relaxing this
precise-computing abstraction [2] [12] [10] [4]. The most

promising research trends are stepping beyond of the concept
of approximation itself, towards a novel paradigm – transpreci-
sion computing – in which rather than tolerating errors implied
by imprecise HW or SW computations, systems are explicitly
designed to deliver just the required precision for intermediate
computations. In other words, the specified constraints on the
precision of final results are always met (i.e., results are not
generically “approximated”, they match a required precision),
but intermediate operations can be deployed to custom, lower-
precision compute units to save energy.
In this paper we propose an extended FP type system with

complete hardware support to enable transprecision computing
on ULP embedded platforms. We propose the introduction
of two additional formats, namely binary8 and binary16alt.
Specifically, binary8 is a 8-bit format with low precision (3-bit
mantissa), while binary16alt is a 16-bit format complementary
to the IEEE one and featuring a higher dynamic range (8-
bit exponent). To assess the benefits of this extended FP
type system, we performed a precision analysis supported
by additional considerations on the hardware design. As a
first step we designed a C++ library to explore the effects
on application behavior when varying dynamic range and
precision of program variables. Then we adapted a set of
applications representative of FP-intensive computations in the
embedded domain, adopting emulated FP types and providing
an interface with an external tool for precision analysis [10].
Our results shows that the introduction of binary8 guaran-

tees the best trade-off between precision and dynamic range
for applications that match minimum precision requirements.
Moreover, the introduction of binary16alt extends (up to 50%)
the number of variables that can be safety scaled from a 32-bit
representation to a 16-bit one. To provide support at hardware
level, we designed a dedicated transprecision FP unit. Our
design also enables vectorial operations on smaller-than-32-bit
formats, further increasing energy efficiency and performance
of the core and reducing pressure on data memory.
To summarize, the main contributions of this work are (i)

the introduction of a software library that enables explorations
of FP types, (ii) a methodology to integrate our library with
external tools for precision tuning, and (iii) an energy-efficient
hardware design supporting multiple FP types. Experimental
results show that up to 90% of FP operations can be safely
scaled down to 8-bit or 16-bit formats. Thanks to precision
tuning and vectorization, execution time is decreased by 12%
and memory accesses are reduced by 27% on average. As a
major outcome, energy consumption is reduced up to 30%.

II. RELATED WORK

To overcome the limitations of fixed-format FP types, re-
searchers have proposed multiple-precision arithmetic libraries
that perform calculations on numbers with arbitrary precision.
ARPREC [1] and MPFR [5] are two widely used libraries
which provide support to multiple-precision arithmetic. These
libraries are mainly used in contexts where a high-dynamic
range is required and higher computation time is considered an

unavoidable side-effect, such as scientific computing. However
they are not suitable to perform explorations of less-than-
32-bit FP types, since they represent exponents using a full
machine word. This approach totally prevents to simulate the
behavior of FP types with a reduced number of bits, since
tuning of dynamic range is not possible. SoftFloat [9] is a
library that implements standard IEEE formats, enabling a
bit-accurate emulation of the FP operations performed by FP
hardware units. Softfloat can be easily extended to support
additional formats, including the ones introduced in this work.
However program executions are extremely slow, since the li-
brary executes all the computations in software. Moreover any
modification to a FP format requires to manually modify code
in several source files. Overall, the aforementioned solutions
require a full refactoring of the source code; in some cases
additional software layers have been introduced to perform
this task (e.g., the Boost interval arithmetic library [3]).
Many research tools are available to perform automatic

or semi-automatic precision tuning of program variables. In
this paper we use DistributedSearch, a tool provided by the
fpPrecisionTuning [10] toolchain that finds a near-optimal
solution. Its main configuration parameter is the precision of
the result, expressed as a value of signal-to-quantization-noise
ratio (SQNR) that program outputs must satisfy. This tool
requires a binary version of the target program, a target output
(i.e., a sequence of FP numbers that are the exact result) and a
configuration file. The configuration file should include a list
of numbers, which correspond to the precision bits used for
program variables. DistributedSearch requires that the target
executable is able to read the configuration file to tune the
precision of its variables accordingly. In addition, the program
must provide its output results on the standard output. On this
premises, the tool runs the program multiple times, performing
a heuristic search of the minimum precision that can be
associated to each variable (for a fixed input set). A second
phase performs a statistical refinement to join the precision
bindings derived from different input sets. Other tools adopt
more advanced techniques but their search space is restricted to
standard FP types (e.g., PROMISE [8] and Precimonious [14]),
or in other cases they are limited to the analysis of functional
expressions (e.g., FPTuner [4] and PRECISA [13]). As a final
consideration, all these tool do not enable the analysis of the
dynamic range associated to a fixed-format FP type.
On the hardware side, several recent works proposed the

