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Victor Javier Kartscha,∗, Simone Benattia, Pasquale Davide Schiavoneb, Davide Rossia, Luca Beninia,b

aMicrel Lab - DEI, University of Bologna
bIntegrated System Laboratory ETH, Zurich

Abstract

Drowsiness detection mechanisms have been extensively studied in the last years since they are one of the prevalent

causes of accidents within the mining, driving and industrial activities. Many research efforts were done to quan-

tify the drowsiness levels using behavioral analyses based on camera eye tracking systems as well as by analyzing

physiological features contained in EEG signals. Detection systems typically use specific drowsiness indicators from

only one of these methods, leaving a risk of missed detection since not all the population presents same symptoms

of drowsiness [1]. Thus, multi-feature systems are preferable even though most of the current State-of-the-Art (SoA)

solutions are based on power-hungry platforms and they have meager chance to be used in embedded wearable appli-

cations with long battery lifetime. This work presents a drowsiness detection scheme fusing behavioral information

coming from user motion through an IMU sensor and physiological information coming from brain activity through

a single EEG electrode. The solution is implemented and tested on a low power programmable platform based on an

ARM Cortex-M4 microcontroller, resulting in a wearable device capable to detect 5 different levels of drowsiness with

an average accuracy of 95.2% and a battery life of 6 hours, using a 200mAh battery. We also study the energy opti-

mization achievable by accelerating the sensor fusion-based drowsiness detector on a parallel ultra-low power (PULP)

platform. Results show that the use of PULP as efficient processing platform provides an energy improvement of 63x

with respect to a solution based on a commercial microcontroller. This may extend the battery life of the complete

system up to 46 hours with a 7x improvement, paving the way for a completely wearable, always-on system.

Keywords:

Drowsiness Detection, Fatigue monitoring, EEG, Sensor Fusion, Wearable.

1. Introduction

Safety is a major challenge in transportation and

automotive industries. According to Caterpillar, the

world’s largest manufacturer of construction and min-

ing, fatigue is one of the most prevalent causes of earth-

moving equipment accidents within the mining industry

(large vehicles such as bulldozers and excavators) [2].

The shifts of the workers can often be 12-hours long,

which increases the risk of ”micro-sleeps” when suffer-

ing from fatigue, compromising the safety of the opera-

tions. This also applies for public transportation (buses,
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trains, planes, etc.). The USA National Highway Traffic

Safety Administration (NHTSA) estimates that there are

annually about 100,000 crashes in USA caused by fa-

tigue, resulting in more than 1500 fatalities and 71,000

injuries [3]. In Europe, more than 20% of the car ac-

cidents are caused by this condition [4]. Thus, driver

fatigue assessment remains a big challenge to meet the

demands of future intelligent transportation systems [5].

During the last years, technology enhancement has

enabled several new approaches for addressing fatigue

monitoring and drowsiness detection. The automotive

industry is currently exploring solutions based on in-

vehicle sensors to monitor and prevent dangerous sit-

uations. For instance, lane detector systems [6] or semi-

autonomous drive supports [7] have been proposed.

Other systems can provide an indirect indication of the

driver’s level of fatigue by scanning the driving profile

(acceleration, braking, etc.) and measuring the travel
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time.
Other approaches focus on the physical behavior of

the driver to determine drowsiness. By using on-board
cameras, eye and face tracking systems aim to monitor
drivers eye parameters as PERCLOS (percent of time
with eyelid closed at least 80%, measured in a minute)
[8], eye blink ratio, blink duration, changes in driver’s
head inclination and yawing occurrence.

The aforementioned indirect methods are unobtrusive
and can be useful in situations where users are forgetful.
Nevertheless, they have to be embedded in the cockpits
of the vehicles, and the high computational costs, com-
plex hardware requirements and specific angle and illu-
mination conditions (in case of camera systems) drasti-
cally limit the potential for portability.

On-board Inertial Measurement Units (IMUs) are
also currently studied to determine behavioral drowsi-
ness parameters, for example, some of those are de-
ployed to track steering wheels movements [9]. Re-
cently, similar devices were installed on helmets to eval-
uate head gesture providing alarms when drowsiness-
related movements are detected [10]. These features,
purely behavioural, represent an intuitive way to de-
tect the drowsiness of a driver. However, since many
of these movements generally occur also during normal
working activities, the approach is subject to a high ratio
of false positives [11].

The monitoring of physiological parameters has been
extensively studied since biomedical signals are useful
indicators of fatigue and drowsiness [12, 13, 14]. In-
deed, heart rate, skin electric potential and brain activity
evidence detectable changes in presence of drowsiness
[15]. More specifically, some cars incorporate elec-
trodes on the seat belts or on the steering wheels [16]
to measure ECG (Electrocardiogram). Regrettably, this
approach does not show promising results since it is
prone to errors due to the lack of reliability of electrodes
contact (e.g. gloves, heavy clothes, moving artifact,
etc.) and due to the variability of the heart rate caused
by other factors different than drowsiness [17, 18].

The analysis of EEG (Electroencephalography) sig-
nals is currently the most commonly used method to
detect drowsiness. These signals result from the super-
position of the individual contribution of the neuronal
activity. EEG signals are mostly the result of the cortical
activity, which corresponds to the external layer of the
brain. Electrodes located on the head (partially or totally
covering the scalp) extract the potential variations. De-
pending on the frequency bands, the signals can be clas-
sified as Delta waves (1-4Hz), Theta waves (4-8Hz), Al-
pha waves (8-13Hz), Beta waves (13-30Hz) or Gamma
waves (30-50Hz). It has been demonstrated that the

variation of the brain rhythms on the alpha waves band
indicates a drowsy state [19]. However, the brain ac-
tivity is highly subject-dependent and heavily affected
by environmental noise. Moreover, alpha waves are not
present in 10% of the world population [1, 20]. To in-
crease the reliability of the detection, some systems in-
tegrating different sensors have been developed. These
approaches are based on sensor fusion techniques com-
bining different physiological parameters, either at sys-
tem level [14, 21] or at chip level [22, 23].

This work presents a heterogeneous approach that
merges behavioural and physiological monitoring ex-
ploiting sensor fusion techniques to detect drowsiness
with a single-channel EEG and an IMU, leading to a
minimally intrusive embedded device based on a low-
power processor. By exploiting heterogeneous sensor
fusion techniques the proposed system detects 5 drowsi-
ness levels. Extracting features from alpha waves activ-
ity and from user movements, the proposed approach
achieves a reliable detection among the test subjects.

