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Abstract

We present a series of empirical evidences on the dynamics of price instabilities in

financial markets and propose a new Hawkes modeling approach. Specifically, analyzing

∗Corresponding author. E-mail address: l.calcagnile@list-group.com
†Present address: Mediobanca S.p.A, Piazzetta E. Cuccia 1, 20121 Milano, Italy
1www.quantlab.it

1

www.quantlab.it


the recent high frequency dynamics of a set of US stocks, we find that since 2001 the

level of synchronization of large price movements across assets has significantly increased.

We find that only a minor fraction of these systemic events can be connected with the

release of pre-announced macroeconomic news. Finally, the larger is the multiplicity of

the event – i.e. how many assets have swung together – the larger is the probability of

a new event occurring in the near future, as well as its multiplicity. To reproduce these

facts, due to the self- and cross-exciting nature of the event dynamics, we propose an

approach based on Hawkes processes. For each event, we directly model the multiplicity

as a multivariate point process, neglecting the identity of the specific assets. This allows

to introduce a parsimonious parametrization of the kernel of the process and to achieve

a reliable description of the dynamics of large price movements for a high-dimensional

portfolio.

1 Introduction

Quoting from Michael Lewis’ Flash Boys “The world clings to its old mental picture of the stock

market because it’s comforting” Lewis (2014). But trading activity has profoundly changed

from the old phone conversation or click and trade on a screen to software programming. Mar-

ket statistics confirm that automated algorithms carry out a significant fraction of the trading

activity on US and Europe electronic exchanges Gomber et al. (2011); MacIntosh (2013). As

algos feed on financial and news data, the speed of information processing has dramatically

increased and potentially allows large price movements to propagate very rapidly through dif-
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ferent assets and exchanges Gerig (2013).

The synchronization effect had its most spectacular appearance during the May 6th, 2010

Flash Crash. The crash started from a rapid price decline in the E-Mini S&P 500 market and

in a very short time the anomaly became systemic and the shock propagated towards ETFs,

stock indices and their components, and derivatives CFTC and SEC (2010); Kirilenko et al.

(2017). The price of the Dow Jones Industrial Average plunged by 9% in less than 5 minutes but

recovered the pre-shock level in the next 15 minutes of trading. The SEC reported that such a

swing was sparked by an algorithm executing a sell order placed by a large mutual fund. Then

high frequency traders, even though did not ignited the event, caused a “hot potato” effect

amplifying the crash. In the aftermath of the crash, several studies have focused on events,

evocatively named Mini Flash Crashes, concerned with the emergence of large price movements

of an asset in a very limited fraction of time. Mini Flash Crashes may be attributed to the

interaction between several automatic algorithms Johnson et al. (2013) or to the unexpected

product of regulation framework and market fragmentation Golub et al. (2012).

The Flash Crash, however, has also dramatically shown how strongly interconnected dif-

ferent markets and asset classes can become, especially during extreme events. In this paper,

by taking a different, yet complementary approach to the above literature, (i) we identify

non-parametrically one-minute extreme events as over-threshold movements, studying how the

frequency of collective instabilities at high frequency has changed in the last years, and (ii) we

use Hawkes processes Hawkes (1971) to model parametrically the dynamics of these events and

their mutual cross-excitation. Our identification approach shares some similarities with previ-
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ous works employing non-parametric tests to identify extreme movements, see Andersen et al.

(2007); Lee and Mykland (2008); Andersen et al. (2010); Dumitru and Urga (2012); Bormetti

et al. (2015). We perform our analysis on a yearly basis from 2001 to 2013 on a data sample

of highly liquid US equities and we identify extreme events affecting a sizable fraction of the

investigated assets. Remarkably, very little research has been devoted to the investigation of

this kind of systemic events. Few noticeable exceptions are Bollerslev et al. (2013), which aims

at the identification of common large movements between the market portfolio and individual

stocks, and Gilder et al. (2014), which investigates the tendency of large movements to arrive

simultaneously. A very recent non-parametric test of the occurrence of simultaneous jumps

across multiple assets is discussed in Caporin et al. (2014). Our research provides the empirical

evidence that, while the total number of extreme movements has decreased along years, the

occurrence of systemic events has significantly increased. As a terminology clarification, we

prefer the use of the term systemic rather than systematic, since the latter has been used in

the literature (see e.g. Gilder et al. (2014)) to define events where assets jump together with a

market index, while the events we look at not necessarily imply this.