design of energy-efficient FP units. Kaul et al. [11] imple-
ment a variable-precision multiply-and-add FP unit supporting
vectorization. Its configurations use an 8-bit exponent field,
while each operand carries a 5-bit certainty field which is
processed in parallel with the exponent logic, indicating the
number of bits for the mantissa. The certainty field is used to
implement automatic precision tracking, which raises the level
of precision where it does not meet specified requirements.
Considering an energy consumption of 19.4pJ/FLOP, this
solution seems to perform as good as our hardware design.
However the memory overhead due to precision tracking and
fixed-size exponents is relevant, since the memory transfers
are a major contributor to the total energy consumption.
Moreover, applications that require 32-bit variables are very
inefficient due to repeated operations at lower precision that
are performed until a final retry at single precision is executed.
Tong et al. [16] explore an iterative (digit-serial) multiplier that
can be used inside a FP multiplier. Their design processes
8 bits per cycle, thus operands with up to 8-bits use one
cycle, operands with up to 16-bit use 2 cycles, and finally
operands up to 24 bits use 3 cycles. Power is reduced by 66%
when using the one-cycle configuration, and by 30% when
using the two-cycles one. Again, single-precision operations
become slower and memory effects are not considered. Rzayev

et al. [15] explore various smaller-than-32-bit formats for deep
learning applications. They introduce a 8-bit FP format that
is identical to binary8, showing that vectorization enables
higher performance and reduces memory energy used per
operation. However they do not propose a mixed-precision
FP type system for transprecision computing. Gautschi et al.
[6] propose a shared FP unit adopting the logarithmic number
system (LNU), which is up to 4.1× more energy efficient than
standard FP unit in non-linear processing kernels. However,
LNU is a domain specific approach, and not all FP operations
can be implemented.

III. FLOATING-POINT TYPES AND PROGRAMMING FLOW

A. Exploration of floating-point formats
Applications that operate on real-valued data most commonly

use IEEE 754-compliant FP formats [18]. Of the standard for-
mats, binary32 and binary64 enjoy the most wide-spread use
and are also available on general-purpose consumer platforms.
While even larger formats are commonly used for scientific
computations, reducing the amount of data to process and
hence the width of FP formats is more suitable for power-
constrained and embedded platforms. While smaller-than-32-
bit FP formats (also called minifloats) have been use in
computer graphics applications [17], their relevance is rising
with the spread of energy-constrained computing platforms,
such as near-sensor processing nodes and Internet-of-things
endpoints. IEEE formats are packed as the sign bit, e bits for
the exponent and m bits for the significand (or mantissa). By
choosing a specific format, programmers enforce a trade-off
between dynamic range and precision. The dynamic range is
the ratio between the largest and smallest representable values,
and it is conditioned by e. Conversely, the precision is the
number of digits of the represented number that are preserved
in FP representation, and it is uniquely defined by m.
As discussed in Section II, available tools are not flexible

enough to simulate arbitrary FP formats by tuning both preci-
sion and dynamic range. To enable exploration of arbitrary FP
types, we designed a dedicated C++ library, called FlexFloat.
This library provides a generic FP type by defining a template
class (flexfloat<e,m>) and a set of auxiliary functions
for debugging and collecting statistics. Using FlexFloat, all
FP types used in the source files can be safely replaced with
instantiations of this template class without changing any other
part of the program, since class methods include operator
overloading. The template parameters include the number of
bits used for the exponent (e) and the number of bits used for
the mantissa (m), which must be both specified as positive
integer values. For instance, flexfloat<7, 12> is a FP
type including the sign bit, 7 bits in the exponent field and 13
bits in the mantissa field. The FlexFloat library also supports
the encoding of denormal numbers, infinities and not-a-number
(NaN) values. Arithmetic operations are performed converting
the number representation to a native type (e.g., double)
and then sanitizing the result, that is adjusting exponent and
mantissa to obtain the exact binary representation of the
original type. This methodology guarantees shorter execution
times w.r.t. emulation approaches (e.g., SoftFloat), and it also
produces the same results of a dedicated hardware unit (i.e.,
precise at bit level). An automatic cast between different
template instances is not allowed, so standard arithmetic
operations must involve variables of the same instance. This
design choice enables a fine-grain control on the intermediate
results, since the compiler notifies an error for each operator
involving a type mismatch. Consequently, programmers can
choose to match the variable types to the same template
instance or to insert an explicit cast. A constructor supporting
explicit conversions is provided, and it can be used to cast
a FlexFloat variable to a different template instance (e.g.,

