
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Analyzing and predicting concurrency bugs in open source systems / Ciancarini, Paolo; Poggi, Francesco;
Rossi, Davide; Sillitti, Alberto. - STAMPA. - 2017-:(2017), pp. 7965923.721-7965923.728. (Intervento
presentato al  convegno 2017 International Joint Conference on Neural Networks, IJCNN 2017 tenutosi a
USA nel 2017) [10.1109/IJCNN.2017.7965923].

Published Version:

Analyzing and predicting concurrency bugs in open source systems

Published:
DOI: http://doi.org/10.1109/IJCNN.2017.7965923

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/611881 since: 2019-11-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/IJCNN.2017.7965923
https://hdl.handle.net/11585/611881


 

 

 

 

This is the post peer-review accepted manuscript of:  

P. Ciancarini, F. Poggi, D. Rossi and A. Sillitti, "Analyzing and predicting concurrency 

bugs in open source systems," 2017 International Joint Conference on Neural 

Networks (IJCNN), Anchorage, AK, 2017, pp. 721-728. 

The published version is available online at: 

http://dx.doi.org/10.1109%2FIJCNN.2017.7965923 

 

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 

any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 

this work in other works 

 



Analyzing and Predicting Concurrency Bugs in
Open Source Systems

Paolo Ciancarini∗†, Francesco Poggi∗, Davide Rossi∗† and Alberto Sillitti‡
∗University of Bologna, Italy

{paolo.ciancarini, francesco.poggi5, daviderossi}@unibo.it
†Consorzio Interuniversitario Nazionale per l’Informatica, Italy

‡Innopolis University, Russian Federation
a.sillitti@innopolis.ru

Abstract—Background Software systems are relying more and
more on multi-core hardware requiring a parallel approach to
address the problems and improve performances. Unfortunately,
parallel development is error prone and many developers are
not very experienced with this paradigm also because identifying,
reproducing, and fixing bugs is often difficult. Objective The main
goal of this paper is the identification of an approach able to:
(i) identify solved concurrency-related bugs to characterize them
and help retrospective activities; (ii) identify concurrency-related
bugs as soon as they are entered in the bug management system to
support bug triage phase and allocate them to more experienced
developers. Approach To this end, the paper analyzes bugs related
to concurrency looking at their specific characteristics using
different machine learning methods to automatically distinguish
them from other kinds of bugs based on the data available in
the issue tracking systems and in the code repositories. Results
The overall best models we developed for Apache HTTP Server
and MariaDB have a precision of 0.985 and 0.814 and a recall
of 0.876 and 0.629 when considering linked bugs (bug reports
information in bug repository and the corresponding fix in the
version control system) and a precision of 0.978 and 0.779 and a
recall of 0.889 and 0.569 when considering only the information
from bug reports. Conclusions Such results allow the development
of an automated system able to classify such bugs and support
developers in the bug triage process.

Index Terms—concurrency; defects; prediction model; open
source

I. INTRODUCTION

To reduce the energy consumption of new devices and
increase the battery life of the mobile ones, hardware manu-
facturers have changed deeply how they develop CPUs. In the
last 10 years, to improve energy efficiency, the clock frequency
of the CPUs has not increased significantly (even reduced in
some cases) but the number of computational cores embedded
in the CPUs has increased including both general purpose and
special purpose ones (e.g., GPUs, DSPs, etc.). This change
of architecture has a deep impact on software developers [7]
[8]. In the single-core era, in most of the use cases, developers
did not focus on performances while developing relying on the
Moore’s Law. Developers had just to wait some time and their
software could run faster and faster on new CPUs without any
modification. However, in the multi-core era, this is not true
anymore. Software performances are not increasing without
an explicit support of the multi-core architectures that require
a completely different approach to software development.

Such different approach is not completely new since it
derives from the parallel programming approaches. However,
only a small percentage of developers were skilled in that since
it was popular only in the fields where massive computation
was needed (e.g., scientific computation, signal processing,
computer graphics, etc.). Multi-core architectures have forced
any kind of developers to deal with concurrent programming
in almost any kind of software.