To identify the possible causes of such events we compare their time occurrences with

a database of pre-scheduled macroeconomic announcements. Since macroeconomic news can

be expected to have a market-level influence, they represent a natural candidate to explain

market-wide events. For instance, literature has recognized the peculiar role played by Federal

Open Market Committee (FOMC) meetings deciding the interest rate level Petersen et al.

(2010b,a). However, unexpectedly, only a minor fraction (less than 40%) of events involving a
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large fraction of assets has been preceded by the release of a macro news. This evidence opens

the route to the more intriguing hypothesis that a genuinely endogenous dynamics is taking

place. To the best of our knowledge, the association between extreme equity price movements

and the news arrival has been previously investigated in Lee and Mykland (2008); Lee (2012),

finding a positive association, but the results have been challenged in Bajgrowicz et al. (2015).

Table 11 in Gilder et al. (2014) suggests the existence of a particularly strong relationship

between FOMC announcements and the arrival of a systematic event. However, none of the

previous works performs an analysis of the association between news and extreme movements

conditional on the multiplicity of the event.

Finally, we show that when an event affecting a significant fraction of assets occurs, the

probability of a novel extreme event in the subsequent minutes increases. More interestingly,

there is a clear evidence that the more systemic the conditioning event is, the larger the ex-

pected number of assets swinging synchronously in the immediate future will be. In order to

reproduce such empirical evidences, we propose a model within the class of mutually exciting

point processes, termed Hawkes processes Hawkes (1971). In recent years, they have expe-

rienced an increasing popularity in mathematical finance and econometrics Bowsher (2007);

Bauwens and Hautsch (2009a); Muni Toke (2011); Muni Toke and Pomponio (2012); Filimonov

and Sornette (2012); Bacry et al. (2013); Hardiman et al. (2013); Rambaldi et al. (2015); Bacry

et al. (2015); Rambaldi et al. (2016). The main technical challenge that we face in our research

is the high dimensionality of the empirical dataset. Since the number of parameters of a Hawkes

process grows quadratically with the dimension of the problem, the estimation of the model

5



rapidly becomes computationally unfeasible. A major methodological contribution of our work

is to model the multiplicity of an event – how many assets are moving together – instead of

modeling directly the identity of the assets. In fact, the empirical evidence shows that events of

similar multiplicity influence each other more than events of very different multiplicity. Then,

working with the vector of multiplicities allows to simplify the kernel of the Hawkes process and

to express it as a function of the distance among multiplicities. This leads to a parsimonious

parametrization of the kernel, which is not immediate to justify if we model the assets directly.

In conclusion, we show that a Hawkes process with plausible restrictions on the kernel structure

is able to deal with a high-dimensional portfolio, and to reproduce with remarkable realism the

cross-excitation effects of over-threshold returns.

The rest of the paper is organized as follows. In Section 2 we describe the procedure

to identify non-parametrically the occurrence of over-threshold events. We present the most

relevant empirical findings and comment on the emergence of a significant synchronization

among extreme movements of the most liquid assets belonging to the Russell 3000 index. In

the second part of the Section, the macronews dataset is described and the relation with over-

threshold events is investigated. Section 3 reviews the class of exponential Hawkes processes,

and motivates the introduction of a parsimonious parametrization of the kernel of the processes.

The results from an estimation for the year 2013 and various Monte Carlo experiments are

presented. Section 4 draws the main conclusions.
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2 Dynamics of extreme events

The main objective of this paper is the modeling of the dynamics of synchronous large price

variations at high frequency. In order to detect extreme variations of the stock prices Pt,

we compare price returns (defined as rt = lnPt/Pt−1) with an estimate of the historical spot

volatility, which sets the scale of local price fluctuations. Specifically, we calculate a volatility

time series σt as an exponential-moving-average version of the bipower variation (see Barndorff-

Nielsen and Shephard (2004); Corsi et al. (2010); Bormetti et al. (2015)) of the return time

series. Finally, we say that an extreme return occurs when

|rt|
σt

> θ, (1)

for a certain threshold θ. In our main analyses we take θ = 4, but we also investigate higher

values of the threshold, namely θ = 6, 8, 10, in some of our descriptive statistics.

We say that a stock jumps 2 in a given one minute interval if condition of Equation (1)

is observed for a given θ. Here we are mostly interested in cojumps, i.e. the simultaneous

(inside the minute) occurrence of jumps for a subset of M stocks. The quantity M is termed

the multiplicity of the cojump, and it gives a measure of the systemic nature of the event. In

the following we consider three questions: (i) How has the high frequency instability changed

in the last fifteen years? (ii) What fraction of the systemic instabilities can be attributed to

2For a terminological clarification, we term jumps the abnormal returns which are identified non-
parametrically in the same spirit of Lee and Mykland (2008). We refer to Bormetti et al. (2015) for a re-
view of the econometric literature dealing with the jump identification problem within the framework of Itô
semi-martingales.
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macroeconomic news? (iii) How can we model the short term dynamics of market instabilities?