Fig. 1. Overview of floating-point formats used throughout this work.

from flexfloat<e1,m1> to flexfloat<e2,m2>).
Constructors with implicit semantics are provided for standard
FP types (float, double and long double) to simplify
the usage of FP literal values. Vice versa, an automatic cast
from a FlexFloat template instance to a standard FP type
is not allowed, but it can be performed by invoking an
explicit cast operator. This feature can be used to interface
sections of source code that use FlexFloat and sections that
are strictly bound to standard types (e.g., a call to an external
library function whose source code is not available). The main
benefits of FlexFloat are:

• it produces binaries that are fast to execute, since its
computations rely on native types;

• it reduces the debugging effort, as the compiler performs
early check upon template instantiation;

• it is quite intuitive to use, since it provides the usual infix
notation for arithmetic operations;

• it can be easily integrated with external tools, having no
specific requirements w.r.t. the original source code.

resolved at compile time). To simplify the interaction be-
tween a FlexFloat-based program and any external tool, we
designed a FlexFloat wrapper, that is a support tool perform-
ing three steps: (i) it reads a file specifying a required precision
for each program variable, then (ii) it extracts the dynamic
range from a configuration file providing the map indexed by
precision intervals, and finally (iii) it compiles the program
sources providing the derived values for precision and dynamic
range as actual parameters in the template instantiations.
To perform an exploration of FP types, we used the Distribut-

edSearch tool introduced in Section II. Since this tool performs
precision tuning without considering the dynamic range of
variables, we assumed a limited set of initial hypotheses to fix
the dynamic range associated to specific intervals of precision
bits. Considering our target on ULP systems, we restricted our
investigation to 8-bit and 16-bit formats. Among potential 8-
bit formats, we chose the mapping (0, 3] 7→ 5, calling this type
binary8. This means that any variable associated to a precision
between 1 and 5 bits will be provided with an exponent of 5
bits. This format was conceived to mirror the dynamic range
of binary16 variables. Adopting this convention, conversions
between binary8 and binary16 only affect precision but do
not saturate for values of large magnitudes. Additionally,
operations on binary8 become very cheap in hardware since
there are only two explicit mantissa bits. As regards 16-
bit formats, we considered the mapping corresponding to
binary16, that is (0, 11] 7→ 5, and an alternative mapping that
we called binary16alt, corresponding to (0, 8] 7→ 8. Basically,
8 is the number of bits used for the exponent field in binary32,
so this value is a logical upper-bound for any 16-bit format.
Again, using the same number of exponent bits of the binary32
format makes conversions much cheaper. Figure 1 summarizes
the FP formats used throughout this work.
Table I shows the results of our preliminary analysis, re-

porting the total number of variables associated to each type.
These values are obtained executing DistributedSearch on our

Fig. 2. Overview of the programming flow.

set of benchmarks constrained with a precision of 10−1. We
considered two different configurations of the FP type system,
namely V1 (including binary8, binary16, binary32) and V2
(adding binary16alt to V1). As a first consideration, binary8
is used for 17% of the variables in the best case. This format
is extremely beneficial in reducing the energy consumption,
since it allows to simplify circuitry complexity and it enables
vectorization. It is noteworthy that supporting both 16-bit
formats contribute in decreasing the number of 32-bit variables
in the program w.r.t. the usage of a single 16-bit format. A
drawback of binary16 is that both dynamic range and precision
are diminished when compared to binary32. This leads to
saturation when converting values with large dynamic from
binary32, disqualifying the 16-bit format from being used for
transprecision tuning in these cases. Conversely, binary16alt
features the same dynamic range as binary32, allowing the
whole range of values to be converted - albeit with a much
larger granularity. In some cases applications do not exploit the
dynamic range provided by binary16alt, and at the same time
they require a higher precision, so our intuition is that we need
both types. A further evaluation is provided in Section V-B.