Concurrent programming is difficult since it is often affected
by non-determinism due to the independent execution of the
different threads and the related synchronization problems.
Therefore, debugging this kind of software is often more
difficult than single-thread code, also because detecting and
replicating such defects is quite difficult.

Moreover, from a preliminary investigation focused on the
Apache HTTP Server conducted by the authors [5] [6], we
have found out that concurrency-related defects require the
involvement of more developers and much longer discussions
to get fixed compared to non-concurrency-related defects. For
these reasons, characterizing concurrency-related defects and
developing approaches to help developers during the bug triage
phase to automatically identify the concurrency-related ones
can improve how such defects are managed and the efficiency
of the overall process.

The goals of the paper are the following:

• G1: Understanding and characterizing concurrency-
related bugs to help developers in performing project
retrospectives and improve the overall development ap-
proach.

• G2: Develop a classifier able to identify concurrency-
related bugs when they are introduced in the issue
tracking system. This classifier is intended to be used
in the bug triage phase to help developers in assigning
concurrency-related bugs to more experienced develop-
ers.

To this end, this paper analyzes two popular open source
projects (Apache HTTP Server and MariaDB) that have been
analyzed from many points of views [11] [30] but in this
case we focus on the point of view of the defects related to
concurrency analyzing their issue tracking systems and their
version control systems.



The paper is organized as follows: Section II presents an
overview of the related work in the area of the analysis
and the prediction of concurrency-related defects; Section III
introduces in detail our approach; Section IV discusses the
results achieved; Section V presents the limitations and the
threats to validity of the study; finally, Section VI draws the
conclusions and presents future work.

II. RELATED WORK

In the last few years, researchers have put a lot of effort in
the analysis of software projects to identify and predict some
relevant properties – e.g., where defects are, how to fix them
and the associated costs. A common trend in current research
is investigating and trying to understand the processes by
which software ages. During the years, researchers investigated
the relations of various process artifacts (e.g., change history
of source files, changes in the team structure, testing effort),
technologies, and other human factors with software defects
for bug prediction. In fact, it is well-known that process
metrics are more efficient fault predictors than product metrics
[27]. For instance, Nagappan et al. [28] in a study performed
on the defect density in Windows Server 2003 used software
change history (in particular, code churn measures such as
changed-LOC/LOC together with dependency metrics) for
predicting the bug density of each software module. Moreover,
some studies have used the source code itself considered as
text as an independent variable [24] [25] but LOC nearly
always performs better than any other metric [43].

Another example is the study performed by Graves et al.
[14] on a system containing 1.5 million lines of code. This
work highlights that module size and other standard software
complexity metrics are generally poor predictors of fault
likelihood. Process metrics extracted from software change
history have been used to build a weighted time damp model
that considerably improved the bug prediction accuracy, if
compared to previous approaches. Similar results are presented
in [20], where a bug cache algorithms is used to predict future
bugs at the function, method, and file level mining the related
version control system and bug repository.

An interesting technique for predicting latent software bugs
is called change classification. It was initially introduced in
[21], where a machine learning classifier based on Support
Vector Machines (SVMs) is used to determine whether a new
software change is more similar to prior buggy changes or
clean changes. Their classifier is trained using features (e.g.,
terms in the added delta source code and terms in the change
log) extracted from a version archive, showing an accuracy of
78% in identifying if a file is buggy or not.

Two other interesting works focus on the impact of the soft-
ware process on the defectiveness of software [40] and on the
estimation of efficacy of information retrieval models for the
purpose of locating bugs [34]. The latter paper also provides
a comparison of five models and predicts the probability of a
file to contain bugs based on its similarity with known buggy
files.

A closely related research activity concerns the contextual
factors influencing the transferability of bug prediction models.
Nagappan et al. [29] investigated how different subsets of
complexity metrics relate to bugs in different projects, con-
cluding that models have good predictive performance only
when trained on the same or homogeneous systems.