2.1 Financial data selection and treatment

We conduct our analysis on price time series of financial stocks belonging to the Russell 3000

Index, traded in the US equity markets (mostly NYSE and NASDAQ). Data are provided by

Kibot, www.kibot.com. We consider the thirteen years from 2001 to 2013 and for each year

we select 140 highly liquid stocks. We take the 140 stocks with the highest percentage of

minutes in which at least one trade was made. The 140th selected asset of each year has such

a percentage equal to 93% for 2001, 96% for 2002, between 97% and 98.5% for the years 2003–

2005, and always greater than 99% for the years from 2006 onwards. We use 1-minute closing

price data during the regular US trading session, i.e. from 9:30 AM to 4:00 PM. In selecting the

assets to analyze, we exclude American Depositary Receipts, which are negotiable instruments

representing ownership in non-US companies, since their dynamics is heavily influenced by their

primary market, and thus shows a peculiar intraday pattern.

Intraday returns are first filtered for the average intraday pattern, since price fluctuations

are known to exhibit significant differences in absolute size depending on the time of the day,

showing a typical U shape with larger movements at the beginning and at the end of the trading

day. Returns at intraday time t are rescaled by a factor ζt, which is calculated as the average,

over all days, of adjusted absolute returns at time t. More precisely, if r̃d,t is the raw return of
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day d and intraday time t, we define the rescaled return

rd,t =
r̃d,t
ζt
,

where

ζt =
1

Ndays

∑
d′

|rd′,t|
sd′

,

with Ndays indicating the number of days in the sample and sd′ the standard deviation of

absolute intraday returns of day d′. Scaled returns no longer possess any daily regularities.

We discard early-closing days (typically, the eves of Independence Day, Thanksgiving and

Christmas). Data are adjusted for splits and dividends.

2.2 Historical dynamics of jumps and cojumps

A visual representation of how instability of financial markets has changed in the last years is

shown in Figure 1, which compares the dynamics of θ = 4 cojumps in 2001 (left panel) and 2013

(right panel). The horizontal axis represents the trading day and the vertical axis indicates the

hour of the day. The presence of a circle indicates the occurrence of a cojump and the color

codifies the number of stocks simultaneously cojumping (i.e. the multiplicity). In 2001 there

were many cojumps with low multiplicity and the high multiplicity cojumps are concentrated

mostly at specific hours of the day (10 a.m. and 2:15 p.m.) corresponding to the release of

important macro announcements, such as, for example, the FOMC announcements. On the

contrary, in 2013 we observe less low multiplicity cojumps and many more high multiplicity
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Figure 1: Cojumps in 2001 and 2013. Representation of the time series of cojumps detected
for the dataset of 140 selected highly liquid stocks of the Russell 3000 Index during year 2001
(left panel) and 2013 (right panel). The size of the circles increases with the multiplicity of the
cojump event.

cojumps, which are quite scattered during the day. This is an indication that modern financial

markets have become more systemically unstable and that these instabilities are less related to

macro news. In the following we show that this is the case with more quantitative analyses.

First, in the top left panel of Figure 2 we show the total number of minutes (in logarithmic

scale) with at least one jump in each year, considering different values of θ. We observe that

for all θs the number of jumps has actually decreased over time. The different lines are quite

parallel one to each other (especially for θ ≥ 6) indicating that the tails of the one minute return

distribution remained quite stable. A completely different pattern emerges when we consider

the dynamics of cojumps. The top right panel of Figure 2 shows the frequency of cojumps of

different multiplicity (normalized to its value in 2001). While the frequency of cojumps with

any multiplicity (M ≥ 2) has slightly declined, the frequency of high multiplicity cojumps has

become in recent years up to 10 times more frequent than its value in 2001. The result is
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Figure 2: Historical evolution of cojump distribution. Top left panel: Semi-log plots of
the total number of minutes where we detect at least one jump among the 140 selected assets
of the Russell 3000 Index. Curves correspond to four different levels of the threshold parameter
θ. Top right panel: For θ = 4, yearly time evolution of the fraction of minutes with at least
one event of multiplicity larger than or equal to 2, 10, 30, 60. All values are normalized by the
corresponding 2001 values. Bottom left panel: Yearly evolution of the percentage fraction of
cojumps with multiplicity at least equal to 30 for four different values of θ. Bottom right panel:
Log-log plots of the Complementary of the Cumulative Distribution Function of the cojump
multiplicity for seven different years. The panel reports the empirical evidence for a portfolio of
140 stocks, while the inset details results of the same analysis conducted with 700 liquid assets
from Russell 3000 during years 2011 and 2012.