B. Transprecision programming flow
Figure 2 depicts the transprecision programming flow that

we adopted throughout this work. As a first step, applica-
tion sources are modified to replace standard FP types with
multiple instances of flexfloat<ex,mx>, where ex and
mx are variable-specific parameters. Then a tool for precision
tuning is invoked (step 2), and different values for ex and
mx are explored using the FlexFloat wrapper. After this
tuning, program variables are uniquely mapped to supported
FP types (step 3). Using this mapping, FlexFloat can provide
statistics on the number of operations and casts performed
for each FP type which is instantiated (step 4). Moreover, a
version of FlexFloat providing explicit template specialization
is provided to replace simulated operations with native ones
(step 5). This step requires that the compiler for the target
platform supports all the FP types provided by the mapping.

IV. TRANSPRECISION FLOATING POINT UNIT

To evaluate the potential of the FP formats introduced in
Section III, we designed a transprecision FP unit supporting
vectorization of reduced-precision operations. The hardware
unit is built up from three types of slices, each with a fixed
width of 32-bit, 16-bit and 8-bit, respectively. Each slice hosts
operations on the FP formats that match the slice width, as well
as conversion operations. The supported arithmetic operations
are addition, subtraction and multiplication. The conversion
operations include casts to and from integers (both signed and
unsigned) as well as casts among the FP formats. Moreover,
the narrower slices are replicated in order to enable sub-
word parallelism inside the unit. Thus, two 16-bit or four 8-
bit FP operations can be executed simultaneously. Following
the single-instruction-multiple-data (SIMD) paradigm, the pro-
posed unit can run scalar operations when only one slice for a
given precision is active, and vectorial operation when all the
slices of a given precision are active.

TABLE I
VARIABLES CLASSIFIED BY TYPE TYPE USING V1 AND V2 TYPE SYSTEMS.

binary8 binary16 binary16alt binary32
V1 10 29 - 72
V2 19 10 41 41

Operand Inputs

OpA OpB

Slice32

F
P
8

A
D
D
/
S
U
B

F
P
8

M
U
L
T

Slice8Slice16

32 16 8

32Result Output

2x 4x

SmallFloatUnit

F
P
1
6

i
n
t
3
2

F
P
1
6
a
l
t

i
n
t
3
2

F
P
8

i
n
t
3
2

F
P
3
2

F
P
1
6

F
P
3
2

F
P
1
6
a
l
t

F
P
3
2

F
P
8

F
P
3
2

i
n
t
3
2

F
P
1
6

i
n
t
1
6

F
P
1
6
a
l
t

i
n
t
1
6

F
P
1
6

F
P
1
6
a
l
t

F
P
1
6

F
P
8

F
P
1
6
a
l
t

F
P
8

F
P
8

i
n
t
8

32 32

32 16 832 16 8

Data Distribution and Operand Isolation

Output Data Selection

F
P
3
2

A
D
D
/
S
U
B

F
P
3
2

M
U
L
T

F
P
1
6

A
D
D
/
S
U
B

F
P
1
6
a
l
t

A
D
D
/
S
U
B

F
P
1
6

M
U
L
T

F
P
1
6
a
l
t

M
U
L
T

Res
Floating-Point / Integer Conversion UnitFloating-Point Computational Unit

Floating-Point / Floating-Point Conversion UnitFloating-Point Computational Unit with Pipeline Stage

Fig. 3. Simplified block diagram of the designed hardware unit datapath. Control logic as well as data to and from duplicated slices is omitted.

The various individual operation blocks are instances of
Synopsys DesignWare FP Datapath components. As a power
saving feature, the unit employs operand silencing to all
unused operations and formats by forcing zero to prevent
transistor switching. To meet the timing requirements of the
container core, arithmetic operations in binary32 as well
as both 16-bit formats are pipelined with one stage, hence
featuring a bandwidth of one operation per cycle and a latency
of two clock cycles. Arithmetic operations in binary8 as well
as all conversion operations have a one cycle latency. Area
optimization of the transprecision FPU and its integration into
the core will be completed as future work.

V. EXPERIMENTAL RESULTS

A. Evaluation Methodology
Experiments have been performed on a set of applications

which implement key algorithms for two domains of ULP sys-
tems, near-sensor computing and embedded machine learning:

• JACOBI applies the Jacobi method to a 2D heat grid:
• KNN computes the k-nearest neighbors of an input value

using euclidean distance;
• PCA performs the principal component analysis;
• DWT computes the discrete wavelet transform;
• SVM is the prediction stage of a support vector machine;
• CONV implements a 5× 5 convolution kernel.