Good performance between releases of the same system are
reported in [41] and [10], while Shatnawi et al. [35] report that
model performances degrade when applied to later releases
of a system. Although findings from individual studies on
bug prediction model transferability are varied, most studies
report that models perform poorly when transferred [2] [15],
even if there are some exceptions [39] reporting about the
transferability of the models developed on NASA data to some
specific embedded domains.

Another important finding in this context is the effectiveness
of the linked bugs technique in giving useful information for
developing accurate defect predictive models. In [26], Moin
et al. used bug reports information in a bug repository and
the corresponding log files of the version control system (i.e.,
the so-called linked bugs) to train a SVM classifier. Textual
information in the summary and description of bugs are used to
enrich machine learning features. Experimental results prove
that, given a bug report, the resulting model is able predict
with a good accuracy which part of the software project is
more likely to be related to the issue.

Another area we consider is the automated triage of the
bugs based on the textual description available at reporting
time. In [9] the authors have developed a machine learning
approach based on a supervised Bayesian learner that is able
to predict correctly 30% of the bugs assignments. While in
[32], the authors focus on clustering the reports to identify
which ones belong to the same bug.

All the previous described works focus on the analysis of
sequential software projects. Unfortunately, only a few studies
about bug identification and prediction in the concurrent
domain have been performed. Given the complex nature of
the problem and the difficulties arising from the complexity
of concurrent thread interleaving analysis, most of the works
focused only on studying and classifying concurrent bugs
characteristics.

A comprehensive study of real world concurrency bugs is
presented in [23]. By examining the bug reports and patches,
corresponding source code, and programmers’ discussion of
four open source projects (i.e., MySQL, Apache, Mozilla,
and OpenOffice), this work provides a classification of the
concurrency bug patterns, occurrence conditions, fix strategies,
and diagnosis processes. Another interesting work introduces a
concurrent bug taxonomy aimed at identify the most common
concurrent bug patterns [12].

In [13], instead of focusing on the causes of concurrency
bugs, Fonseca et al. focus on analyzing their effects. The
objective of this research is providing a new point of view
that can help detecting, handling, or tolerating such defects at
runtime. The two main results of the study performed on an
open source project (MySQL) are the identification of latent



concurrency bugs and some useful indications for the design
of reliable concurrent software systems.

A study of the applicability of sequential approaches for
bug prediction model development is presented in [44]. The
objective of this work is the identification of four classes of
concurrency defects (i.e., Atomicity, Order, Data, and Dead-
lock) and the prediction of the bug quantity, type, and location
from patches, bug reports, and bug-fix metrics. Two predictive
models are presented and evaluated over three popular projects
(i.e., Mozilla, KDE, and Apache) with encouraging results.

To the best of our knowledge, no one has investigated the
possibility of an automated detection of concurrency bugs to
support the bug triage phase.

III. OUR INVESTIGATION

We decided to focus our study on freely available open
source projects with open bug tracking software and revision
management system. The two projects we selected are Apache
HTTP Server version 2 (HTTPD) and MariaDB (a GPL fork
of MySQL). HTTPD has been chosen since it is used in many
works in the bug mining research field. For the same reason,
we initially wanted to include MySQL as well but we found
out that the MariaDB fork is better organized and accessible
as far as bug and revision management is concerned. We plan
to include further projects in our study as a future work.

The aim of our investigation was to understand if machine
learning techniques can be used to effectively distinguish
between concurrent-related and non concurrency-related bugs.
We were also interested in understanding the relevance of var-
ious bug-related information when applying these techniques.

Linked bugs [36] are those solved issues contained in a
bug tracking system for which it is possible to also have
access to the code modifications that led to their solution.
The modifications are usually managed by a revision system.
A linked bug is then a defect for which one or more links
(hence the name) exist between an issue originally signaling
the failure of the software system due to the bug and one or
more revisions in which fixes for the bug are committed to
the code base.

The following table contains an example of elements com-
posing an actual bug report for the MariaDB system.

In the last comment a link to the web interface of the version
management system is used to reference a commit fixing the
bug.

Information associated to the revisions are much less struc-
tured, like the one reported in the following table.

In this case the first line of the description references the
issue for which this commit is a fix. As the reader probably
already noticed the issue and the revision of these examples
are linking each other.