essentially unchanged when fixing the minimal multiplicity (e.g. M ≥ 30) and computing the

number of cojumps for different values of θ (bottom left panel of Figure 2). Clearly larger

fluctuations are observed for larger values of M .
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Finally, the bottom right panel of Figure 2 shows the distribution function of the cojump

multiplicity for different years. Despite some variation is observed across the years, a clear

power law tail behavior is evident. This means that, conditionally on the occurrence of a

cojump event, those with a high multiplicity are frequent. Consistently with the observations

above, the tail is thicker in recent years (even if in 2013 we observe a slightly thinner tail). It

is important to notice that the bending of the distributions for large multiplicity is very likely

due to the finite support of the distribution. Clearly for a set of N stocks the multiplicity

cannot be larger than N , thus the distribution function is zero at M = N . To show the role

of the finite support, in the inset we show the multiplicity distribution function for a larger set

of 700 highly liquid assets. In this case the power law region extends for a wider range and

close to M = 700 we observe the expected bending of the function. The tail exponent of these

distributions is close to 1.5 (similarly to what observed in Joulin et al. (2008)).

The paper mostly considers one minute (co)jumps. However one minute in 2013 is not

equivalent to one minute in 2001 in terms of market activity. Hence it is important to test

whether the increase in number of high multiplicity cojumps is due to the fact that in older

years synchronization occurred on a time scale longer than one minute. To test this possibility

we have repeated the analysis varying the time scale for jump detection from one to five minutes.

The latter scale is motivated by independent analyses, not reported here, on the dynamics of

the cross-correlation between stocks. Such analyses suggest that the time scale over which

stocks become correlated has decreased from 2001 to 2013 by a factor approximately equal to

five. Moreover, since at high sampling frequencies microstructure noise may be a source of
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bias and dominate the results, we take into account the findings of Andersen et al. (2000) and,

similarly to Bollerslev et al. (2008), we consider also sampling frequencies up to 15 minutes.
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Figure 3: Historical evolution of cojumps at different time scales. Yearly time evolution
of the fraction of cojumps with multiplicity M ≥ 30 (top) or M ≥ 60 (bottom) over the total
number of cojumps (M ≥ 1) for θ = 4 and different time horizons, namely 1, 2, 3, 4, 5, 10, 15
minutes.

Figure 3 shows the yearly time evolution of the fraction of cojumps with multiplicity

M ≥ 30 (top) or M ≥ 60 (bottom) over the total number of cojumps (M ≥ 1) for θ = 4 and

different time scales, namely 1, 2, 3, 4, 5, 10, 15 minutes. Except for the first two years, no clear

sorting of this fraction with the time scale is detectable, while the global secular trend has a

much larger variability. This is particularly evident for the M ≥ 60 case. Hence the number

13



of high multiplicity one minute cojumps in 2013 is much higher than the number of high

multiplicity five minute cojumps in 2001, indicating that the increased speed of market activity

is a minor cause of the increase of high multiplicity systemic cojumps in recent years. We also

note that this increase is evident at sampling frequencies of 10 and 15 minutes, too, which gives

robustness to the results by providing the evidence that the increase of systemic cojumps is

not due to microstructure noise. Finally, it is worth to point out that the fraction of cojumps

with multiplicity equal to or larger than 30 reaches its maximum in 2008. When conditioning

to events with even more extreme cojump events – with multiplicity equal to or larger than 60

– a second peak appears in 2011. Then, these results suggest – maybe quite expectedly – the

emergence of a tighter collective market dynamics during the sub-prime mortgage crisis and

the collapse of Lehman Brothers in 2008, and the rise of the sovereign debt crisis in 2011.

In conclusion, at the beginning of 2000’s individual jumps were more frequent and high

frequency systemic instabilities, i.e. high multiplicity jumps, were rare and mostly concentrated

on macro-news announcements. In recent years, on the contrary, markets display often systemic

cojumps and these are scattered across the trading day.