Precision tuning has been performed using the fpPreci-
sionTuning toolsuite on an x86 workstation, adopting the
programming flow described in Section III-B. Since sub-
word vectorization is not supported by the current FlexFloat
implementation, program sections that are vectorizable are
manually tagged in the source code, and the library provides a
distinct report for vectorial operations and casts. The applica-
tion sources have been compiled using the GCC compiler with
a RISC-V backend optimized for PULPino, which provides
support for the single-precision FP type defined in the RISC-V
instruction set architecture (ISA). Binaries have been executed
on the PULPino virtual platform, which is cycle accurate and
provides detailed statistics. The virtual platform reports the
number of cycles required to execute each instruction that
is used in the binary file, targeting the whole program or
delimited code regions. The current version of GCC does not

include a set of instructions to handle binary16, binary16alt
and binary8 formats. Since the latency of binary16 operations
is the same of binary32 ones, we have used the binary32
type to measure the exact number of cycles required by each
instruction to execute. This value depends by the ability of
the compiler to schedule other classes of operations (non-FP,
binary8 or casts) to fill latency cycles and avoid stalls in the
core pipeline, so it is strictly dependent on both application and
compiler back-end. binary8 operations and FP casts always
require a single cycle, so their contribution to execution time
has been accumulated analytically.
For evaluation of the hardware architecture, the design unit

was synthesized for the UMC 65 nm technology using worst
case libraries (1.08V, 125 ◦C). To have an accurate estimation
of the power consumption of the transprecision FPU, we
performed post-place-&-route power simulations. The target
frequency for the post-layout design was set to 350MHz,
using worst-case conditions. Results take into account the
switching activity of input and output registers, added at the
boundaries of the unit to evaluate their performance, negligible
with respect to the power of the arithmetic units themselves.
Energy costs of FP operations were obtained through sim-
ulation of the post-layout design in all modes of operation,
again using worst-case conditions. Values provided to the unit
were generated in a random fashion, making sure that no
invalid values were generated. Namely, no NaN or infinity
values were applied and operands were chosen sufficiently
close to each other such that operand cancellation would not
occur during addition or subtraction. For conversions, only
values that can be mapped to the target type were applied to
eliminate over- or underflow. This was done to simulate normal
operation wherein operation is done on meaningful data, while
operand cancellation or invalid inputs lead to significantly
diminished switching activity inside the operational units. The
energy cost of each non-FP instruction executed by the core
includes contribution of core logic, instruction memory and
data memory. Even if the transprecision FPU has not been
integrated in the PULPino core yet, to collect energy measures
we have considered the contribution of moving data to/from
input and output registers of the FP unit, and also the cost of
idle cycles due to pipeline stalls (for both 16-bit and 32-bit
instructions).

1164 2 0 1 2 1 0 0 0 0 1165

0 2005 0 0 30001 0 0 0 0 0 0

0 5 5 0 11 13 5896 1 7 1 574

0 0 0 1 0 1 5849 0 0 0 1

11025 0 0 0 2 2 37 3 0 0 1

0 0 0 0 0 1586 1 0 0 0 0

0 1165 4 1 0 0 0 0 0 0 1165

32006 0 0 0 0 0 0 0 0 0 0

5 12 14 12 6424 4 4 0 0 37 1

0 1 0 1 0 0 5849 0 0 1 0

11025 1 2 1 2 38 0 0 0 0 1

0 0 0 0 0 1586 1 0 0 0 0

1167 3 0 0 0 0 0 0 0 0 1165

32006 0 0 0 0 0 0 0 0 0 0

6 5911 12 11 537 24 2 0 0 10 0

0 2 0 5849 0 1 0 0 0 0 0

11025 4 39 1 0 0 0 0 0 0 1

1586 0 0 0 0 0 1 0 0 0 0

Fig. 4. Precision tuning of program variables for three precision requirements.

Fig. 5. Breakdown of FP operations for three precision requirements.

B. Precision Tuning
The table in Figure 4 shows the results of the precision

tuning, performed for three precision requirements (SQNR
= 10−3, 10−2, 10−1). Rows correspond to applications and
columns to precision bits. The reported values represent the
number of memory locations (scalar variables or array ele-
ments) requiring the minimum number of bits of their column
to meet precision constraints. Color bands show the mapping
between precision bits and the FP type system introduced in
Section III. KNN and SVM make wide use of binary8 data,
while in general other application do not. In fact binary8
emerges a format which is profitable in specific applications
domains, while binary16 is a good candidate for a wider use.
Moreover, it is evident that most elements in the interval [9, 11]
are concentrated in column 9, which is the minimum number
of precision bits required for a binary16 type. This is due to the
fact that these elements strictly require the additional precision
provided by binary16 w.r.t. binary16alt, which means that both
types are useful in different contexts. For the same reason,
variables in column 4 are more than variables in column 5,
since they include all cases that do not require a wider dynamic
range w.r.t. binary8 (regardless of the precision). Conversely,
variables that require high precision usually require more than
12 precision bits, and they are concentrated in the last column.

C. Execution time and memory accesses
Figure 5 shows a breakdown of the FP operations performed

by each application, taking into account the same precision

Fig. 7. Energy consumption normalized to binary32 baseline.

requirements of previous section. This is a dynamic view of
the FP type system at run-time (whereas Figure 4 provides a
static view after precision tuning). Each bar segment quantifies
the contribution of a specific type to the total number of
FP operations, discriminating scalar and vectorial operations.
In JACOBI and PCA there is a major contribution of 32-
bit operations, which is a first trait that adversely affects a
potential reduction of energy consumption. Another negative
aspect is the lack of vectorial operations, that is pathological in
JACOBI. In this work we have not considered any advanced
coding techniques (e.g., manual code vectorization), but we
have based out analysis on off-the-shelf versions of applica-
tions that could be further optimized to achieve following the
guidelines derived from our considerations.
Figure 6 depicts two groups of bars for each application,

reporting memory accesses and executions cycles. Values are
normalized to the binary32 version of the application, that
acts as a baseline. Vectorial memory accesses, cycles spent
in vectorial operations and cycle spent in cast operations are
highlighted with a different pattern. As showed in the previous
section, JACOBI does not perform any vectorial operation.
Moreover the number of cycles is equivalent to the original
version, since this application only uses a limited number
of binary16alt variables without exploiting vectorization. In
the most general case, the number of cycles can even exceed
the baseline, since cast operations between different FP types
are introduced (e.g., JACOBI when SQNR = 10−3). As a
major limitation, current tools for precision tuning do not take
into account the cost of casts, since they aim at minimizing
the number of precision bits used by any variable and no
additional optimization goal can be specified. This effect
is further exacerbated in PCA, where the number of casts
required after the tuning process exceeds 10% (SQNR = 10−1)
and 20% (SQNR = 10−2 and 10−3)). In other benchmarks
we can observe evident benefits in memory accesses and
cycles, mainly due to vectorization, while the overhead of
cast operations is not relevant. SVM shows the maximum
reduction of memory accesses, that is 48%, since 60% of FP
operations are vectorizable (for any precision requirement). On
average, the execution time is decreased by 12% and memory
accesses are reduced by 27%. Considering JACOBI and PCA
as outliers, these values turn into 17% and 36%.

D. Energy consumption
Figure 7 shows the energy consumption of each application,

normalized to the binary32 baseline. Each bar contains three
contributions, the FP operations (FP ops), the memory ac-
cesses (Memory ops) and all the other instructions that are

Fig. 6. Memory access and cycles for three precision requirements, normalized to binary32 baseline.

executed by the core (Other ops). These numbers can be
easily justified by the considerations in the previous section.
On average, the energy consumption of JACOBI is 97%,
since this application makes limited use of smaller-than-32-
bit types and does not exploit the benefits of vectorization.
The energy consumption of PCA is 7% and 8% greater than
the baseline for two precision requirements (SQNR = 10−3

and 10−2), due to the high number of casts coupled with a
predominant number of scalar operations on binary32 values.
The other applications have average energy savings around
18% compared to the baseline, with a maximum of 30%
measured for KNN. Considering the results of Section V-B, the
behavior of KNN is related to three main characteristics, (i) it
uses the binary8 type for all program variables, (ii) it exploits
vectorization, and finally (iii) it requires a limited number of
non-vectorized memory accesses.
Advanced vectorization techniques can provide huge benefits

whenever an application provides a relevant percentage of
smaller-than-32-bit operations after the tuning process. To
demonstrate this assumption, we applied manual vectorization
to PCA, thus reducing the energy consumption to lower values
(101%, 96% and 85%). These gains are marked on Figure 7
by labels 1, 2 and 3. Further energy savings can be only
achieved by reducing the contribution of casts with the support
of smarter tools for precision tuning.

VI. CONCLUSION

This work introduces an extended FP type system with
complete hardware support to enable transprecision computing
on ULP embedded platforms. Experimental results show that
our approach is effective in reducing energy consumption by
leveraging the knobs provided by the extended FP type system
and thanks to vectorization support. The energy consumption
is reduced on average by 18%, and up to 30% for specific
applications. At the same time, execution time is decreased
by 12% and memory accesses are reduced by 27%.
Our future work will be focused on three main aspects. First,

the study of new techniques of precision tuning, that take into
account the costs of casts with the aim to formulate a multi-
objective optimization problem. Second, the optimization of
transprecision hardware units, to achieve better performance
and minimize the area. Third, the investigation of compiler
passes and vectorization techniques to better exploit transpre-
cision opportunities at compile time.

ACKNOWLEDGMENT

This work has been partially supported by the European FP7
ERC project MULTITHERMAN (g.a. 291125) and by the
European H2020 FET project OPRECOMP (g.a. 732631).

REFERENCES

[1] D. H. Bailey et al., “ARPREC: An arbitrary precision computation
package,” Lawrence Berkeley National Laboratory, 2002.

[2] C. Bekas et al., “Low-cost data uncertainty quantification,” Concurrency
and Computation: Pract. & Exper., vol. 24, no. 8, pp. 908–920, 2012.

[3] H. Brönnimann et al., “The design of the Boost interval arithmetic
library,” Theoretical Comp. Science, vol. 351, no. 1, pp. 111–118, 2006.

[4] W.-F. Chiang et al., “Rigorous floating-point mixed-precision tuning,”
in Proc. of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. ACM, 2017, pp. 300–315.

[5] L. Fousse et al., “MPFR: A multiple-precision binary floating-point
library with correct rounding,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 2, p. 13, 2007.

[6] M. Gautschi et al., “An Extended Shared Logarithmic Unit for Nonlinear
Function Kernel Acceleration in a 65-nm CMOS Multicore Cluster,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 98–112, 2017.

[7] ——, “Near-Threshold RISC-V Core With DSP Extensions for Scal-
able IoT Endpoint Devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2017.

[8] S. Graillat et al., “Auto-tuning for floating-point precision with Discrete
Stochastic Arithmetic,” 2016.

[9] J. R. Hauser, “Handling floating-point exceptions in numeric programs,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 18, no. 2, pp. 139–174, 1996.

[10] N.-M. Ho et al., “Efficient floating point precision tuning for approx-
imate computing,” in 22nd Asia and South Pacific Design Automation
Conf. (ASP-DAC). IEEE, 2017, pp. 63–68.

[11] H. Kaul et al., “A 1.45GHz 52-to-162GFLOPS/W variable-precision
floating-point fused multiply-add unit with certainty tracking in 32nm
CMOS,” in IEEE Int. Solid-State Circuits Conf., 2012, pp. 182–184.

[12] P. Klavı́k et al., “Changing computing paradigms towards power effi-
ciency,” Phil. Trans. R. Soc. A, vol. 372, no. 2018, 2014.

[13] M. Moscato et al., “Automatic Estimation of Verified Floating-Point
Round-Off Errors via Static Analysis,” in Int. Conf. on Computer Safety,
Reliability, and Security. Springer, 2017.

[14] C. Rubio-González et al., “Precimonious: Tuning assistant for floating-
point precision,” in Proc. of the Int. Conf. on High Perf. Computing,
Networking, Storage and Analysis. ACM, 2013, p. 27.

[15] T. Rzayev et al., “DeepRecon: Dynamically reconfigurable architecture
for accelerating deep neural networks,” in Int. Joint Conf. on Neural
Networks (IJCNN), 2017, pp. 116–124.

[16] J. Y. F. Tong et al., “Reducing power by optimizing the necessary
precision/range of floating-point arithmetic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 3, pp. 273–286, 2000.

[17] M. M. Trompouki and L. Kosmidis, “Towards general purpose com-
putations on low-end mobile GPUs,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE). IEEE, 2016, pp. 539–542.

[18] D. Zuras et al., “IEEE standard for floating-point arithmetic,” IEEE Std
754-2008, pp. 1–70, 2008.