Usually, as in this example, the links between the issues
in the bug tracking system and the code revisions in the
version control system are not explicit (i.e. there are no fields
with explicit pointers or references from one to the other).
Conversely, the links must be mined from change logs and
bug reports using some heuristics. To accomplish this linking

ID MDEV-6833
Title SIGSEGV on shutdown with non-default

wsrep slave threads
Priority MAJOR
Affects Version/s 10.1.1
Component/s Galera
Status CLOSED
Resolution Fixed
Reporter Nirbhay Choubey
Assignee Nirbhay Choubey
Created 2014-10-03 07:04
Updated 2014-10-04 21:38
Resolved 2014-10-04 21:38
Description Start a node with wsrep provider;

SET global.wsrep slave threads=3;
Shutdown
...

Comment From Nirbhay Choubey at 2014-10-03 22:36
http://lists.askmonty.org/pipermail/commits
2014-October/006695.html

Comment From Sergei Golubchik at 2014-10-04 17:46
ok to push

Comment From Nirbhay Choubey at 2014-10-04 21:38
https://github.com/MariaDB/server/commit/
61d8b4a29bd6295b9db153a6ebb451346cd5bc64

ID 61d8b4a29bd6295b9db153a6ebb451346cd5bc64
Committer Nirbhay Choubey
Date Oct 4, 2014
Description MDEV-6833: SIGSEGV on shutdown with

non-default wsrep slave threads

thd->variables’ table plugin & tmp table plugin should
be set to NULL for wsrep system threads.
Also made a minor change to skip checking of wsrep
options if wsrep on is not set.

task we used a traditional approach that consists in searching
for specific keywords and bug IDs in change logs and bug
reports. A software tool has been developed for this purpose.
We compared the experimental results with other approaches
such as that used in ReLink [42], a tool based on recovery
algorithms which automatically learns criteria of features from
a set of explicit links to recover missing links. We observed
that, on our two datasets, ReLink provides results with an
higher recall but a lower precision (i.e. ReLinks infers a higher
number of links, but many of them are not correct).

For a linked bug, a number of information elements can be
extracted with repository mining techniques:

• From the bug tracking system:
– Bug name and description;
– Bug metadata such as the status (solved, not a bug,

etc.), the user that created the issue, the date of the
initial report, etc.;

– Discussion between users, testers and developers
trying to isolate the defect.

• From the code versioning system:
– Commit comment;
– Revision metadata such as developer, date, etc.;
– Modified source code.

In our machine learning perspective, mined linked bugs (our
instances) are tuples with the following attributes:

• Bug id



• Bug name
• Bug description
• Bug metadata
• Bug discussion
• Bug report date
• Revision id
• Revision commit comment
• Revision metadata
• Revision creation date
• Code diffs
In our experiments linked bugs with no one-to-one bug-to-

revision match (for example a bug that is incrementally solved
in three revisions) are split in several one-to-one instances. In
the aforementioned example, we would create three instances
with the same bug linked to the three different revisions.
We also experimented other approaches (as merging all the
information in a single instance) and we obtained very similar
results.

In order to implement a supervised learning approach, we
needed to create a training set in which the ground truth had
to be determined by experts analysis.

Early sampling-based investigations showed that the per-
centage of concurrency-related bugs for both projects is ex-
tremely low (less than 7%). This leads to two problems:

1) a very large number of linked bugs has to be examined
in order to create a training set with a reasonable number
of instances of the concurrency-related class;

2) the resulting training set presented a very large imbal-
ancement (leading to well-known problems [16])

To avoid these problems, we decided not to use all the
extracted linked bugs as our dataset, but we restricted to those
linked bugs filtered by a plain keyword-based approach based
on concurrency-related terms (such as thread, synchronization,
concurrency, mutex, atomic, etc.) applied to the bug title,
description, and discussion. This approach is similar to the
one adopted in previous research in this area [13] [23] [44].

We randomly sampled a large number of issues not contain-
ing the aforementioned keywords and found no concurrency-
related bug. We are then confident that our keyword-based
method is a good starting point to identify all the bugs of this
kind. On the other hand, the precision of the method is less
than 1% (as suggested by the manual analysis described later).
This left us with 3,336 linked bugs for Apache HTTP Server
and 2,589 for MariaDB.

We served as experts to manually categorize the resulting
linked bugs. In this categorization we followed the same
guidelines used in [44]. Each bug has been analyzed by two
experts, a third opinion has been used as tie-breaker when
needed.

This resulted in 153 and 167 concurrency-related bugs for
HTTPD and MariaDB respectively, as summarized in Table I.

The dataset is obviously still imbalanced but to an extent
that does not prevent its use (directly, or after some specific
processing) with most learners.

However, as discussed above, the keyword-based method
has a very high recall. As such it does not introduce any

TABLE I
NUMBER OF BUGS CONSIDERED IN OUR STUDY.

Concurrency
related

Non-concurrency
related

Total

Apache HTTP Server 153 3,183 3,336
MariaDB 167 2,422 2,589

concurrent class bias, the instances of the non-concurrent class
are biased since they only include those elements that do
present the concurrency-related keywords somewhere in the
issue report (title, description, discussion). It may be argued
that we are only making the task more difficult for a machine
learning algorithm that is now called to discriminate between
a concurrency bug and a non-concurrency bug that has some
potentially concurrency-related term in it. Further investigation
on the relevance of this bias will be performed as future work.

The keyword-relevant linked bugs with the concurrent class
feature added manually is our starting point to investigate the
performances of different machine learning approaches. We
decided not to explicitly split the dataset in training and test
sets and systematically rely on cross-fold validation instead.
In particular, the data reported in this paper are related to the
10-fold validation but we have also performed a 3-fold one
with very similar results that are not reported in the paper.

The instances we created so far have attributes that are
mostly textual (such as titles, descriptions, comments). When
using machine learning for textual data it is usual to perform
some pre-processing that can improve the performances of the
categorization algorithms. This includes case transformation,
stemming, and stop-words removal. After some experiments,
we decided to perform case transformation, stemming, and
stop-words removal for texts associated to issues title, descrip-
tion, discussion, and revisions description. No processing has
been applied to the source code. As a result our dataset is
now mainly composed by (processed) string data. While some
machine learning algorithm (or learner as we will often refer to
them in the rest of the paper) can directly cope with this type of
data, most do not. We then decided to move to a representation
that is more easily processable by most known learners: the
bag of words. With this approach, all text is translated into
a tuple of numerical values with each position in the tuple
referring to a different word in the corpus (in our case, it is
composed by all the text appearing in all linked bugs of the
dataset).

The entries in each tuple represent the presence (variously
weighted) of the corresponding word in the analyzed text.
Usual weighting method are frequency, tf (term frequency,
logarithmic in our case), and tfidf (term frequency-inverse
document frequency) [37]. We experimented with these vari-
ants and we found out that, for our datasets, very similar
performances are usually obtained with tf and tfidf, while
simple frequency usually led to worst results.

Direct application of this method can easily result in a very
large number of attributes (in our case in the order of tens
of thousands) most of which related to words appearing only



once or twice in the corpus. Pruning is a common option in
these cases; after some experiments we limited the number of
words processed to the 5,000 more frequent ones for general
text (bug reports, discussions, and commit messages) and to
the 100 more frequent ones for the code. Please notice that
this does not mean that this is the exact number of features for
each data source since all the features with the same frequency
as the one at the cut-off are included too. For example, setting
the pruning value to 100 in the MariaDB dataset for the code
results in 102 features being used since other words have the
same frequency as the 100th one.

After this processing, the instances are now tuples contain-
ing all numerical values except for one nominal value, the
one assigning the related linked bug to one of the two classes:
concurrent and non-concurrent.

Two main aspects characterize the dataset: it is imbalanced
and it contains a large number of attributes. Different learners
show different degrees of susceptibility to these characters.
For those that are affected, a few options exist. First of all we
tested a set of learners with this basic dataset with the idea
of applying some processing later and verify how that affects
the various algorithms.