2.3 The role of macroeconomic news

The second question we address is which fraction of systemic cojumps has an exogenous or an

endogenous origin. To answer it, we study how frequently a systemic cojump is preceded by a

scheduled macroeconomic news. We solely consider macronews, since it is unlikely that stock

idiosyncratic news affect the whole market.
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We use macroeconomic news data provided by Econoday, Inc., www.econoday.com. We

consider the 42 most important news categories, which are classified into two large groups

according to their capacity of influencing the financial markets: the Market Moving Indicator

group and the Merit Extra Attention group. Since we are concerned with matching news with

market extreme events, we consider only the 27 categories whose announcement times occur

during the trading session. The number of total news announcements ranges from around 150 in

the first years to around 260 in the last years, for a total of 2,888 news. Table 1 in Appendix A

contains the list of the news categories considered and the numbers of news announcements,

organized by year and news category. We measure how frequently a systemic cojump with
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Figure 4: Cojumps and macroeconomic news. Top panel: Fraction of cojumps in 2012
with multiplicity larger than or equal to the value reported on the x axis for which a news
occurred in the last 1, 5, 10, and 15 minutes. Bottom panel: Fraction of cojumps for different
multiplicities M for which we observe at least one news in a time window of five minutes
preceding the jump event.

multiplicity larger than M is preceded by a macronews in the previous τ = 1, 5, 10, 15 minutes.
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The top graph of Figure 4 shows that only 40% of the high multiplicity cojumps are preceded by

a macronews in the previous 15 minutes. Notice that the fractions of news-triggered systemic

events in the 5, 10, and 15 minutes time windows are very close one to each other, indicating

that if a macronews triggers a systemic cojump, this will typically happen within 5 minutes

from the news.

For an historical perspective, the bottom graph of Figure 4 shows that the fraction of sys-

temic cojumps triggered by macroeconomic news is quite constant across the years and, even

for large M , clearly below 50%. Thus our empirical analysis shows that a relevant portion of

systemic cojumps is not associated with scheduled macroeconomic announcements. Idiosyn-

cratic company-specific news may play a role, but plausibly only for those events which involve

a very limited number of assets. For high multiplicity cojump events, endogenous mechanisms

are likely to play a determinant role.

3 Modeling with multidimensional Hawkes processes

The empirical evidence of the previous section suggests that a large fraction of the dynamics

of the systemic cojumps is unrelated to macronews. Moreover, as observed for example in the

2010 Flash Crash, market instabilities tend to propagate quickly to other assets, markets, or

asset classes. Thus it is important to model the self- and cross-dependence of instabilities,

considering both synchronous and lagged dependencies, by studying whether and how systemic

instabilities trigger other instabilities in the short run.
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A class of processes which is a natural candidate to describe self- and cross-triggering effects

is the family of processes dubbed Hawkes. Hawkes processes have been introduced in the early

Seventies Hawkes (1971), and have been widely employed to model earthquake data Vere-Jones

(1970); Vere-Jones and Ozaki (1982); Ogata (1988). For a complete overview of the properties

of Hawkes processes please refer to Daley and Vere-Jones (2003); Bauwens and Hautsch (2009b),

while for a review of their recent applications in a financial context see Bacry et al. (2015).

An N -dimensional Hawkes process is a point process characterized by the vector of inten-

sities λt :=
(
λ1t , . . . , λ

N
t

)ᵀ
, where the i-type intensity satisfies the relation

λit = µit +
N∑
j=1

∑
tjk<t

φij(t− tjk) ,

where µit and φij are non-negative deterministic functions for all i, j = 1, . . . , N . The set
{
tjk
}

corresponds to the random sequence of increasing events associated with the j-component of

the N -dimensional point process. If µit = µi is a constant and the kernel function φij reduces

identically to zero, then the Hawkes point process for the i-component reduces to a Poisson

process with constant intensity µi. On the contrary, if the kernel is positive, each time an

event occurs for any component of the multidimensional process, the intensity λit increases by

a positive amount.

Modeling the interaction among a set of 140, or more, assets in terms of Hawkes processes

is challenging, especially from the estimation perspective. Some sort of filtering is needed.

A first step in this direction is taken in Bormetti et al. (2015) where the authors model the
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multivariate point process describing the jumps with a Hawkes factor model. Each stock is

represented by a point process, each count being a jump. The coupling between the stocks is

given by a one factor model structure, i.e. the intensity is the sum of the intensity of a factor

and the intensity of an idiosyncratic term. In order to capture the temporal clustering of events

both the factor and the idiosyncratic terms are driven by a self-exciting process. This type of

modeling is very effective (and parsimonious) in describing the pairwise properties of cojumps,

i.e. the probability that two stocks jump in the same time interval. However, when considering

cojumps of M > 2 stocks, the model shows its weaknesses. An important aspect of the empirical

evidences is given by the distribution of multiplicities. From the bottom right panel of Figure 2,

the power law behavior of the tail region is apparent. Unfortunately, it is readily shown that

in the large N limit, the factor model predicts a distribution of multiplicities with Gaussian

tails. Moreover, the multiplicity of a systemic cojump is independent from the multiplicity of

previous systemic cojumps, while the right panel of Figure 1 shows clear temporal clusters of

high multiplicity cojumps.