Furthermore, the proposed solution is suitable for
Body Area Network scenarios [24], since the Printed
Circuit Board (PCB) designed for the application has a
small form factor (9x4.5cm) and integrates all the com-
ponents (i.e. a microcontoller, analog-to-digital con-
verter (ADC), accelerometer, BT module, voltage con-
verters and regulators) required for a real-time embed-
ded drowsiness detection and low-power wireless trans-
mission.

The proposed system, based on a commercial STM32
microcontroller, was tested on 10 subjects to evaluate
the drowsiness level detection, achieving an average
accuracy of 95.2% with a power consumption of the
whole system of 109.93mW leading to a battery life of
6 hours using a 200mAh battery. Finally, a step fur-
ther in energy efficiency is taken by implementing the
drowsiness detection computations on a Parallel Ultra-
Low Power (PULP) processor [25, 26] that combines
a multi-core architecture with near-threshold operating
voltage. Our optimized algorithm achieves almost ideal
parallel speedup, fully unlocking the energy efficiency
boost provided by low-voltage, low frequency parallel
operation as opposed to faster sequential operation at
higher operating voltage. The exploitation of PULP as
processing platform drastically extends the battery life-
time to 46 hours, leading to an improvement of 7x with
respect to the MCU-based solution, paving the way for
a completely wearable, always-on system solution.
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2. Related Work

Detection of driver’s drowsiness is an active research
field in both industrial and transportation areas. To in-
crease safety and reduce the number of accidents, sev-
eral automotive companies, universities, research cen-
ters, and governments are contributing to the develop-
ment of Advanced Driver Assistance Systems (ADAS)
aiming the analysis of different technologies and tech-
niques to reduce the risk of accidents caused by drowsi-
ness [2, 5].

Commonly, commercial vehicles identify safety risks
by analyzing the driver’s behavior, which includes the
monitoring of the vehicles position with respect to the
lane markings [27] and the steering wheel movements
[28]. Although these systems trigger alarms when a
dangerous driving situation is detected (e.g. when the
vehicle goes out of the tracks), they are not able to alert
the driver in advance on the occurrence of dangerous
conditions, such as reduced attention caused by a high
level of fatigue.

A more reliable approach is adopted in systems that
measure physical behaviours (PERCLOS, Blink Fre-
quency, Nodding and Yawing occurrences) to detect the
level of fatigue. For example, the work presented by
Flores et. al. [29] relies on a digital camera to com-
pute the drivers eyes state and eyes blinking frequency,
head movement and sagging body posture. Since this
method is based on computer vision techniques, it re-
sults to be a challenging task due to the variability of
environmental factors such as illumination conditions.
Therefore, the addition of NIR (Near Infra Red) illumi-
nation and stereo vision is a common practice to operate
in nocturnal conditions [30, 31]. Both implementations
locate the position of the eye using image differences
based on the bright pupil effect. On top of this, the
blind eyelid frequency and eye gaze are computed to
build drowsiness indices such as PERCLOS and AECS
(Average Eye Closure Speed) [2]. The common draw-
back of the solutions based on computer vision is the
need for high-performance computing systems to con-
tinuously process the huge stream of data generated by
the cameras, such as small servers on the vehicles trunk.
Moreover, two different kind of sensors are always re-
quired to deal with different lighting conditions and the
line of sight has to be granted for a reliable recognition
of the drowsiness indicators.

To overcome these issues, and to provide a more di-
rect approach in the detection of drowsy driving situa-
tions, the new trend of research is to directly measure
biometric signals such as EEG, EOG (Electrooculogra-
phy), ECG, PPG (Photoplethysmogram), and eventually

fusing data from multiple sensors [32, 33] to improve
the robustness of the approach [34, 35, 36].

Among them, the system proposed by Lee et.al. [37],
relies on sensor fusion algorithms to detect the drivers
fatigue level using ECG, heart rate variability, blood
pressure and PPG signals collected from an indoor driv-
ing simulation and processed by a smartphone. Reyes
et. al. [38], proposed the integration of body area sen-
sors and vehicular ad-hoc networks for traffic safety us-
ing a wireless physiological signal-acquisition module
which collects and pre-process EEG signals to later send
them to a small on-board PC for elaboration. Sun et.
al. [39] demonstrates that ECG, EEG and eye blinking
can be measured and exploited in the context of drowsi-
ness detection in car environments. The experiments,
conducted on a high fidelity driving simulator, show
that the system is able to detect the ECG/EEG signals
through clothes without skin contact. The drowsiness-
estimation system proposed by Lin et. al. [40] is based
on electroencephalogram (EEG) and combines indepen-
dent component analysis (ICA), power-spectrum analy-
sis, correlation evaluations and linear regression model
to estimate a drivers cognitive state when the subject
is in a virtual reality (VR)-based dynamic simulator.
In Shuyan et. al. [41], eyelid parameters are ex-
tracted from the EOG data, collected in a simulated
driving experiment to detect successfully the drowsiness
of the drivers using Support Vector Machine (SVM).
The driver fatigue recognition model of [40] is based on
a dynamic Bayesian network. Multiple features, such as
contextual (sleep quality) and physiological (ECG, EEG
and eye movements) were evaluated, showing that the
EEG and ECG signals contribute significantly to fatigue
detection [23]. The aforementioned approaches are
based on computationally intensive algorithms and re-
quire cumbersome setup and high-end computing plat-
forms. On the other hand, the design of a minimally
intrusive and low-power system is a desirable solution
for better portability and longer battery lifetime.

Thanks to the lower computational effort required by
the extraction of the physiological signals w.r.t. com-
puter vision, some attempts have been made so far to use
low-power microcontrollers as computing platforms, al-
lowing to embed the whole system into wearable com-
ponents. The wearable system proposed by Lin et.
al. [42] is suitable for car applications and it includes
a physiological signal-acquisition module and an em-
bedded signal-processing module designed for real-time
drowsiness detection. However, the signal processing
module is still based on a power-hungry DSP processor
(750mW) hence not suitable for autonomous long term
monitoring. Similarly, [43] presents a system using
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Figure 1: Block diagram of the board. The board is secured on the head using rubber bands. Auto adhesive circular gel-based electrodes are used
to transmit the signals from the head to the ADC.