The following machine learning algorithms have been
tested:

• NB: Naı̈ve Bayes [18]
• KN: K-nearest neighbours classifier (K chosen using

cross validation) [1]
• C45: C4.5 decision tree (unpruned) [33]
• RF: Random Forest [3]
• SVM: Support Vector Machine trained with sequential

minimal optimization [31] [19]
• DFE: Bayesian network with Discriminative Frequency

Estimate learning method [38]
The rationale behind this choice is to have representatives

for the main classification methods that have shown effec-
tiveness in past software repositories mining research. DFE
has been introduced because it is known to provide a good
Bayesian approach for feature-rich datasets like the one we
are dealing with.

All learners have been tuned using common best practices.
SVM has been tested with various kernels (in order to account
for complex non-linear separating hyperplanes). However, the
best results were obtained with a relatively simple polynomial
kernel. The parameters for the resulting model have been tuned
using the grid method [17]. The results we obtained with these
learners are summarized in Table II.

Notice that we test the performances of the learners only
with respect to the concurrent class. We do that for two main
reasons:

1) We are interested in understanding if we can use ma-
chine learning techniques to identify concurrent bugs.

2) Given the imbalancement of the dataset, even a silly
balancer associating any input to the non-concurrent
class will have very high weighted average scores.

We are also reporting a limited amount of analysis data,
specifically in this paper we focus on precision and recall (and

TABLE II
PERFORMANCE OF THE MACHINE LEARNING ALGORITHMS

INVESTIGATED.

Apache HTTP Server
Precision Recall F-measure

NB 0.166 0.614 0.261
KN 0.978 0.856 0.913
C45 0.843 0.771 0.805
RF 1 0.778 0.875

SVM 0.985 0.876 0.927
DFE 0.97 0.843 0.902

MariaDB
Precision Recall F-measure

NB 0.231 0.671 0.344
KN 0.893 0.449 0.598
C45 0.662 0.599 0.629
RF 1 0.299 0.461

SVM 0.814 0.629 0.709
DFE 0.774 0.617 0.687

the related F-measure). Other aspects of the learners (such as
the ROC curve) have been analyzed in our tests but they were
always aligned with the results expressed by the three measure
we are providing here.

The results show that the best classifiers are those known
to perform better on feature-rich datesets; given the mostly
text-based nature of our dateset this was expected.

Now we want to understand if introducing mitigating meth-
ods for the dataset imbalancement and the high number of
features can improve the performances of the learners.

For instance, it is well known that simple bayesian methods
assume independence between all the attributes, which is
almost never the case for bag of words, so we expect that
eliminating correlated attributes should be beneficial for these
learners. It is also known that tree-based learners, such as
Random Forest, can benefit from re-balancing approaches [22].

For imbalanced datasets, there are mainly two approaches:

1) Rebalance them (by decimating the majority class or
by synthetically creating new instances of the minority
class).

2) Instruct the learner to give different weights to the
instances of the two classes (a lower weight for those
of the majority class and a higher one for the minority
ones).

In the case of the large number of attributes, several feature
engineering methods can be applied. The most widely adopted
is attribute selection. In this case, the reduction of the number
of attributes can help learners that do not perform well
with a large number attributes. This helps also in reducing
the computation time needed to create the predictive model.
However, this last advantage can be limited when using
selection algorithms that are computationally expensive. There
are two main classes of attribute selection algorithms: those
who analyze the performance of the learner in the selection
process and those who do not use the learner.



The first class is usually very expensive from a computa-
tional point of view, since the learner runs continuously to
check how it performs when changing the attributes in the
dataset. Usually, that leads to computation times that are two
or more orders of magnitude larger compared to the learner
itself. For this reason, we did only some limited experiments
with learner-aware attribute selection. In our test cases the
results obtained were marginally better than those obtained
with processes not using the learner. Consequently, we only
used this approach in our in depth-analysis.

We performed exhaustive testing combining attribute selec-
tion (AS) with re-balancing approaches either using cost-aware
version of the classifiers (CA) and/or over-sampling using the
SMOTE algorithm (SM) [4]; we mostly obtained non relevant
results. Table III summarized the few combinations that led to
significant improvements over the basic classifiers.

TABLE III
PERFORMANCE OF THE TUNED MACHINE LEARNING ALGORITHMS

INVESTIGATED.

Apache HTTP Server
Precision Recall F-measure

NB + AS 0.259 0.771 0.388
RF + AS + CA 0.951 0.882 0.915

MariaDB
Precision Recall F-measure

NB + AS 0.528 0.784 0.631
RF + AS + CA 0.577 0.743 0.649

The next experiment we performed is a study on the
relevance of the various kinds of linked-bug information (issue
description and discussion, revision comments and modified
code) for classification purposes. We used the best overall
learner emerged from the aforementioned tests (the SVM-
based one) and we applied it to datasets obtained by selec-
tively removing one or more components from each instance.
Assuming a complete linked bug-related issue to be composed
of issue-related data (I), revision-related data (R), and modified
code (C), we tested the learner with all the possible combi-
nations of I, R, and C for both datasets obtaining the results
summarized in Table IV.

TABLE IV
PERFORMANCE OF THE TUNED MACHINE LEARNING ALGORITHMS

INVESTIGATED.

Apache HTTP Server
Precision Recall F-measure

I 0.958 0.902 0.929
R 0.898 0.693 0.782
C 0 0 0

C5000 0.913 0.549 0.686
I + R 0.985 0.882 0.931
I + C 0.972 0.902 0.936
R + C 0.921 0.686 0.787

I + R + C 0.985 0.876 0.927

MariaDB
Precision Recall F-measure

I 0.833 0.599 0.697
R 0.835 0.455 0.589
C 0 0 0

C5000 0.481 0.371 0.419
I + R 0.877 0.557 0.681
I + C 0.863 0.605 0.711
R + C 0.839 0.467 0.6

I + R + C 0.89 0.581 0.703

From these results, it is obvious that the main source
of discrimination is provided by issue-related information
(I), followed by revision-related information (R). Modified
code-related information (C), when limited to a very narrow
dictionary of 100 terms, seem to carry very little discerning
elements, to the point of being of no relevance on its own (F
number 0) and of very limited impact when coupled with other
information. When code pruning is set to 5000 (C5000) its
discrimination improves but still remains under 0.7; moreover
additional test we conducted (not reported in the table) show
that, when combined with other information, C performs better
than C5000.

Given these result, we decided to test the performance of
the best learners with respect to a dataset that only includes
issues’ titles and descriptions. Table V shows the results we
obtained using SVM and DFE.

TABLE V
PERFORMANCE OF SVM AND DFE.

Apache HTTP Server
Precision Recall F-measure

SVM 0.978 0.889 0.932
DFE 0.967 0.758 0.85

MariaDB
Precision Recall F-measure

SVM 0.779 0.569 0.657
DFE 0.913 0.549 0.686

The rationale behind this test is to asses the ability to
construct a reasonable classifier with only the information
available when a bug report is submitted. The idea here is
to incrementally train a classifier with tagged bug reports
(for example we can imagine to use a boolean ”concurrency-
related” tag applied when closing bugs) and use it for triaging
newly submitted bugs. The results are promising, yet further
analysis are need to understand how many tagged bug reports
are need before a reliable classifier is developed.

The last test we performed tries to assess the cross-project
applicability of the models produced by the learners. Specifi-
cally, we created models using SVM and DFE with one data
set and applied them to the other data set. Table VI shows the
obtained results.

In this experiment the same pruned dictionaries used to
train the classifier with one dataset have been used to test
the classifier with the other dataset; this possibly negatively



TABLE VI
CROSS-PROJECT APPLICABILITY OF THE MODELS.

Training set Testing set Learner Precision Recall F
HTTPD MariaDB SVM 0.290 0.275 0.282

MariaDB HTTPD SVM 0.360 0.327 0.342
HTTPD MariaDB DFE 0.593 0.105 0.178

MariaDB HTTPD DFE 0.727 0.052 0.098

impacts the performances on the test dataset but it is an
inherent limitation of bag of words-based approaches.

IV. DISCUSSION OF THE RESULTS

Our results show that is indeed possible to use machine
learning techniques to effectively identify concurrency-related
bugs.

The best overall learners in our tests have been SVM
(with a polynomial kernel) and DFE, both of which do not
benefit from re-balancing and feature engineering techniques.
This is a relevant result: both SVM and DFE can construct
categorization models with limited computational effort and
the fact that they do not need further dataset filtering also
eliminates the need for costly processing. In practical terms
this means that, using an Intel i5 processor with two cores
running at the base frequency of 1.8 GHz, a SVM-based
prediction model can be created in less than 7 seconds for
the MariaDB dataset and less than 13 seconds for the HTTPD
dataset. A DFE-based model can be created in less than 0.1
second for both datasets.

The obtained models can easily classify more than 1,000
instances per second on the same hardware, allowing easy
online processing.

Our tests also show that classification on the basis of
a simple bug report can be performed with decent perfor-
mances; this result combined with the possibility of easy
online processing makes on-the-fly concurrency-related bug
identification a concrete possibility.

One last result is related to cross-project applicability of the
prediction models. Our preliminary results seem to indicate
that models created with our best performing learners are
useful only for the projects they are trained with. This result
was totally expected since there are very few common charac-
teristics between concurrent-related parts in the code base of
the projects we tested and also limited commonalities on the
format and the management of bug reports and revisions.

V. THREATS TO VALIDITY

The design, the data collection, and the analysis of the
presented research has been conducted under a number of as-
sumptions that can limit the validity of the study. In particular,
the main limitations are the following:

• The study includes only two projects (Apache HTTP
Server and MariaDB).

• We deal with a small number of issues, therefore the
statistical significance of some of the analysis can be
limited.

• The identification of the concurrency-related defects has
been performed manually, therefore there could be some
interpretation errors. However, to mitigate the risk, the
manual check was performed by at least two authors
independently.

• The software analyzers we have developed to perform the
data collection and the analysis may include some bugs
that prevent the identification of some relevant defects.
In particular, the code analyzer considers the code as text
without taking into consideration the language structure.

• There is a lack of cross-validity of the developed models
since they are able to provide good results only if properly
tuned on the specific project.

• There could be some biases due to: the selection of the
projects to analyze (Apache HTTP Server and MariaDB),
the programming language used (both C/C++), the lack
of complete data about the defects and the related fixes,
the selection of the non-concurrent defects only from the
ones that do not include the identified keywords, the use
of issues-only datasets that are extracted considering only
linked bugs.

VI. CONCLUSION AND FUTURE WORK

The paper has presented an analysis of the concurrency-
related defects in two popular open source projects developing
also a prediction model that is able to help developers in the
triage phase of the reported issues. As described in Section II,
to the best of our knowledge, this is the first research work
addressing this kind of problem in a quantitative way.

This result combined with the possibility of easy online
processing makes on-the-fly concurrency-related bug iden-
tification a concrete possibility. This will be able to help
developers of large and popular projects in the triage phase
when they have to deal with a continuous flow of a large
number of reported issues (G2).

Moreover, the approach can be used to perform retrospec-
tives using all the data available after the fix of the defect
slightly improving the overall performance of our models
compared to the ones that we have developed based only on
the information available at reporting time, as described in this
paper (G1).

We have tested the performances of several algorithms and
we have obtained that one of the best ones is the SVM
that allowed us to achieve the following results: for Apache
HTTP Server and MariaDB we have a precision of 0.985
and 0.814 and a recall of 0.876 and 0.629 when considering
linked bugs (bug reports information in bug repository and
the corresponding fix in the version control system) and a
precision of 0.978 and 0.779 and a recall of 0.889 and 0.569
when considering only the information from bug reports.
Basically, the developed models have similar performances.

However, the poor cross-validity of the developed models
needs to be investigated further to analyze the possibility of
developing a more general approach that is able to work with a
reduced amount of training on a specific project. Moreover, the
data collection can be improved extending the code analyzer



to consider the structure of the code with more advanced
parsing techniques that allow a more comprehensive collection
of measures.
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