For these reasons, in this paper we propose a different modeling approach, which preserves

the parsimony and is able to overcome the limitations of the factor model. The key idea is to

model the vector of multiplicities directly, although losing information on the identity of the

cojumping stocks. Specifically, we consider an N -dimensional point process characterized by

the vector of intensities λt. An event in the i-component at time t means that at this time

a systemic cojump of multiplicity i has occurred. Within this modeling framework we know

the total number of assets which have jumped, but we can no longer identify which companies
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among the N possible ones have moved. To describe the self- and cross-excitation of cojumps

we use an N -dimensional Hawkes process, with exponential kernels

φij(t− tjk) := αije
−βij(t−tjk) , (2)

with αij > 0 and βij > 0 for all i, j. The parameter αij fixes the scale of the intensity process λi

and provides the deterministic amount by which the j-type event at tjk shocks the intensity of

the i-type process. The parameter βij describes the inverse of the time needed by the process

i to lose memory of a count of process j. In general, the model depends parametrically on the

baseline intensity vector µ, and on the N×N matrices αij and βij of parameters characterizing

the kernels.

As in most high-dimensional problems, the estimation of multivariate Hawkes processes

might be problematic. In order to reduce the dimension of the estimation problem from N+2N2

to a smaller number of unknowns, we impose various parameter restrictions. First, we assume

that the vector µ :=
(
µ1
t , . . . , µ

N
t

)ᵀ
does not depend on time. Then, given the exponential

form (2), the process is stationary if the spectral radius (i.e. the absolute value of the largest

eigenvalue) of the matrix Γ of elements

Γij =
αij
βij

is strictly smaller than one. In this case the unconditional expected intensities of the process
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reads

E [λt] = (IN − Γ)−1µ ,

where IN is the N -dimensional identity matrix.

We make the following further assumptions:

• all the βij are equal to a constant value β > 0. This means that only one time scale

characterises the decay of the kernels.

• We impose the condition that µ = ηE [λt], with 0 < η < 1. In this way, by construc-

tion, the distribution of multiplicity in the observed process will be the same as the

distribution of the multiplicity in the baseline (or ancestor) process. In other words, the

cross-excitation between the different components of the Hawkes process does not change

the unconditional law of multiplicity. Notice that this assumption implies that

ΓE [λt] = (1− η)E [λt] ,

i.e. E [λt] (or µ) is the eigenvector of Γ with eigenvalue 1− η .

• The generic matrix element Γij describing the intensity of the excitation of variable j on

variable i is the product of a term Dii, which depends on the excited variable, and a term

σ(|i− j|), which depends on the absolute difference of the two multiplicities. Therefore,
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we rewrite Γ = DΣ, where D is a diagonal matrix of elements

Dii :=
(1− η)µi∑N

j=1 µ
jσ(|i− j|)

,

and Σij = σ(|i− j|).

• Finally, we parametrize the matrix Σ as

Σij = σ(|i− j|) = (|i− j|+ 1)−γ

The hyperbolic decay describes the strong cross-excitation between two different multi-

plicities in terms of the sole parameter γ. We assess that the cross-excitation is stronger

between cojumps of similar multiplicity.

To sum up, the model is completely specified in terms of β, and of the matrix

Γij :=
(1− η)µi∑N

k=1 µ
kσ(|i− k|)

σ(|i− j|) ,

which depends on parameters η, γ, and on the expected number of events with fixed multiplicity.

Before presenting the estimation methodology, it is worth to comment some properties of the

model. Since the entries of Γ are strictly positive, we can apply the Perron-Frobenius Theorem.

We conclude that there exists only one eigenvector with all strictly positive components, whose

associated eigenvalue is the spectral radius. Since E [λit] > 0 for all i = 1, . . . , N , the spectral
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radius corresponds to 1− η. Incidentally, we notice that all the eigenvalues of Γ are real. This

property readily follows from observing that Γ is the product of two symmetric matrices, and

D is diagonal and positive definite. Denoting with
√
D the square root of the matrix D, Γ is

similar to
√
D
−1
DΣ
√
D, which is by construction symmetric. Interestingly, if Γ is diagonal

dominant, i.e. if |Γii| >
∑

j 6=i |Γij| for i = 1, . . . , N , the eigenvalues are also strictly positive.

3.1 Estimation and empirical results

An efficient estimation of the model parameters through likelihood maximization is certainly

possible. However, we prefer to follow a methodology inspired by the weighted method of

moments, which is focused on some of the empirical features that we aim at reproducing. In

particular, the following two conditional expectations play a crucial role

f (1)
τ (M ; J) := E

[
It′∈ (t,t+τ ] s.t. Mt′ ≥ J

∣∣∣Mt ≥M
]
, (3)

f (2)
τ (M) := E

[
Mt′

∣∣∣Mt ≥M, ∃t′ ∈ (t, t+ τ ] s.t. Mt′ > 0
]
. (4)

The first quantity, f
(1)
τ (M ; J), is the probability of observing a systemic event with multiplicity

at least J inside a time interval of length τ after a cojump of multiplicity Mt larger than or

equal to M . It therefore measures the probability that a cojump of multiplicity at least M

triggers a systemic cojump (J fixes the threshold for a systemic cojump). The second quantity,

f
(2)
τ (M), is the average multiplicity of the cojumps inside a time interval of length τ after a

cojump of multiplicity Mt larger than or equal to M . It therefore measures the typical cojump
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multiplicity triggered by a cojump of multiplicity at least M .

We use f
(1)
τ (M ; J) (for fixed J and τ) and f

(2)
τ (M) (for fixed τ) to estimate the three

model parameters η, γ, and β. Since we are not able to compute analytically the moments

of f
(1)
τ (M ; J) and f

(2)
τ (M) from the model, we perform Monte Carlo simulations with fixed

parameters. Specifically, given a multiplicity M , we indicate with ad(M), am(M), and δd(M),

δm(M) the average values, and associated standard errors, of the conditional expectations in

Equations (3) and (4) computed from the data (d) and Monte Carlo experiments (m). Then,

for each expectation f
(i)
τ (i = 1, 2) we consider the loss function

χ2
(i) =

∑
M∈S

(ad − am)2

δ2d + δ2m
,

where the sum is taken over a set of multiplicities S. The optimizer then searches for the model

parameters which minimize the total loss function χ2
(1) + 0.5χ2

(2). Given the reduced number

of parameters, we perform an exhaustive search over a large region of the three-dimensional

parameter space on a 0.05-spaced grid.

As an example of the estimation procedure and to discuss the properties of the fitted model,

we consider in detail the case of N = 140 highly liquid assets of the Russell 3000 Index in 2013.

We fix J = 10 in Equation (3), τ = 5 in Equations (3) and (4), S = {5, 10, 15, . . . , 65, 70} and

look for the parameters that minimise the total loss function. The global minimum corresponds

to the values η = 0.15, β = 0.6, γ = 2.65. Thus, 85% of the cojump activity is explained by the

excitation mechanism, and only 15% can be attributed to the baseline intensity. The typical
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timescale of the memory is 1/β ' 1.67 minutes. The relatively low value of γ indicates a

strong cross-excitation between different multiplicities. The left panel of Figure 5 reports a

1 50 100 140

j

1
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101

140

i

−6

−4

−2

log10 Γij

1 50 100 140

i

0

0.25

0.5

0.75

1
Γii

Figure 5: Components of the Γ matrix. Left panel: Contour plot of the logarithm of the
matrix entries Γij := αij/βij for βij = β = 0.6 for all i, j = 1, . . . , 140, η = 0.15, and γ = 2.65.
Right panel: Linear plot of the diagonal entries of Γ as a function of the multiplicity i.

contour plot of the logarithmic value of 140 × 140 entries of the Γ matrix. Coherently with

the definitions given above, Γij for fixed i, is the impact of past events with multiplicity j on

the multiplicity i. The largest value corresponds to the diagonal term Γii = Dii and quantifies

the shock of the intensity due to a self-exciting effect. Then, moving away from the Γii, the

kernel matrix decreases symmetrically along the row according to a hyperbolic scaling with

tail index γ = 2.65. The parameter η rescales the level of the main diagonal of the matrix Γ,

reported in the right panel of Figure 5, and determines the degree of stationarity of the process.

In Figure 6 we plot the complete spectrum of the matrix Γ. As expected, the largest value
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Figure 6: Eigenvalue spectrum of the Γ matrix. The spectral radius ρ(Γ) corresponds
to 1 − η. Since η = 0.15, and more generally for 0 < η < 1, the multidimensional Hawkes
process describing the stochastic evolution of the multiplicity remains stationary. For the chosen
parameter values, we verified numerically that Γ satisfies the diagonal dominant condition and
so all its eigenvalues are strictly positive.

corresponds to 1 − η = 0.85, while the positive definiteness of all the eigenvalues follows from

the evidence, verified numerically, that the matrix is diagonal dominant. To test whether the

model is able to reproduce self-consistently the unconditional distribution of multiplicities, we

perform a simulation experiment. The parameters η, β, and γ are set equal to the empirical

values, and the entries of the matrix Γ are specified in terms of the empirical frequencies.

Then, we generate from a 140-dimensional Hawkes process a synthetic time series with length

equal to the length of the real sample, i.e. 96,861. Figure 7 reports the Complementary of

the Cumulative Distribution Function of the cojump multiplicities of the empirical data (bold

line), and those from the numerical experiment (dashed line). The model correctly reproduces

the stationary distribution of the multiplicities observed in empirical data.

Finally, Figure 8 reports the quantities f
(1)
τ (M ; J) and f

(2)
τ (M) computed from real and
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Figure 7: Cojump multiplicity distribution in real and simulated data. Log-log plot of
the Complementary of the Cumulative Distribution Function of the cojump multiplicities. The
bold line corresponds to the empirical distribution measured from the Russell 3000 data sample,
140 assets, during year 2013. The dashed line is the distribution obtained from a simulation of
the multidimensional Hawkes process. The total number of minutes drawn from the simulation
coincides with the length of the empirical time series and is equal to 96,861.

simulated data. The solid line corresponds to the empirical probabilities, the dotted line to

the results from the Hawkes model, and as a benchmark case we also show the result from a

Poisson experiment on the multiplicity time series (dashed line). It is evident that dropping

the lagged correlations we obtain an unrealistic description of the multiplicity process. The

Hawkes model, on the contrary, fits well the empirical data and therefore adequately describes

the cross-excitation mechanism between systemic cojumps. Some discrepancies are observable

for J = 60, but the general shape of the curve and its level are well reproduced and the Hawkes

model is a huge improvement with respect to the benchmark case. This evidence confirms that

the larger is the value of the conditioning multiplicity the greater is the probability that in the

subsequent minutes an event with large multiplicity happens.
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Figure 8: Effects of cojump multiplicity on future systemic events. Top left panel:
Probability that a cojump with multiplicity larger than or equal to 10 occurs in a τ = 5 minute
interval following a cojump at time t with multiplicity Mt ≥ M . Plots are obtained from
historical and simulated data. The error bars represent standard errors. Top right and bottom
left panels: Threshold 10 replaced by 30 and 60, respectively. Bottom right panel: Expected
amplitude of the cojumps in a τ = 5 minute interval following a cojump with multiplicity
Mt ≥M .

4 Conclusion

By investigating a portfolio of highly liquid stocks, our research enlightens a clear evidence:

Since 2001 the total number of extreme events has remarkably diminished, but the number

of occurrences where a sizable fraction of assets jump together has increased. This trend

is more and more pronounced as we consider events of higher and higher multiplicity. This

evidence is a clear mark that markets are nowadays more and more interconnected and a
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strong synchronization between jumps of different assets is present.

Factors responsible for the appearance of extreme movements can be either exogenous or

endogenous. The former case is linked to the release of macro-economic news impacting the price

dynamics, while the latter may result from unstable market conditions, such as a temporary lack

of liquidity. Quite unexpectedly, only a minor fraction (up to 40%) of the cojumps involving

a large number of assets can be attributed to exogenous news. The remaining 60% suggests

that a more intriguing endogenous mechanism is taking place. Furthermore, it appears that the

synchronization among different assets has increased through the recent years. We hypothesize

that a major role is played by the dramatic and widespread diffusion of algorithmic trading.

Thanks to the technological innovation, faster information processing is responsible for the

more rapid propagation of large price movements through different assets. We also provide the

evidence that after a highly systemic instability, as manifested by large multiplicity cojumps, (i)

the probability that another systemic event takes place in the near future significantly increases,

and (ii) the multiplicity of the next event is strongly correlated with the triggering one.

The low timescale of the memory of the exciting effects and the strong persistence of the

cross-excitation among different multiplicities support the idea that, to achieve an accurate

description of high frequency price dynamics, we should abandon conventional modeling as-

sumptions. Coherently, we propose an innovative approach to the collective behavior of assets’

prices based on the Hawkes description of the multiplicity process. Our model well describes the

short term dynamics of systemic instabilities while preserving a remarkable parsimony in the

number of parameters. Thus, it provides a realistic description of the market behavior which
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is of prime importance from several perspectives, from trading to risk control, and market

designing.
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