EEG and NIRS (NIR Spectroscopy), where the imple-
mentation is totally embedded, and the signal process-
ing and the predictions are performed on the same sys-
tem on chip (SoC), achieving an autonomy of 5 hours.

The Smart Safety Helmet, proposed in [10] consists
of a low cost embedded system, exploiting an IMU and
dry EEG electrodes connected to a 16-bit PIC microcon-
troller. A vibrotactile motor is integrated into the helmet
to alert the operator when a computed risk level (i.e., fa-
tigue, high stress or error) reaches a threshold. Once the
risk level of accident surpasses the threshold, a notifica-
tion is sent to a connected machine to stop the current
work or process. The system is fully implemented and
tested on 3 subjects. The activity recognition of torso
and head movements is made by the IMU while the EEG
alpha waves signal indicates the level of fatigue. This
work exploits a sensor fusion algorithm based on IMU
and EEG sensors integrated on a single wearable board,
able to provide 5 levels of alarm, covering a wide variety
of drowsiness-related symptoms. From the EEG sen-
sors, three parameters are extracted. The first consists
of the blink duration, since it increases when drowsi-
ness is appearing and it is also related to micro-sleeps
[44, 45, 46]. The second parameter counts the duration
of alpha waves bursts since it is related to drowsiness
[19]. The third, also related to the presence of alpha
waves, detects the complete closure of the eyes [47] by
considering the constant presence of alpha waves for
a given time. From the IMU sensor, nodding, normal
movement and no movement of the user are detected
by evaluating the acceleration measured by the sensor.
These behavioral and physiological indicators are com-
bined on a fusion algorithm to provide 5 drowsiness re-
lated alarms, significantly improving the detection accu-
racy with respect to the state of the art, while performing
all the processing and classification on a deeply embed-
ded platform.

Furthermore, our detection algorithm have been im-

plemented on a near-threshold parallel platform, provid-
ing a significant boost in energy efficiency with respect
to traditional MCUs. This approach extends the battery-
life of the system to 46 hours, significantly improving
the battery-life of the proposed system with respect to
the state of the art solutions, and paving the way to a
wearable long-term monitoring platform.

3. System Architecture

Fig. 1 shows a high-level diagram of the proposed
system. This section introduces the feature extraction
methods and the architecture of the proposed drowsi-
ness detection system, including the hardware platform,
the detection algorithm and the sensor fusion approach
adopted. The sensing subsystem of the platform re-
lies on an ADC designed for EEG acquisition and on
an IMU. These devices are connected via SPI and I2C,
respectively, to a commercial ARM Cortex M4 micro-
controller used to acquire the data and to perform the
real-time detection. The on-board Bluetooth module
can transmit the output of the detection, the EEG sig-
nal, or intermediate waves and information to a smart-
phone, tablet, or PC which can be used for debugging
purposes, to visualize the output of the drowsiness de-
tection, or most commonly just to notify to the user the
different levels of alarm.

3.1. Feature extraction

The evaluation of the behavioral and physiological
parameters of the user is performed extracting the rel-
evant features from the input signals. In this section, we
introduce the methods used, separating them according
to the type of signal. The combination of the processed
features provides the different levels of alarm.
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Figure 2: Blinks in time and frequency domain. The blue line repre-
sents the original EEG signal contaminated with the eye-blink artifacts
(depressions of the signal) while the red line represents the energy val-
ues of the 1 Hz signals over time, extracted using the STFT.

3.1.1. EEG signals

The EEG signal is extracted from the brain cells elec-
trical activity and corresponds to the superposition of
the cell membrane depolarizations [48]. EEG is ac-
quired non-invasively with conductive electrodes placed
on the scalp and connected to an instrumentation ampli-
fier or to an ADC. The EEG signal amplitude ranges
from 5 to 200µV. The low-pass effect and the spatial in-
tegration caused by the skull make the EEG acquisition
highly prone to electrical noise, even though this sig-
nal, by virtue of its high temporal resolution (<1ms), is
widely used in neurological analysis and in BMI sys-
tems. In this work, two features are extracted from EEG
signals, described in the following.

3.1.1.1. Blink Duration. According to [44, 45, 46] the
blink duration provides a clear indication of drowsiness
since is associated to micro-sleeps events. Our imple-
mentation measures this parameter using the electrode
configuration reported in Fig. 1, that allows the extrac-
tion of the blink duration from EEG signals avoiding the
use of an extra EOG channel.

The blink duration is extracted by calculating the
Short-Time Fast Fourier Transform (STFT) over 512
samples (1.024 seconds) with sliding windows of 32

Table 1: Normalized peak-to-peak difference for different blinks and
detection accuracy. The accuracy was evaluated comparing the esti-
mated values with the values obtained using the definition of blink
given by [49].

Trial No. SB MB LB NB Acc. %
Trial 1 0.03 0.168 0.308 0.01 92
Trial 2 0.03 0.168 0.290 0.009 93
Trial 3 0.03 0.167 0.302 0.01 87

Avg. time 0.367ms 0.61ms 1.174ms - -

samples (64 ms) for a frequency of 1Hz. Fig. 2 shows
the energy of the STFT 1Hz during a series of blinks
and the corresponding EEG signal in the time domain.
For each blink, the presence of a high and low peak is
evident and it is noticeable that longer blinks result to a
higher amplitude in the frequency domain.

To remove artifacts such as eye movements, saccades,
etc., the amplitude difference is compared to a thresh-
old before being classified as a regular-long blink. The
threshold is obtained empirically by acquiring ampli-
tude differences from 3 test subjects, asked to blink
the eyes at different frequencies and to move the eye-
balls while keeping the eyes open, to generate artifacts.
Hence, the normalized max-min difference of the STFT
1Hz energy and the average time of three different trials
of Short Blink (SB), Middle Blink (MB) and Long Blink
(LB) are calculated to extract the threshold. Results of
this method are summarized in Table 1.

The accuracy is calculated comparing measured val-
ues against the definition of blink duration for EOG re-
ported in [49], where the blink duration is estimated by
finding the half-amplitude of the upswing and down-
swing of each blink and computing the time elapsed be-
tween the two.

3.1.1.2. Alpha waves (AW) detection. Alpha waves
have been shown as a good indicator of fatigue, since
the variation of the brain rhythms in this band indicates
drowsiness. Two methods, based on threshold detec-
tion, have been evaluated to detect alpha waves bursts.

In the first method, the EEG signal is band-filtered
to extract the alpha rhythms. We apply a 128-taps Fi-
nite Impulse Response (FIR) filter in the 7.5-13 Hz
band. Therefore, the root-mean-square (RMS) is cal-
culated over a sliding window of 250 samples with 125-
samples overlap, to extract the signal envelope. Finally,
the presence of alpha waves is detected only when the
RMS envelope is above a given threshold. In the second
method (PSD-method), we analyze the signal in the fre-
quency domain. The STFT is calculated over 512 sam-
ples (1.024 seconds) with sliding windows of 32 sam-
ples (64 ms). Here, the power spectrum is calculated
on the frequencies of interest (7.5-13 Hz) and the max-
imum value within this band is selected for each time
step (64ms). Alpha rhythms are detected when the PSD
value is above a given threshold.

In both cases, the thresholds were found experimen-
tally, with a test on 3 subjects that were requested to
open/close their eyes for a given time. The values are
reported in Table 2, where the two methods are also
compared in terms of classification accuracy. It is pos-
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(a) (b)

Figure 3: Testing of the PSD and RMS methods. In both figures, a 40 seconds duration test is represented, the 10-20 and 30-40 second intervals
correspond to the signal outputs where the test subject have the eyes closed. The reminding time intervals correspond to eyes opened. The red lines
show the output of the prediction algorithm, where the lower lines represent eyes-opened detection and the higher lines represent the eyes closed
detection. In (a), the blue line shows the maximum energy value among the the frequencies of the alpha waves band over time, extracted using the
STFT. In (b), this line represents RMS envelope of the filtered original signal (band-pass filtered at 7.5-13 Hz to keep the alpha waves only).

sible to note that the second method based on the PSD
reaches higher classification accuracy, therefore it has
been selected for the final implementation (using the
same thresholds for consecutive test subjects). Figures
3(a) and 3(b) show a 40 seconds example where the two
methods try to classify the blink by checking if eyes
are open or closed. From Fig. 3(a) it is noticeable that
the RMS based method gives worse classification result
than the PSD based one. Moreover, using frequency do-
main features at this level does not add any complexity
to the detection algorithm since the STFT is already cal-
culated in the blink duration estimation.

3.1.2. IMU signals.
IMU sensors provide information about user gestures

[52, 53]. The nod gesture is an important indication
of sudden sleep and it was used in previous investiga-
tions [54, 55, 56]. Detecting such gesture is done via
the RMS of derivative of the accelerometer signal on the
three dimensions of 32 samples with sliding windows of
1 sample. The RMS calculation smooths the derivative
signal to detect three activities: sudden tilt (ST), nor-
mal movement (NM) and no movement (NOM). Two

Table 2: Comparison of the RMS and PSD method for alpha waves
detection using optimal threshold. The metrics used here were se-
lected considering their common use in other investigations [50][51].
The values were obtained after classifying eyes opened/closed events
for the respective methods and optimal thresholds. Details of the ex-
perimentation are indicated in Figure 3(a) and 3(b) respectively.

Method Threshold Sensitivity Specificity Accuracy
RMS 0.4 0.882 0.934 0.908
PSD 0.2 0.900 0.997 0.949

thresholds are compared to the RMS value to assign
one of the three activity states. If the RMS is greater
than the higher threshold, the ST state is asserted. If
the RMS is in between the two thresholds, the NM state
is asserted. If the RMS is below the lower threshold,
the NOM state is asserted. Fig. 4 shows an example
of activity recognition where it is possible to see three
peaks of the RMS value, which indicate a sudden tilt
movement. Raw data was extracted from 3 test subjects
wearing the device and later analyzed on MATLAB to
find the optimal threshold values. The approach is tested
by collecting data of the three different activities and
evaluating the accuracy of the RMS decision tree. The
accuracy of the classifier for the three different classes is
reported in Table 3. After this evaluation, the threshold
values were kept constant for the consecutive test with
other test subjects.

Figure 4: Detection of the activities using G-force and its derivative.
Here, the sudden tilt and normal movement are correctly detected by
the gesture classifier.
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3.2. System Level Design

The block diagram of the proposed system is pre-
sented in Fig. 1. The EEG signals are acquired by the
Texas Instrument ADS1298 low power ADC which is
specifically designed for the acquisition of biopotentials
like ECG, EMG and EEG [57].

The ADC has 8 differential channels with a resolution
of 24 bits and its power consumption is 0.75 mW per
channel in typical conditions. The sampling rate ranges
from 250 Hz to 32 kHz. The proposed system uses only
one differential channel at 500 Hz with two circular gel-
based electrodes featuring a surface contact of 2 cm2.

The InvenSense MPU-9150 Motion Processing Unit
(MPU) has been used to capture the user motion. The
MPU is a 9-axis motion tracking device which com-
bines a 3-axis MEMS gyroscope, a 3-axis MEMS ac-
celerometer, 3-axis MEMS magnetometer and a Digi-
tal Motion Processor hardware accelerator engine [58].
It has 16-bits resolution for each gyroscope and ac-
celerometer axis and 13-bits resolution for the magne-
tometer.

The outputs of the EEG sensor and the MPU are
transmitted to a microcontroller via SPI and I2C, re-
spectively.

The STMicroelectronics STM32F407 microcon-
troller [59] is based on an ARM Cortex-M4 core with
floating point unit, equipped with 192 kB of SRAM and
1 MB of non volatile Flash memory. It features a power
density of 238 µW/MHz. The Cortex-M4 core features
DSP extensions which deliver high performance on data
processing algorithms as well as 210 DMIPS and 566
CoreMark at 168 MHz on general purpose applications.
Finally, the output of the application can be transmitted
to an external device using the Bluegiga WT12 Blue-
tooth Class 2 Module [60].

A 6 layers Printed Circuit Board (PCB) assembles the
described components in 9 × 4.5 cm as shown in Fig. 5,
with a weight of 50 grams. The board global power
supply is controlled by a dedicated integrated circuit
with an internal switching voltage regulator. Each de-
vice within the board is then powered by a low-dropout

Table 3: Threshold values for ST, NOM and NM. The values here ex-
posed correspond to the threshold giving the highest accuracy values.

Gesture Threshold Accuracy
ST Output >1.6 93
NM 0.4 >= Output <1.8 95

NOM Output<0.3 97

Figure 5: Assembled PCB (top) with electrodes cable. Here, two
channels and the reference (GND) are wired. Only one channel (and
reference) are later attached to the auto-adhesive gel-based electrodes
to perform the tests.

(LDO) regulator1.
Thanks to the compound of general purpose and

power efficient devices, the resulting platform is a
highly versatile system for embedded applications
based on processing of bio-signals and motion. Table
4 shows the relevant features of the devices employed
in the proposed system.

The algorithm, implemented on the microcontroller,
rates the drowsiness level on a scale of 5 values. Once
the signals have been acquired, the power spectral den-
sity (PSD) of EEG signal and the RMS of the IMU sig-
nal are calculated by exploiting the optimized Cortex
microcontroller Software Interface Standard (CMSIS)
DSP Software Library [61]. For the EEG part, the max-
imum energy value of the alpha bands is used as feature
to detect drowsiness, while the RMS of the derivative of
the 3-axis accelerometer of the IMU signal is used for
the motion detection part. Subsection 3.4 describes the
detection algorithm in details. Detected drowsiness lev-
els can be streamed via the BT module to an Android
application, developed to show the system state and the
intermediate or final outputs of the processing chain.

3.3. Parallel Ultra Low Power Platform (PULP)

PULP2 is a multi-core ultra low power platform ex-
ploiting near-threshold computation (NTC) and parallel

1The current board was developed only for testing purposes. Fur-
ther optimization can reduce the size and weight of the complete hard-
ware to a half.

2The first generation PULP architecture is presented in [25], while
the second generation is presented in [26]. Further information re-
garding the PULP platform can be found in the project web page
http://www.pulp-platform.org.
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AFE (ADS1298)
Channels 8
Input reference Noise 4(micro)Vpp
Power Consumption 12.5 mW
No. of adjustable gains 7
Signal-to-noise Ratio 112dB
Resolution 24bit

IMU (MPU-9150)
DOF 9
Resolution 16bit
Sample Rate(Acc) 1Khz
Power Consumption 1.4mW

Microcontroller (STM32F407vgt6)
Operational Frequency 168Mhz
RAM 192kB
Flash Memory 1MB
Run mode Pw. Consumption 152mW
Sleep mode Pw. Consumption 39mW

Table 4: Relevant features of the devices used in the system.

execution to fulfill near-sensor processing applications
performance demand at a very low power budget (few
mW) typical of battery-powered systems. The third em-
bodiment of the PULP platform used in this work lever-
ages a cluster with 4 cores which share 64kB L1 sin-
gle latency tightly-coupled data memory (TCDM) to re-
duce the core to core communication latency, and 4kB
of shared instruction cache. The processors of the clus-
ter are based on an optimized micro-architecture imple-
menting the OpenRISC ISA extended with power man-
agement and DSP instructions such as zero-overhead
hardware loops, load and store operations with auto-
matic pointers increment and floating-point units [62],
necessary to deal with applications requiring high preci-
sion and high dynamic range. A Direct Memory Access
(DMA) unit is used to explicitly transfer data from the
off-cluster 256kB L2 data memory and the TCDM.

Off-cluster, several peripherals such as SPI and I2C
communicate with the external word through a micro-
DMA subsystem able to autonomously transfer data
from the peripherals to the L2 memory while the cluster
is idling, improving the energy efficiency of the system.
The SoC and the cluster are in two different voltage and
frequency domains to further improve energy efficiency
depending on the computational workload of applica-
tions. Moreover, an automatic clock gating mechanism
is used to reduce power consumption of idle resources
of the system. For example, every time a core is in
idle state, its clock is gated to save power. This mecha-

Figure 6: Layout of the PULP Chip.

nism is hidden to the programmer which uses only par-
allel programming primitives such as synchronization
barriers implicitly embedding power management func-
tion calls. The PULP architecture has been taped-out
in several technologies including UTBB FD-SOI 28nm,
UMC 65nm, and GF 28nm. Fig. 6 shows the layout
of the PULPv3 chip, implemented in 28nm UTBB FD-
SOI technology, and used for the characterization of the
performance and power models adopted in this work.
The PULP platform relies on OpenMP 3.0 parallel li-
brary that operates on top of a GCC 4.9 toolchain for
programming. The hardware/software environment of
PULP includes a set of software tools useful to imple-
ment and debug applications that run on the architec-
ture, and to estimate their execution time.

To estimate the power consumption of the architec-
ture, data have been extracted from measurements on
the PULPv3 silicon prototype and adapted to the con-
figurations actually employed in the exploration (i.e. a
4-core architecture enhanced with floating-point units).

3.4. Sensor Fusion Alarm system.

The sensor fusion algorithm uses the feature extrac-
tion techniques described in section 3.1 to classify the
drowsiness states. Fig. 7 shows a block diagram of
the application and the description of the 5 levels of the
drowsiness detection alarm are presented below.

3.4.1. Level 1: Normal movement
At the first level, only the IMU sensor is used. The

system remains in this level when the blink duration is
below 500ms, the user produce no alpha waves (or be-
low threshold) and the IMU classifier reports No move-
ment (NOM) or Normal movement (NM).
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Figure 7: Block Diagram of the extracted features to compose the sensor fusion algorithm. The values are extracted/classified from the different
sources using the feature extraction methods detailed in section 3.1 to serve in the identification of the different levels of alarm.

3.4.2. Level 2: Blink Duration + No movement
Two conditions are required to trigger the alarm at

this level. The blink duration must be longer than 500
ms, according to previous investigations [44, 45, 46]
and the gesture classification must return no movement
(NM) class, used to confirm the reduced activity trig-
gered by a drowsiness state of the user. If normal move-
ment (NM) is reported, the value of the blink duration
is set to zero, assuming that the user is not to be under
drowsy conditions.

3.4.3. Level 3: Alpha waves burst detection
The occurrence of alpha waves bursts increases when

the user enters in a deeper drowsiness state. Following
the Objective Sleepiness Scoring (OSS) [19], it is possi-
ble to identify a drowsy state by evaluating the period on
which the alpha waves level exceeds a given threshold,
over a time window of 20 seconds. The alpha waves are
quantified using the PSD method described before and
the alarm is triggered if the value is above the threshold
for at least 5 seconds on the time window.

3.4.4. Level 4: Sudden tilt (nodding)
Level 4 of drowsiness state is asserted using only the

3-axis accelerometer to recognize nodding movements
of the users head, as described in section 3.1. In this
alarm level, only the sudden tilt is accounted. A single
event is needed to activate the alarm, since the nodding
gesture represents a stronger indication of drowsiness
[54, 55, 56].

3.4.5. Level 5: Constant presence of alpha waves
A constant burst of alpha waves is an indication of

the closure of the eyes [47] induced by a total loss of
attention or sudden sleep. Such state is detected using
the same feature extraction method reported for level
3 (PSD-method). More specifically, if the maximum
energy of the alpha waves stays over the threshold for
more than 3 seconds, the alarm level 5 is asserted. This
was considered as the highest level of alarm since it cor-
responds to the most dangerous situation where the user
is falling asleep.

3.5. Implementation on the PULP architecture.

This section describes the implementation of the 5-
levels drowsiness detection alarm system on a 4-cores
PULP architecture. The PULP software toolchain has
been used to evaluate the parameters of the system sim-
ulating the architectural configurations not necessarily
implemented on the silicon prototypes, such as floating-
point units. The ANSI C code used for the imple-
mentation on the MCU has been parallelized using the
OpenMP 3.0 parallel programming interface and opti-
mized for the PULP architecture.

Since the most compute demanding part of the algo-
rithm is the FFT, a great effort has been spent to opti-
mize this kernel on the PULP architecture, exploiting a
fine-grained data-parallel scheme supported by the pro-
gramming model. The FFT algorithm requires to com-
pute a set of butterflies on the N input samples (where
N is the size of FFT, 512 for this application) for each
stage of computation, and the number of stages is equal
to the 2-base logarithm of the number of input samples
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(9 in this case). In the baseline radix-2 algorithm, after
each stage, data generated by the butterflies of the pre-
vious stage has to be shuffled to compute the butterflies
on the following stage.

On the PULP architecture, the FFT is computed
by splitting the butterflies calculation homogeneously
among the four cores, and synchronizing the cores us-
ing hardware barriers after each stage of butterflies to
maintain the data consistency. Two different implemen-
tations have been evaluated, described in the following.

As explained above, the baseline radix-2 FFT re-
quires a synchronization barrier after each stage of but-
terflies (i.e. 9 barriers), leading to a relevant synchro-
nization overhead not amortized by the small computa-
tional load required by each stage of butterflies. A more
optimized approach relies on the radix-8 algorithm. Ex-
ploiting this implementation, each butterfly performs a
single Discrete Fourier Transform (DFT) among 8 sam-
ples instead of 2 as in the case of the radix-2 imple-
mentation. This reduces the number of butterflies to be
computed at each stage but it increases the computa-
tional complexity of each butterfly. The proposed im-
plementation is composed of 3 stages each with 64 but-
terflies (16 for each core), therefore 3 barriers are trig-
gered to accomplish the full 512 samples FFT. Hence,
this approach increases the available parallelism and re-
duces the synchronization overhead with respect to the
radix-2 algorithm. The computation of the magnitude
of the FFT is parallelized by dividing the signal by 4,
thus each core works independently without synchro-
nizations. Both the FFT and magnitude parallel imple-
mentations feature a speedup greater than 3.9 w.r.t. the
single core version on PULP, showing a quasi-ideal par-
allel speedup in performance.

Regarding the computation part related to the IMU
signal, the RMS envelope is computed on the last 512
samples instead to 32 since it offers more efficient use
of cores. A parallel version was implemented by split-
ting again the signal in four parts. Each core computes
the summation of the square of the signal assigned and
finally the cores are synchronized. In the last phase, a
single core is in charge to sum the four results and to
compute the square root.

4. Experimental Results

4.1. Experimental setup

Testing a drowsiness detection system is not a triv-
ial task. Using a real scenario, where a drowsy person
drives a car, exposes the test subject to dangerous situa-
tions, hence it is not feasible. On the other hand, while

simulators offer a realistic perception of the driving ex-
perience in a safe environment, it is proven that the re-
actions of the driver in a simulated scenario and on a
real car are different [65, 66]. Differences are mostly
caused by the awareness of being in a safe environment.
For these reasons, the test of the proposed system is
performed on simulated events, with a combination of
behavioural and physiological symptoms of the drowsi-
ness. This approach has already been validated by pre-
vious works, and demonstrated to be an effective and re-
liable way to test drowsiness detection [67, 66, 68, 69].

The 5-level alarm system described in section 3.2 is
tested on 10 healthy subjects with no previous history of
neural diseases. The participants were under sleep de-
privation (3 hours of sleep) the day before the test. Ad-
ditionally, to maximize the drowsiness effects, the tests
were conducted at late night hours. The evaluation was
performed in real-time using the hardware-software im-
plementation presented in section 3. The board is placed
on the subject’s head, as shown in Fig. 1. The electrodes
are located at Oz (Positive electrode) and Fpz (Negative
electrode), following the 10-20 reference system [70],
while the reference electrode is placed behind the ear.
Subjects reported that the device did not cause appre-
ciable discomfort (after approx. 30 min. of testing, for
each test subject).

To test the first level, the test subjects were asked to
move normally. The second level was tested by ask-
ing to increase the blink duration while avoiding any
rough movement. For the third level, the test subjects
were asked to close their eyes for short periods of time
(<500ms) to generate bursts of alpha waves, easily de-
tectable because of the induced drowsy conditions. For
the fourth level, nodding gesture were simulated. For
the last level, the test subjects were asked to close their
eyes completely. Each level was tested for a maximum
time frame of 1 minute.

4.2. Test evaluation

All the classification results computed on the embed-
ded platform are can be visualized through an Android
application. During the test, each alarm level is assessed
separately, leading to a binary evaluation of each level
(fail/pass). Each test subject simulates the alarm con-
ditions 5 times. The accuracy values are finally ob-
tained after extracting the percentage of fail/pass events
for each alarm. The pass/fail condition depends on the
performed test. The first level is identified as fail if
any alarm is triggered over 1 minute of normal activ-
ity performed by the subject. The second level fails
if the alarm is not triggered after closing the eyes for
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Table 5: Comparison with SoA systems for drowsiness detection.

Author Method Advantage Disadvantage Accuracy Platform Intrusive
[63] EEG, Neural Network Single EEG Channel Training, Offline 83 Computer -
[64] Cam, Eye parameters real-time Fixed, not wearable, Comp. Hungry 94 NS NO
[43] NIRS, EEG, Alpha Pw Portable Noise, Redundant Measurements 65-88 MCU NO

[10]
EEG (α&δPw),
IMU (Gesture)

Helmet based, dry electrodes,
no training

No dedicated ADC, mainly based on
IMU, E.Eff. not mentioned, Lp. MCU NS MCU NO

This work
EEG (Blink Dur. αPw),

IMU (Gesture)
Mult. features, Reduced. HW,

No training, wearable Noise, Gel-based electrodes 88-100 MCU NO

more than 500ms while performing no movement. Re-
garding the third level, the test fails if the alarm is not
triggered after the corresponding evaluation window (20
seconds). In the case of the fourth level, the detection
must be done on a single nodding event. For the last
level, the detection fails if the system does not detect the
condition after 3 seconds from the closure of the eyes.

Fig. 8 shows the experimental results, where aver-
age accuracy reaches to 95.2% over 250 samples. It is
noteworthy that the lowest accuracy is measured in pure
alpha wave detection, confirming the high variability of
purely physiological detection and the added value of
a sensor fusion approach to improve the robustness of
detection.

4.3. Embedded system performance

Fig. 9 shows the system power consumption with the
contributions from the ADC, IMU, the microcontroller
and the BT radio. In this implementation, the MCU op-
erates at 168 MHz when receiving a new sample or ex-
ecuting the processing algorithm.

Since the ADC and the IMU notify the acquisition of
a new sample using interruptions, the microcontroller

Figure 8: Detection accuracy of the different alarms. Following the
criteria described in section 4.2, the accuracy values are obtained after
extracting the percentage of fail/pass events for each alarm.

can be put in sleep mode while waiting for a new sam-
ple, significantly reducing the average power consump-
tion (power consumption of run mode is 383% higher
than sleep mode3). This operation does not affect the
real-time behavior since the system wakes up every 2ms
to buffer EEG data or to compute the alarm when the
corresponding buffer is full, as shown in Fig. 10. The
sampling of IMU data is much less critical since a new
data is available every 20ms.

We notice that during the active state the digital pro-
cessing dominates the power consumption of the sys-
tem, since the microcontroller calculates the RMS and
the FFT on partially overlapped windows of IMU and
EEG data with a stride of 10 and 32 samples respec-
tively. The PSD calculation is the most demanding part
of the digital processing since it uses 60k cycles while
the RMS requires less than 3k cycles.

Figure 9: Power consumption of the embedded implementation (on
PCB). The MCU dominates the power consumption, employing 87%
of the total power.

4.4. Comparison with state-of-art systems
Table 5 presents a comparison between the proposed

system and other State of Art (SoA) approaches.

3The value has been calculated after measuring the current con-
sumption of the chip in both operational modes. The obtained values
are similar to the product specification of the STM32F407 [71].
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Figure 10: The EEG and IMU samples are collected using interrup-
tions. The processor wakes up at run mode (168Mhz) when a new
sample arrives. During the waiting period, the MCU remains at sleep
mode, reducing the global power consumption. When the EEG/IMU
buffers are full (every 64 samples for the EEG buffer and every 32
samples for the IMU buffer) the MCU performs the required signal
processing and transmits the corresponding alarm levels to a smart-
phone running the Android application. The figure above shows the
duty-cycle of the microcontroller for the EEG acquisition. The same
applies for the IMU samples at the corresponding sample rate (50 Hz).

In [63] the algorithm for drowsiness detection runs on
a PC and the computational complexity of this approach
rules out the possibility of a low power embedded im-
plementation. The work presented in [43] describes a
low power device capable to operate for 6 hours with
a 200mAh battery. The system fuses EEG signals and
NIRs classification to measure only brain activity not
exploiting other behavioral or physiological features.
Our implementation, thanks to the fusion of behavioral
and physiological features from the two sensors, ob-
tains a better accuracy and increases the rate of detec-
tion by considering more drowsiness-related events with
fully portable hardware, achieving 20% more energy ef-
ficiency.

In [10] a sensor fusion system exploiting EEG signals
in conjunction with IMU-based user motion tracking is
introduced. However, the presented work mainly lever-
ages the IMU sensor for the detection of the drowsi-
ness levels, not providing insights about the usage of
the EEG signal. Furthermore, accuracy estimates and
energy efficiency of the system are not provided, pre-
venting a direct comparison.

The main drawback of the system proposed in this pa-
per consists of the usage of gel-based electrodes, which
somehow limits its flexibility. However, as opposed
to passive dry electrodes, current SoA active dry elec-
trodes achieve very comparable performance with re-
spect to wet electrodes [72] and they are more suitable
for wearable deployments. Nevertheless, the adoption
of dry or in-ear active electrodes will be subject of fu-
ture work since it is essential for real-life applications.

Our MCU-based implementation leverages the use of

multi-feature analysis from both the EEG and IMU sen-
sors and it provides a wearable system with a battery
duration of at least 6 hours and an accuracy of 95.2%
while significantly shortening the delay in taking coun-
termeasures, hence reducing the probability of accidents
happening in the period between the onset of drowsiness
condition and its detection.

4.5. Implementation on PULP

To evaluate the performance and energy consumption
of the computing platforms adopted in the system (i.e.,
PULP and CortexM4-based MCUs), only the compute-
intensive kernels, responsible for more than 99% of
the overall computational load of the algorithm have
been analyzed. Table 6 shows the the number of cy-
cles needed to perform the FFT, Magnitude and RMS
functions in both platforms, as well as a comparison
of the execution time of the different solutions. While
the code running on the CortexM4 architecture relies on
heavily optimized CMSIS libraries, the implementation
on PULP is based on an ANSI C implementation of the
algorithms with OpenMP extensions for parallelization.

Nevertheless, although the ARM Cortex M4 core
performs slightly better with respect to the single-core
PULP architecture for some of the kernels, a single core
PULP platform provide an almost 20% speed-up with
respect to the CortexM4 for the Magnitude function,
while relying on a fully flexible C implementation of
the algorithm. The situation dramatically changes when
executing the algorithms exploiting parallel processing
over the 4 cores of the PULP platform. In this case the
execution time with respect to the CortexM4 processor
reduces by up to 4.66x. It can be noted that for the ker-
nels with high parallelism, like FFT and Magnitude, that
account for more than 95% of the overall computational
load during sequential execution, the speed-up is nearly
ideal. The only function not easily parallelizable is the
RMS 32s, due to a small dataset, and hence parallelism,
but it has a negligible impact on the overall execution
time of the application.

An important factor to take into consideration for the
calculation of the energy efficiency is the minimum la-
tency required to achieve the real-time constraint. In-
deed, to avoid sample loss, all the signal processing
must be finished in a time no longer than 2ms. This
constraint was taken into account to adjust the clock
frequency of the PULP platform with the goal of com-
paring the execution with minimal energy consump-
tion. Table 7 shows the real-time frequency of the an-
alyzed computing platforms, which includes one high-
end MCU STM32F407x and one ultra-low-power MCU
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Table 6: Number of cycles required to compute each function in the analyzed embedded computing platforms [KCycles]. The FFT calculation is
the most computationally demanding operation. Given its highly parallelizable computational algorithm, the 4-core PULP MCU reaches nearly
ideal speedup.

Kernel Func Single Core ARM CMSIS Pulp 1 Core Pulp 4 Cores ARM/SCPulp ARM/4CPulp SCPulp/4CPulp
FFT RADIX8 42.90 64.03 16.69 0.67 2.57 3.84

Magnitude 17.87 15.17 3.83 1.18 4.66 3.96
RMS (32s) 0.26 0.30 0.16 0.86 1.67 1.94
RMS(512s) 2.52 2.95 0.83 0.86 3.05 3.56

Ambiq Apollo, both based on CortexM4 processor, and
PULP executing on a single core and on 4 cores. In Fig.
11 we see that this task cannot be accomplished by a
low-power MCU like Ambiq Apollo, due to its limited
maximum operating frequency (24 MHz).

On PULP, the frequency required to maintain the la-
tency obviously decreases when increasing the number
of cores. This, coupled with the near-threshold com-
puting capabilities of the PULP platform aim towards a
significant improvement in energy efficiency. This con-
cept is well highlighted in Fig. 12, which also shows
the comparison with off-the-shelf MCUs that operates
at nominal voltage supply of 1.8V and 2.5V. The differ-
ence in energy between the MCUs and the single-core
PULP platform at the nominal supply voltage is mainly
given by technology gap, different implementation strat-
egy and architectural complexity, which leads to 8.6x to
45.2x lower energy consumption.

More interesting is the exploitation of parallel near
threshold computing on the PULP platform, leading to
a further improvement of 3.4x in performance with re-
spect to sequential processing, and to an improvement
of 12.1x and 63.3x in terms of energy consumption with
respect to commercial MCUs.

From an application perspective, these results show
that the optimization of the parallel processing tailored

Table 7: Comparison between different platforms. The real-time fre-
quency (RT freq) corresponds to the frequency required to achieve
real-time operation. This is an important factor regarding energy con-
sumption together with the operating voltage (Vdd). Ambiq Apollo
features a lower power consumption but it does not achieve the re-
quired frequencies (i.e. max frequency is 24 MHz). The 4-cores
PULP MCU delivers best energy efficiency while meeting the real-
time constraint of the application.

MCU A. Apollo STM32F407 1C PULP 4C PULP
No. of Cores 1 1 1 4

RT Freq [MHz] 31.68 31.68 45.59 11.76
Vdd (V) 1.80 2.50 0.48 0.45

Pw Dens [µW/MHz] 115 600 10.27 27.64
Power [mW] 3.64 18.99 0.42 0.30
Energy[µJ] 7.28 37.97 0.84 0.59

Figure 11: Minimal operating frequency required to achieve real-time
operation. Featuring parallelization, the 4-cores PULP implementa-
tion is capable to work at a considerable lower frequency than the
other cores, favoring voltage scaling and hence energy saving.

for a highly efficient HW/SW platform allows to extend
the battery life of the whole system to 46 hours, leading
to an improvement of 7 times with respect to a solution
based on a commercial MCU.

Figure 12: Power consumption comparison between different plat-
forms. The 4-cores PULP MCU offers 63x energy saving with respect
to the implementation on STM32F407.
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5. Conclusion

Drowsiness is one of the root causes of accidents in
many industrial and transportation environments, since
high levels of fatigue affect attention and impair drivers
and operators abilities. The drowsiness detection is a
challenge because the clinical parameters to quantify
the drowsiness are not clearly defined and the systems
to detect drowsiness and fatigue level should target un-
obtrusiveness and energy efficiency. This work intro-
duces a drowsiness detection system based on sensor fu-
sion techniques implemented on a low power embedded
processor. Many of the current implementations scan a
single parameter, while fatigue and drowsiness symp-
toms are highly variable among the population. Using
physiological and behavioral indicators, we present an
embedded solution with 5 levels of drowsiness detec-
tion, obtained combining a single channel EEG signal
and user motion collected form an IMU.

The accuracy detection of our system reaches with
95.2%, on 10 test subjects. Thanks to the power man-
agement done on the board, the system reaches 6 hours
of life with a 200mAh Li-Ion battery, when the algo-
rithm is implemented on a commercial MCU. Further-
more, we implemented the drowsiness detection algo-
rithm on a parallel ultra low power platform providing
a boost in energy efficiency by 63x with respect to the
commercial MCU. At system level, this approach ex-
tends the battery life by 7x paving the way for a fully
wearable always-on solution with a battery-life of 46
hours.

Future work will target further optimization of the al-
gorithm on the PULP platform, the optimization of the
EEG sensor interface introducing non-intrusive dry ac-
tive electrodes, such as in-ear electrodes [73], the minia-
turization of the current device and the test of the system
on a larger number of subjects to improve the robustness
of the detection. We will also explore feature extraction
techniques for other EEG bands considering that alpha
waves are not present in 10% of the world population
[1, 20].
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