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ALZHEIMER’S DISEASE: A MATHEMATICAL MODEL FOR

ONSET AND PROGRESSION

MICHIEL BERTSCH, BRUNO FRANCHI, NORINA MARCELLO, MARIA CARLA TESI,

AND ANDREA TOSIN

Abstract. In this paper we propose a mathematical model for the onset and

progression of Alzheimer’s disease based on transport and diffusion equations.

We regard brain neurons as a continuous medium, and structure them by their
degree of malfunctioning. Two different mechanisms are assumed to be relev-

ant for the temporal evolution of the disease: i) diffusion and agglomeration

of soluble polymers of amyloid, produced by damaged neurons; ii) neuron-to-
neuron prion-like transmission. We model these two processes by a system of

Smoluchowski equations for the amyloid concentration, coupled to a kinetic-

type transport equation for the distribution function of the degree of malfunc-
tioning of neurons. The second equation contains an integral term describing

the random onset of the disease as a jump process localised in particularly

sensitive areas of the brain. Our numerical simulations are in good qualitative
agreement with clinical images of the disease distribution in the brain which

vary from early to advanced stages.

1. Introduction

Alzheimer’s disease (AD) is one of the most common late life dementia, with huge
social and economic impact [6, 18, 24]. Its global prevalence, about 24 millions in
2011, is expected to double in 20 years [38]. In silico research, based on mathem-
atical modelling and computer simulations [1, 8, 10, 13, 17, 28, 36, 42], effectively
supplements in vivo and in vitro research. We present a multiscale model for the
onset and evolution of AD which accounts for the diffusion and agglomeration of
amyloid-β (Aβ) peptide (amyloid cascade hypothesis [16, 22]), and the spreading
of the disease through neuron-to-neuron transmission (prionoid hypothesis [7]).

Indeed, to cover such diverse facets of AD in a single model, different spatial and
temporal scales must be taken into account: microscopic spatial scales to describe
the role of the neurons, macroscopic spatial and short temporal (minutes, hours)
scales for the description of relevant diffusion processes in the brain, and large
temporal scales (years, decades) for the description of the global development of
AD. The way in which we combine distinct scales in a single model forms the core
and major novelty of the paper.

Following closely the biomedical literature on AD, we briefly describe the pro-
cesses which we shall include in our model. In the neurons and their interconnec-
tions several microscopic phenomena take place. It is largely accepted that beta
amyloid (Aβ), especially its highly toxic oligomeric isoforms Aβ40 and Aβ42, play
an important role in the process of the cerebral damage (the so-called amyloid cas-
cade hypothesis [22]). In this note we focus on the role of Aβ42 in its soluble form,
which recently has been suggested to be the principal cause of neuronal death and
eventually dementia [43]. At the level of the neuronal membrane, monomeric Aβ
peptides originate from the proteolytic cleavage of a transmembrane glycoprotein,
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the amyloid precursor protein (APP). By unknown and partially genetic reasons,
some neurons present an unbalance between produced and cleared Aβ (we refer to
such neurons as damaged neurons). In addition to this, it has been proposed that
neuronal damage spreads in the neuronal net through a neuron-to-neuron prion-like
propagation mechanism [7, 36].

On the other hand, macroscopic phenomena take place at the level of the cereb-
ral tissue. The monomeric Aβ produced by damaged neurons diffuses through the
microscopic tortuosity of the brain tissue and undergoes a process of agglomeration,
leading eventually to the formation of long, insoluble amyloid fibrils, which accu-
mulate in spherical deposits known as senile plaques. Moreover, soluble Aβ shows
a multiple neurotoxic effect: it induces a general inflammation that activates the
microglia (the resident immune cells in the central nervous system) which in turn
secretes proinflammatory innate cytokines [15] and, at the same time, increases
intracellular calcium levels [13] yielding ultimately apoptosis and neuronal death.

The model we present is a conceptual interdisciplinary construction based on
clinical and experimental evidence, yielding in particular numerical simulations
and related graphs, that can be compared with time-dependent trajectories of AD
biomarkers (see e.g., [20, 21]). In particular, Figure 2 fits the core of the model
proposed in [20] for the temporal progression of the abnormalities in AD biomarkers,
which identifies two subsequent periods:

− a first period of β-amyloidosis characterised prevalently by reductions in
CSF Aβ42 and increased amyloid plaque formation (biomarkers of this first
period in our model correspond to CSF-Aβ42 and PIB-PET, Pittsburgh
compound B - Positron Emission Tomography);

− a second one characterised by neuronal dysfunction and neurodegeneration
(for this period we only take into account the structural MRI).

Of particular medical interest is the initial stage of the second period, which is
commonly referred to as Mild Cognitive Impairment (MCI): see e.g., [33].

2. Mathematical model

Highly toxic oligomeric isoforms of beta amyloid, Aβ40 and Aβ42, cause cereb-
ral damage. Here we restrict our attention to Aβ42 (shortly Aβ in the sequel)
in soluble form, generally considered the principal cause of neuronal death and
dementia [43]. Monomeric Aβ peptides originate from proteolytic cleavage of a
transmembrane glycoprotein, the amyloid precursor protein (APP). In AD, neur-
ons progressively present an unbalance between produced and cleared Aβ, but the
underlying mechanism is still largely unknown. On the other hand it was proposed
that neuronal damage spreads in the neural pathway through a neuron-to-neuron
prion-like propagation mechanism [7, 36].

Soluble Aβ diffuses through the microscopic tortuosity of the brain tissue and
undergoes an agglomeration process. Eventually this leads to the formation of
long, insoluble fibrils, accumulating in spherical deposits known as senile plaques.
Soluble Aβ has a multiple neurotoxic effect [13, 15]. In our model we do not enter
the details of the brain tissue, we neglect the action of the τ -protein, we simplify
the role of microglia and neglect its multifaceted mechanism (see e.g., [10] and [35]).
We simply assume that high levels of soluble amyloid are toxic for neurons.

We identify a portion of the cerebral tissue with a 3-dimensional region Ω and
x ∈ Ω indicates a generic point. Two temporal scales are needed to simulate the
longitudinal evolution of the disease over a period of years: a short (i.e., rapid) s-
scale (unit time coincides with hours) for the diffusion and agglomeration of Aβ [25],
and a long (i.e., slow) t-scale (unit time coincides with several months) for the
progression of AD, so ∆t = ε∆s for a small constant ε� 1.
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We denote the molar concentration of soluble Aβ polymers of length m at point
x and time s by um(x, s), with 1 ≤ m < N . That of clusters of oligomers of length
≥ N (fibrils) is denoted by uN (x, s) and may be thought as a medical parameter
(the plaques), clinically observable through PIB-PET ( [30]).

To model the aggregation of Aβ m-polymers (1 < m < N) we follow [1],

[variation in (short) time] = [diffusion] + [agglomeration],

which, in mathematical terms, leads to the Smoluchowski equation with diffusion:

(1) ∂sum = dm∇2um +

1

2

m−1∑
j=1

aj,m−jujum−j − um
N∑
j=1

am,juj

 .
where dm > 0, m = 1, . . . , N , and ai,j = aj,i > 0, i, j = 1, . . . , N (giving the
factor 1

2 in (1)).
We refer to [1, 12] for an extensive discussion of (1). For reasons related to

the model, we can assume that the diffusion coefficients dm are small when m is
large, since big assemblies do not move. In fact, the diffusion coefficient of a soluble
peptide scales approximately as a reciprocal of the cube root of its molecular weight
(see [14] and also [29]).

Applications of the Smoluchowski equation to the description of the agglomera-
tion of Aβ amyloid appear in [28]. In this paper, the authors compare experimental
data, obtained in vitro, with numerical simulations based on the Smoluchowski
equation (without diffusion) in order to describe the process leading to insoluble
fibril aggregates from soluble amyloid. The form of the coefficients ai,j (the coagu-
lation rates) we use has been considered by in vitro Murphy & Pallitto (see [28]
and [32]). According to formula (13) in [28], the coagulation rates in silico in our
equations take the form

(2) ai,j = const.
1

i+ j
·
(

ln(i/d) + νi
i

+
ln(j/d) + νj

j

)
,

where i, j are the lengths of the fibrils, d is their diameter, and νi = 0.312 +
0.565(i/d)−1 − 0.1(i/d)−2.

The physical arguments leading to formula (2) rely on sophisticated statistical
mechanics considerations (see also [40]).

Since d can be assumed very small, without loss of generality we can assume
νi = ν for = 1, . . . , N − 1. Thus we can replace (2) by

(3) ai,j = const.
1

i+ j
·
(

ln(i/d) + ν

i
+

ln(j/d) + ν

j

)
=

1

ij
·
(
ν+ | ln d|+O(lnN)

)
.

Since N is finite, in our numerical simulations we use a slightly approximate form
of these coefficients, taking

(4) ai,j = α
1

ij
, where α > 0.

Smoluchowski equations with diffusion have already been considered in the lit-
erature (without reference to Aβ amyloid and Alzheimer’s disease) with diverse
boundary conditions: see for instance [9] for a general introduction, and [23, 2, 44,
4, 3].

Neurons produce Aβ monomers, whence the equation for u1 contains a source
term F :

(5) ∂su1 = d1∇2u1 − u1

N∑
j=1

a1,juj + F .
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Since fibrils are assumed not to move, the equation for uN has no diffusion term,
and takes the form (see (4) in [1]):

(6) ∂suN =
1

2

∑
j+k≥N
k, j<N

aj,kujuk.

It is coherent with experimental data to assume aN,N = 0 for large N . This is
equivalent to saying that large oligomers do not aggregate with each other.

The justification of the condition j, k < N in (6) requires a few more words. In
fact, we must remember that the meaning of uN differs from that of um, m < N ,
as well as the identity

(7)
1

2

∑
j+k≥N,k<N,j<N

aj,kujuk =
1

2

∑
j+k≥N

aj,kujuk − uN
N∑
j=1

aN,juj .

The idea is that uN should describe the sum of the densities of all the “large” assem-
blies. We assume that large assemblies exhibit all the same coagulation properties
and do not coagulate with each other. Let us briefly show how (6) is obtained: we
start by writing the exact Smoluchowski equation for all m ≥ 1 using ũm instead
of um in order to avoid confusion, i.e. nothing but the PDE in (1) with m ranging
from 2 to ∞. We have

(8)
∂

∂t
ũm = dm∇2ũm − ũm

N∑
j=1

am,j ũj +
1

2

m−1∑
j=1

aj,m−j ũj ũm−j ,

where, coherently with our assumptions, we assume

i) dm = dN for m ≥ N ;
ii) am,j = aN,j for m ≥ N . In particular, if m, j ≥ N , am,j = aN,j = aN,N =

0.

Therefore, if m ≥ N , (8) becomes

(9)
∂

∂t
ũm = dN∇2ũm − ũm

N−1∑
j=1

aN,j ũj +
1

2

m−1∑
j=1

aj,m−j ũj ũm−j ,

Now we sum up (9) for m ≥ N , and we set for a while v :=
∑
m≥N ũm. We want

to show precisely that v satisfies the equation (6) (satisfied by uN ). By i), we have

∂v

∂t
= dN∇2v −

∑
m≥N

ũm

N−1∑
j=1

aN,j ũj +
1

2

∑
m≥N

m−1∑
i=1

ai,m−iũiũm−i

:= dN∇2v − I1 +
1

2
I2.

It is clear that

I1 =
∑
m≥N

ũm

N−1∑
j=1

aN,j ũj = v

N−1∑
j=1

aN,j ũj ,

that is precisely the second term in (7), since aN,N = 0. As for I2, if we set j := i
and k := m− i, we obtain the first term in (7). Finally, if set um = ũm for m < N
and uN = v we recover the PDE in (6), as desired.

We model the degree of malfunctioning of a neuron with a parameter a ranging
from 0 to 1: a close to 0 stands for “the neuron is healthy” whereas a close to
1 for “the neuron is dead”. This parameter, although introduced for the sake of
mathematical modelling (see also [36]), can be compared with medical images from
Fluorodeoxyglucose PET (FDG-PET [27]).
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Given x ∈ Ω, t ≥ 0, and a ∈ [0, 1],

f(x, a, t) da

indicates the fraction of neurons close to x with degree of malfunctioning at time t
between a and a+ da. The progression of AD occurs at the long time scale t, over
decades, and is determined by the deterioration rate, v = v(x, a, t), of the health
state of the neurons:

(10) ∂tf + ∂a(fv[f ]) = 0.

Here v[f ] indicates that the deterioration rate depends on f itself. The onset of
AD will be included in a subsequent step.

We assume that
(11)

v[f ] =

∫∫
Ω×[0, 1]

K(x, a, y, b)f(y, b, t) dy db+ S(x, a, u1(x, s), . . . , uN−1(x, s)).

The integral term describes the possible prion-like propagation of AD through the
neural pathway. Malfunctioning neighbours are harmful for a neuron’s health state,
while healthy ones are not:

K(x, a, y, b) ≥ 0 ∀x, y ∈ Ω, a, b ∈ [0, 1],

K(x, a, y, b) = 0 if a > b.

Typically

K(x, a, y, b) = G(x, a, b)H(x, y)

with, for example,

G(x, a, b) = CG(b− a)+, H(x, y) = h(|x− y|),

where (·)+ denotes the positive part (x+ := max{0, x}) while h(r) is a non-
negative and decreasing function, which vanishes at some r = r0 and satisfies∫
|y|<r0 h(|y|) dy = 1. In the limit r0 → 0, (11) reduces to

(12) v[f ] =

∫ 1

0

G(x, a, b)f(x, b, t) db+ S(x, a, u1(x, s), . . . , uN−1(x, s)).

Since we aim at a minimal effective model, we avoid precise assumptions on the
underlying biological processes expressed by K.

The term S ≥ 0 in (11) and (12) models the action of toxic Aβ oligomers,
ultimately leading to apoptosis. For example

(13) S = CS(1− a)

(
N−1∑
m=1

mum(x, s)− U

)+

The threshold U > 0 indicates the minimal amount of toxic Aβ needed to damage
neurons, assuming that the toxicity of soluble Aβ-polymers does not depend on m.
In reality length dependence has been observed [31], but, to our best knowledge,
quantitive data are only available for very short molecules (see [31, Table 2]). For
long molecules any analytic expression would be arbitrary.

Since Aβ monomers are produced by neurons and the production increases if
neurons are damaged, we choose in (5)

(14) F = F [f ] = CF

∫ 1

0

(µ0 + a)(1− a)f(x, a, t) da.

The small constant µ0 > 0 accounts for Aβ production by healthy neurons (dead
neurons do not produce amyloid).
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To describe the onset of AD we assume that in small, randomly chosen parts
of the cerebral tissue, concentrated for instance in the hippocampus, the degree of
malfunctioning of neurons randomly jumps to higher values due to external agents
or genetic factors. This leads to an additional term in the equation for f ,

∂tf + ∂a (fv[f ]) = J [f ],

where

(15) J [f ] = η

(∫ 1

0

P (t, a∗ → a)f(x, a∗, t) da∗ − f(x, a, t)

)
χ(x, t).

P (t, a∗ → a) is the probability to jump from state a∗ to state a ∈ [0, 1] (obviously,
P (t, a∗ → a) = 0 if a < a∗), χ(x, t) describes the random jump distribution, and η
is the jump frequency. In most of our numerical tests we choose

P (t, a∗ → a) ≡ P (a∗ → a) =


2

1− a∗
if a∗ ≤ a ≤ 1+a∗

2

0 otherwise,

i.e., we neglect randomness and we set χ(x, t) ≡ χ(x) concentrated in the hippo-
campus. For a simulation with a random jump distribution, see Figure 10.

To model the phagocytic activity of the microglia as well as other bulk clearance
processes [19], we add to (1) and (5) a term −σmum, where σm > 0. This leads to
the system

(16)



∂tf + ∂a (fv[f ]) = J [f ]

ε∂tu1 = d1∇2u1 − u1

N∑
j=1

a1,juj + F [f ]− σ1u1

ε∂tum = dm∇2um +
1

2

m−1∑
j=1

aj,m−jujum−j

− um
N∑
j=1

am,juj − σmum (2 ≤ m < N)

ε∂tuN =
1

2

∑
j+k≥N
k, j<N

aj,kujuk,

where v[f ] is given by (11) or (12) (with s replaced by ε−1t), F [f ] by (14), and J [f ]
by (15). Since we are interested in longitudinal modelling, we assume that initially,
at t = 0, the brain is healthy, with a small uniform distribution of soluble amyloid.

3. Problem setting and discretisation of the equations

In this section we detail the structure of the domain and the boundary conditions
which we will use, in the next Section 4, to produce numerical simulations. We also
discuss the discretisation of the equations (16).

3.1. Physical domain and boundary conditions. We consider the two-dimen-
sional transverse section of the brain illustrated in Fig. 1. Since approximating a real
brain section is a quite complicated issue, for the sake of simplicity we schematise it
as a box Ω ⊂ R2, Ω = [0, Lx]×[0, Ly], with two inner rectangular holes representing
the sections of the cerebral ventricles. We also identify, close to the front part of the
ventricles, the two sections of the hippocampus, which we represent as two small
circles. Unlike the cerebral ventricles, the sections of the hippocampus are meant
as actual portions of the domain Ω, not as holes.

On the outer boundary of Ω, say ∂Ωout, we assume vanishing normal polymer
flow. Therefore we impose a homogeneous Neumann condition for the diffusing
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Figure 1. Left: A real transverse section of the brain (repro-
duced from [26] with kind permission of the publisher). Right:
Two-dimensional schematisation for numerical purposes. Black
dots are the internal nodes of the numerical grid, where discretised
equations are solved, while white dots are boundary nodes, where
boundary conditions are imposed.

amyloid polymers:

(17) − dm
ε
∇um · n = 0 on ∂Ωout, m = 1, . . . , N − 1,

n being the outward normal unit vector to ∂Ωout. Notice that no boundary condi-
tion is required for the concentration uN of the fibrillar amyloid, since its equation
does not feature space dynamics (cf. the last equation in (16)).

On the inner boundary of Ω, say ∂Ωin, that is the boundaries of the cerebral
ventricles, we model the removal of Aβ from cerebrospinal fluid (CSF) through
the choroid plexus (cf. [19, 39]) by an outward polymer flow proportional to the
concentration of the amyloid. For this, we impose a Robin boundary condition of
the form:

(18) − dm
ε
∇um · n = βum on ∂Ωin, m = 1, . . . , N − 1,

with β > 0 a constant.
We discretise Ω by means of a two-dimensional structured orthogonal grid, whose

points have coordinates xi,j = (xi, yj) = (i∆x, j∆y) with ∆x = Lx/Nx, ∆y =
Ly/Ny, Nx, Ny being the numbers of discretisation points in the x and y-direction,
respectively, and i = 0, . . . , Nx, j = 0, . . . , Ny. See Fig. 1. We also introduce a
time lattice tn = n∆t, n = 0, 1, 2, . . . .

Letting (um)ni,j ≈ um(xi,j , tn) denote an approximation of the concentration of
the m-polymers of amyloid in the point xi,j ∈ Ω at time tn, on the numerical grid
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the Neumann boundary condition (17) becomes simply:

(um)n0,j = (um)n1,j
(um)nNx,j

= (um)nNx−1,j

}
j = 1, . . . , Ny − 1

(um)ni,0 = (um)ni,1
(um)ni,Ny

= (um)ni,Ny−1

}
i = 1, . . . , Nx − 1

 m = 1, . . . , N − 1.

Concerning the Robin boundary condition (18), we discretise the components of
the gradient via the forward Euler formula, then we take into account the orientation
of the vector n as indicated in Fig. 1 to find:

− along the left boundary of each cerebral ventricle

(um)nib,j =
(um)nib−1,j

1 + εβ∆x/dm
,

where ib ∈ {0, . . . , Nx} denotes the grid index in the x-direction such that
xib = ib∆x is the abscissa of the boundary;

− along the right boundary of each cerebral ventricle

(um)nib,j =
(um)nib+1,j

1 + εβ∆x/dm
;

− along the lower boundary of each cerebral ventricle

(um)ni,jb =
(um)ni,jb−1

1 + εβ∆y/dm
,

where jb ∈ {0, . . . , Ny} denotes the grid index in the y-direction such that
yjb = jb∆y is the ordinate of the boundary;

− along the upper boundary of each cerebral ventricle

(um)ni,jb =
(um)ni,jb+1

1 + εβ∆y/dm
.

3.2. Discretisation of the Smoluchowski equations. In order to approximate
the equations for the um’s, m = 1, . . . , N −1, we use a fractional step procedure in
time: first we solve the diffusion and reaction parts, then we add the coagulation
and possibly the source (for u1) parts.

Adopting a Finite Difference discretisation of the Laplace operator ∇2 we obtain
the scheme:

(um)∗i,j = (um)ni,j + ∆t
ε

(
dm

(um)ni−1,j−2(um)ni,j+(um)ni+1,j

∆x2

+dm
(um)ni,j−1−2(um)ni,j+(um)ni,j+1

∆y2 − σm(um)ni,j

)
(um)n+1

i,j = (um)∗i,j + ∆t
ε

(
1
2

m−1∑
h=1

ah,m−h(uh)∗i,j(um−h)∗i,j

−(um)∗i,j
N∑
h=1

am,h(uh)∗i,j

)
,

where (um)∗i,j denotes the temporary solution computed after the first fractional
time step. For an alternative Finite Element discretisation of Smoluchowski equa-
tions see e.g., [1].

The scheme above applies to all inner nodes xi,j of the numerical grid (that means
1 ≤ i ