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Chapter 1

Bermudan option valuation under state-dependent models

Anastasia Borovykh, Andrea Pascucci and Cornelis W. Oosterlee

Abstract

We consider a defaultable asset whose risk-neutral pricing dynamics are described by a state-dependent SDE with

jumps and default. This class of models allows for a local volatility, local default intensity and a locally dependent Lévy

measure. We present a pricing method for Bermudan options based on an analytical approximation of the characteristic

function combined with the COS method. Due to a special form of the obtained characteristic function the price can

be computed using a fast Fourier transform-based algorithm resulting in a fast and accurate calculation.

1.1 Introduction

In order to price derivatives in finance one requires the specification of the underlying asset dynamics. This is usually

done by means of a stochastic differential equation. In this work we consider the flexible dynamics of a state- and

time-dependent model, in which we account for a local volatility function, a local jump measure such that the jumps

in the underlying arrive with a state-dependent intensity and a local default intensity, so that the default time depends

on the underlying state. One of the problems when considering such a state-dependent model is the fact that there

is no explicit density function or characteristic function available. In order to still be able to price derivatives, we

derive the characteristic function by means on an advanced Taylor expansion of the state-dependent coefficients,

as first presented in [7] for a simplified model and similar to the derivations in [1] for the local Lévy model. This

Taylor expansion allows one to rewrite the fundamental solution of the related Cauchy problem in terms of solutions

of simplified Cauchy problems, which we then solve in the Fourier space to obtain the approximated characteristic
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Dipartimento di Matematica, Università di Bologna, Bologna, Italy e-mail: borovykh a@hotmail.com

Andrea Pascucci

Dipartimento di Matematica, Università di Bologna, Bologna, Italy e-mail: andrea.pascucci@unibo.it

Cornelis W. Oosterlee

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Delft University of Technology, Delft, The Netherlands e-mail: c.w.oosterlee@cwi.nl

1

b
a
c


2 Anastasia Borovykh, Andrea Pascucci and Cornelis W. Oosterlee

function. Once we have an explicit approximation for the characteristic function we use a Fourier method known

as the COS method, first presented in [2], for computing the continuation value of a Bermudan option. Due to a

specific form of the approximated characteristic function the continuation value can be computed using a Fast Fourier

Transform (FFT), resulting in a fast and accurate option valuation.

1.2 General framework

We consider a defaultable asset S whose risk-neutral dynamics are given by:

St = 1{t<ζ}e
Xt ,

dXt = µ(t,Xt)dt +σ(t,Xt)dWt +
∫
R

dÑt(t,Xt−,dz)z,

dÑt(t,Xt−,dz) = dNt(t,Xt−,dz)−ν(t,Xt−,dz)dt,

ζ = inf{t ≥ 0 :
∫ t

0
γ(s,Xs)ds≥ ε},

where Ñt(t,x,dz) is a compensated random measure with state-dependent Lévy measure ν(t,x,dz). The default time

ζ of S is defined in a canonical way as the first arrival time of a doubly stochastic Poisson process with local intensity

function γ(t,x)≥ 0, and ε ∼ Exp(1) and is independent of X . Thus the model features:

• a local volatility function σ(t,x);

• a local Lévy measure: jumps in X arrive with a state-dependent intensity described by the local Lévy measure

ν(t,x,dz). The jump intensity and jump distribution can thus change depending on the value of x. A state-

dependent Lévy measure is an important feature because it allows to incorporate stochastic jump-intensity into the

modeling framework;

• a local default intensity γ(t,x): the asset S can default with a state-dependent default intensity.

We define the filtration of the market observer to be G = F X ∨F D, where F X is the filtration generated by X and

F D
t := σ({ζ ≤ u},u≤ t), for t ≥ 0, is the filtration of the default. We assume∫

R
e|z|ν(t,x,dz)< ∞,

and by imposing that the discounted asset price S̃t := e−rtSt is a G -martingale, we get the following restriction on the

drift coefficient:

µ(t,x) = γ(t,x)+ r− σ2(t,x)
2

−
∫
R

ν(t,x,dz)(ez−1− z).

1.3 The characteristic function

Is it well-known (see, for instance, [4, Section 2.2]) that the price V of a European option with maturity T and payoff

Φ(ST ) is given by
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Vt = 1{ζ>t}e
−r(T−t)E

[
e−

∫ T
t γ(s,Xs)ds

ϕ(XT )|Xt

]
, t ≤ T,

where ϕ(x) = Φ(ex). Thus, in order to compute the price of an option, we must evaluate functions of the form

u(t,x) := E
[
e−

∫ T
t γ(s,Xs)ds

ϕ(XT )|Xt = x
]
. (1.2)

Under standard assumptions, u can be expressed as the classical solution of the following Cauchy problemLu(t,x) = 0, t ∈ [0,T [, x ∈ R,

u(T,x) = ϕ(x), x ∈ R,
(1.3)

where L is the integro-differential operator

Lu(t,x) = ∂tu(t,x)+ r∂xu(t,x)+ γ(t,x)(∂xu(t,x)−u(t,x))+
σ2(t,x)

2
(∂xx−∂x)u(t,x)

−
∫
R

ν(t,x,dz)(ez−1− z)∂xu(t,x)+
∫
R

ν(t,x,dz)(u(t,x+ z)−u(t,x)− z∂xu(t,x)). (1.4)

Define Γ (t,x;T,y) to be the fundamental solution of the Cauchy problem (1.3). The function u in (1.2) can be repre-

sented as an integral with respect to Γ (t,x;T,dy):

u(t,x) =
∫
R

ϕ(y)Γ (t,x;T,dy). (1.5)

Here we notice explicitly that Γ (t,x;T,dy) is not necessarily a standard probability measure because its integral over

R can be strictly less than one; nevertheless, with a slight abuse of notation, we refer to its Fourier transform

Γ̂ (t,x;T,ξ ) := F (Γ (t,x;T, ·))(ξ ) :=
∫
R

eiξ y
Γ (t,x;T,dy), ξ ∈ R,

as the characteristic function of logS. Following the method developed in [1] we use an adjoint expansion of the

state-dependent coefficients

a(t,x) :=
σ2(t,x)

2
, γ(t,x), ν(t,x,dz),

around some point x̄. The coefficients a(t,x), γ(t,x) and ν(t,x,dz) are assumed to be continuously differentiable with

respect to x up to order N ∈ N. Introducing the n-th order Taylor approximation of the operator L to be (1.4):

Ln = L0 +
n

∑
k=1

(
(x− x̄)kak(∂xx−∂x)+(x− x̄)k

γk∂x− (x− x̄)k
γk

−
∫
R
(x− x̄)k

νk(dz)(ez−1− z)∂x +
∫
R
(x− x̄)k

νk(dz)(ez∂x −1− z∂x)
)
,

where

L0 = ∂t + r∂x +a0(t)(∂xx−∂x)+ γ0(t)∂x− γ0(t)−
∫
R

ν0(t,dz)(ez−1− z)∂x +
∫
R

ν0(t,dz)(ez∂x −1− z∂x),

and

ak =
∂ k

x a(x̄)
k!

, γk =
∂ k

x γ(x̄)
k!

, νk(dz) =
∂ k

x ν(x̄,dz)
k!

, k ≥ 0.
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Let us assume for a moment that L0 has a fundamental solution G0(t,x;T,y) that is defined as the solution of the

Cauchy problem L0G0(t,x;T,y) = 0 t ∈ [0,T [, x ∈ R,

G0(T, ·;T,y) = δy.

In this case we define the nth-order approximation of Γ as

Γ
(n)(t,x;T,y) =

n

∑
k=0

Gk(t,x;T,y),

where, for any k ≥ 1 and (T,y), Gk(·, ·;T,y) is defined recursively through the following Cauchy problem
L0Gk(t,x;T,y) =−

k
∑

h=1
(Lh−Lh−1)Gk−h(t,x;T,y) t ∈ [0,T [, x ∈ R,

Gk(T,x;T,y) = 0, x ∈ R.

Correspondingly, the nth-order approximation of Γ̂ is defined to be

Γ̂
(n)(t,x;T,ξ ) =

n

∑
k=0

F
(

Gk(t,x;T, ·)
)
(ξ ) :=

n

∑
k=0

Ĝk(t,x;T,ξ ), ξ ∈ R.

Now, by transforming the simplified Cauchy problems into adjoint problems and solving these in the Fourier space we

find

Ĝ0(t,x;T,ξ ) = eiξ xe
∫ T
t ψ(s,ξ )ds,

Ĝk(t,x;T,ξ ) =−
∫ T

t
e
∫ T

s ψ(τ,ξ )dτF

(
k

∑
h=1

(
L̃(s,·)

h (s)− L̃(s,·)
h−1(s)

)
Gk−h(t,x;s, ·)

)
(ξ )ds,

with

ψ(s,ξ ) = iξ (r+ γ0(s))+a0(s)(−ξ
2− iξ )−

∫
R

ν0(s,dz)(ez−1− z)iξ +
∫
R

ν0(s,dz)(eizξ −1− izξ ),

the characteristic exponent of the Lévy process with coefficients γ0(s), a0(s) and ν0(s,dz), and

L̃(s,y)
h (s)− L̃(s,y)

h−1 (s) = ah(s)h(h−1)(y− x̄)h−2 +ah(s)(y− x̄)h−1 (2h∂y +(y− x̄)(∂yy +∂y)+h)

− γh(s)h(y− x̄)h−1− γh(s)(y− x̄)h (∂y +1)

+
∫
R

νh(s,dz)(ez−1− z)
(

h(y− x̄)h−1 +(y− x̄)h
∂y

)
+
∫
R

ν̄h(s,dz)
(
(y+ z− x̄)hez∂y − (y− x̄)h− z

(
h(y− x̄)h−1− (y− x̄)h

∂y

))
.

From these results one can already see that the dependency on x comes in through eiξ x and after taking derivatives

the dependency on x will take the form (x− x̄)meiξ x: this fact will be crucial in our analysis. After some algebraic

manipulations, see for details [1], we find that the approximation of order n is a function of the form

Γ̂
(n)(t,x;T,ξ ) := eiξ x

n

∑
k=0

(x− x̄)kgn,k(t,T,ξ ), (1.6)
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where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t,T and ξ , but not on x. The approximation formula can

thus always be split into a sum of products of functions depending only on ξ and functions that are linear combinations

of (x− x̄)meiξ x, m ∈ N0.

1.4 Bermudan option valuation

A Bermudan option is a financial contract in which the holder can exercise at a predetermined finite set of exercise

moments prior to maturity, and the holder of the option receives a payoff when exercising. Consider a Bermudan option

with a set of M exercise moments {t1, ..., tM}, with 0 ≤ t1 < t2 < · · · < tM = T . When the option is exercised at time

tm the holder receives the payoff Φ (tm,Stm). For a Bermudan put option with strike price K, we simply have ϕ(t,x) =

(K− ex)+. By the dynamic programming approach, the option value can be expressed by a backward recursion as

v(tM,x) = 1{ζ>tM}ϕ(tM,x)

and c(t,x) = E
[
e
∫ tm
t −(r+γ(s,Xs))dsv(tm,Xtm)|Xt = x

]
, t ∈ [tm−1, tm[

v(tm−1,x) = 1{ζ>tm−1}max{ϕ(tm−1,x),c(tm−1,x)}, m ∈ {2, . . . ,M}.
(1.7)

In the above notation v(t,x) is the option value and c(t,x) is the so-called continuation value. The option value is set

to be v(t,x) = c(t,x) for t ∈ ]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.

Remark 4.0. Since the payoff of a call option grows exponentially with the log-stock price, this may introduce signif-

icant cancellation errors for large domain sizes. For this reason we price put options only using our approach and we

employ the well-known put-call parity to price calls via puts. This is a rather standard argument (see, for instance, [8]).

1.4.1 An algorithm for pricing Bermudan put options

The COS method as proposed in [2] is based on the insight that the Fourier-cosine series coefficients of Γ (t,x;T,dy)

(and therefore also of option prices) are closely related to the characteristic function of the underlying process. Re-

membering that the expected value c(t,x) in (1.7) can be rewritten in integral form as in (1.5),

c(t,x) = e−r(tm−t)
∫
R

v(tm,y)Γ (t,x; tm,dy), t ∈ [tm−1, tm[,

we apply the COS formulas to find the approximation:

ĉ(t,x) = e−r(tm−t)
N−1

∑
′

k=0
Re
(

e−ikπ
a

b−a Γ̂

(
t,x; tm,

kπ

b−a

))
Vk(tm), t ∈ [tm−1, tm[ (1.8)

Vk(tm) =
2

b−a

∫ b

a
cos
(

kπ
y−a
b−a

)
max{ϕ(tm,y),c(tm,y)}dy,

with ϕ(t,x) = (K− ex)+.
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Next we recover the coefficients (Vk(tm))k=0,1,...,N−1 from (Vk(tm+1))k=0,1,...,N−1. To this end, we split the integral

in the definition of Vk(tm) into two parts using the early-exercise point x∗m, which is the point where the continuation

value is equal to the payoff, i.e. c(tm,x∗m) = ϕ(tm,x∗m); thus we have

Vk(tm) = Fk(tm,x∗m)+Ck(tm,x∗m), m = M−1,M−2, ...,1,

where

Fk(tm,x∗m) :=
2

b−a

∫ x∗m

a
ϕ(tm,y)cos

(
kπ

y−a
b−a

)
dy,

Ck(tm,x∗m) :=
2

b−a

∫ b

x∗m
c(tm,y)cos

(
kπ

y−a
b−a

)
dy,

and Vk(tM) = Fk(tM, logK).

Remark 4.0. Since we have a semi-analytic formula for ĉ(tm,x), we can easily find the derivatives with respect to x

and use Newton’s method to find the point x∗m such that c(tm,x∗m) = ϕ(tm,x∗m). A good starting point for the Newton

method is logK, since x∗m ≤ logK.

The coefficients Fk(tm,x∗m) can be computed analytically using x∗m ≤ logK. On the other hand, by inserting the ap-

proximation (1.8) for the continuation value into the formula for Ck(tm,x∗m) have the following coefficients Ĉk for

m = M−1,M−2, ...,1:

Ĉk(tm,x∗m) =
2e−r(tm+1−tm)

b−a

N−1

∑
′

j=0
Vj(tm+1)

∫ b

x∗m
Re
(

e−i jπ a
b−a Γ̂

(
tm,x; tm+1,

jπ
b−a

))
cos
(

kπ
x−a
b−a

)
dx.

Similar to the FFT-based algorithm in [2] for an exponential Lévy process with constant coefficients, the continua-

tion value in case of the state-dependent coefficients can also be calculated using the FFT. Using the structure of the

characteristic function (1.6) we write the continuation value in vector form as:

Ĉ(tm,x∗m) =
n

∑
h=0

e−r(tm+1−tm)Re
(

V(tm+1)M
h(x∗m,b)Λ

h
)
,

where V(tm+1) is the vector [V0(tm+1), ...,VN−1(tm+1)]
T and M h(x∗m,b)Λ

h is a matrix-matrix product with M h being

a matrix with elements

Mh
k, j(x

∗
m,b) =

2
b−a

∫ b

x∗m
ei jπ x−a

b−a (x− x̄)h cos
(

kπ
x−a
b−a

)
dx, k, j = 0, ...,N−1

and Λ h is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ
b−a

)
, j = 0, . . . ,N−1.

It can be shown using standard trigonometric that the matrix M can be rewritten as a sum of a Hankel and Toeplitz

matrix such that M = MH +MT with elements

Mh
j (x
∗
m,b) =

1
b−a

∫ b

x∗m
cos
(

i jπ
x−a
b−a

)
(x− x̄)hdx+

1
b−a

∫ b

x∗m
sin
(

i jπ
x−a
b−a

)
(x− x̄)hdx.
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Using the split into sums of Hankel and Toeplitz matrices we can write the continuation value in matrix form as:

Ĉ(tm,x∗m) =
n

∑
h=0

e−r(tm+1−tm)Re
(
(M h

H +M h
T )u

h
)
,

where M h
H = {MH,h

k, j (x
∗
m,b)}N−1

k, j=0 is a Hankel matrix and M l
T = {MT,h

k, j (x
∗
m,b)}N−1

k, j=0 is a Toeplitz matrix and uh =

{uh
j}

N−1
j=0 , with uh

j = gn,h

(
tm, tm+1,

jπ
b−a

)
Vj(tm+1) and uh

0 =
1
2 gn,h (tm, tm+1,0)V0(tm+1). It is well known that a product

of a Hankel or Toeplitz matrix with a vector can be calculated using FFTs, see [1] for the full details. Using the fact

that an FFT can be computed with computational complexity O(N log2 N), we find that for a Bermudan option with M

exercise dates the overall computational complexity is O((M−1)N log2 N).

1.5 Numerical experiments

In this section we apply the method developed in Section 1.4 to compute the European and Bermudan option values

with various underlying stock dynamics. The computer used in the experiments has an Intel Core i7 CPU with a 2.2

GHz processor. We use the second-order approximation of the characteristic function.

For the COS method, unless otherwise mentioned, we use N = 200 and L = 10, where L is the parameter used to

define the truncation range [a,b] as follows:

[a,b] :=
[

c1−L
√

c2 +
√

c4,c1 +L
√

c2 +
√

c4

]
,

where cn is the nth cumulant of log-price process logS calculated using the 0th-order approximation of the characteris-

tic function. We compare the approximated values to a 95% confidence interval computed with a Longstaff-Schwartz

method with 105 simulations and 250 time steps per year. Furthermore, in the expansion we always use x̄ = X0.

1.5.1 Tests under CEV-Merton dynamics with default

Consider a process under the CEV-Merton dynamics:

dXt =
(

r−a(Xt)−λ

(
em+δ 2/2−1

))
dt +

√
2a(Xt)dWt +

∫
R

dÑt(t,dz)z,

with

a(x) =
σ2

0 e2(β−1)x

2
,

ν(dz) = λ
1√

2πδ 2
exp
(
−(z−m)2

2δ 2

)
dz,

ψ(ξ ) =−a0(ξ
2 + iξ )+ irξ − iλ

(
em+δ 2/2−1

)
ξ +λ

(
emiξ−δ 2ξ 2/2−1

)
,
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We use the following parameters S0 = 1, r = 5%, σ0 = 20%, β = 0.5, λ = 30%, m =−10%, δ = 40%. The results

are compared to a widely used method for valuing Bermudan options, the Least-Squares Monte Carlo method (LSM),

see [6].

1.5.1.1 Time-independent CEV-Merton model

We compute the European and Bermudan option values in Table 1.1. The error in our approximation consists of the

error of the COS method and the error in the adjoint expansion of the characteristic function. In particular for low

strikes the method seems to be more sensitive to the approximation, as the approximated value does not always fall

into the LSM confidence interval.

Table 1.1 Prices for a European and a Bermudan put option (expiry T = 1 with 10 exercise dates) in the CEV-Merton model for the

2nd-order approximation of the characteristic function, and a Monte Carlo method

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.6 0.006136-0.006573 0.006579 0.006307-0.006729 0.006096

0.8 0.02526-0.02622 0.02581 0.02595-0.2689 0.02520

1 0.08225-0.08395 0.08250 0.08480-0.08640 0.08593

1.2 0.1965-0.1989 0.1977 0.2097-0.2115 0.2132

1.4 0.3560-0.3589 0.3574 0.3946-0.3957 0.3954

1.6 0.5341-0.5385 0.5364 0.5930-0.5941 0.5932

In Figure 1.1 the convergence results of the COS method using the 2nd-order approximation of the characteristic

function for T = 1 and 10 exercise dates are presented. We choose L = 10 and N = 2d and see that a very quick

convergence is obtained.

Fig. 1.1 Error convergence for pricing Bermudan put options, N = 2d , L = 10, T = 1 and 10 exercise dates and strikes K = 0.8,1,1.2
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1.5.1.2 Time-dependent CEV-Merton model

Here we consider the CEV-Merton model but now with a time-dependent local volatility, similar to the structure in

[5]. We define the local volatility as

a(t,x) =
σ0(t)2e2(β−1)x

2
,

σ0(t)2 = σ
2
0

(
1+b0 exp

(
− (t− t0)2

b1

)
.

)
In this case the volatility term structure can be interpreted as pulses of a surge or a drop in the market volatility centered

at t0. The width of the pulses is determined by b1. We choose the following parameters for the time-dependency to

be σ0 = 20%, b0 = 1, b1 = 0.01, t0 = 0.5. The results are given in Table 1.2. We observe that the effect of the term

structure for a maturity of T = 1 is indeed small, as also noted in [5], but the European option price is observed to be

slightly larger compared to the case without the term-structure. For the Bermudan option the effect is hardly visible.

Table 1.2 Put prices for a European and a Bermudan option (10 exercise dates, expiry T = 1) in the CEV-Merton model with a volatility

term-structure for the 2nd order approximation of the characteristic function, and a Monte Carlo method

European Bermudan

K MC c.i. Value MC c.i. Value

0.8 0.02824-0.02926 0.02641 0.02859-0.02956 0.02500

1 0.08690-0.08865 0.08777 0.08949-0.09113 0.08580

1.2 0.2011-0.2036 0.2052 0.2130-0.2150 0.2134

1.4 0.3575-0.3604 0.3626 0.3950-0.3961 0.3955

1.6 0.5373-0.5406 0.5388 0.5925-0.5936 0.5932

1.5.2 Tests under a CEV-like Lévy process with a state-dependent measure

In this section we consider a model similar to the one used in [3]. The model is defined with local volatility and a

state-dependent Lévy measure as follows:

a(x) =
1
2
(b2

0 + ε1b2
1η(x)),

ν(x,dz) = ε3νN(dz)+ ε4η(x)νN(dz),

η(x) = eβx. (1.9)

We will consider Gaussian jumps, meaning that

νN(dz) = λ
1√

2πδ 2
exp
(
−(z−m)2

2δ 2

)
dz.
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In Table 1.3 the results are presented for a model as defined in (1.9) with a state-dependent jump measure, so ν(x,dz) =

η(x)νN(dz). In this case we have

ψ(ξ ) = irξ −a0(ξ
2− iξ )−λν0(em+δ 2/2−1)iξ +λν0(emiξ−δ 2ξ 2/2−1),

where a0 =
1
2 b2

1eβ x̄ and ν0(dz) = eβ x̄νN(dz). The other parameters are chosen as: b1 = 0.15, b0 = 0, β =−2, λ = 20%,

δ = 20%, m = −0.2, S0 = 1, r = 5%, ε1 = 1, ε3 = 0, ε4 = 1, the number of exercise dates is 10 and T = 1. Again

the method performs accurately, but for out-of- and at-the money strikes the approximation tends to under- and over-

estimate the LSM value.

Table 1.3 Prices for a European and a Bermudan put option (10 exercise dates, expiry T = 1) in the CEV-like model with state-dependent

measure for the 2nd-order approximation characteristic function, and a Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.01025-0.01086 0.009385 0.01068-0.01125 0.01024

1 0.04625-0.04745 0.04817 0.05141-0.05253 0.05488

1.2 0.1563-0.1582 0.1564 0.1942-0.1952 0.1952

1.4 0.3313-0.3334 0.3314 0.3927-0.3934 0.3930

1.6 0.5207-0.5229 0.5218 0.5919-0.5926 0.5920

1.8 0.7103-0.7124 0.7122 0.7906-0.7913 0.7910
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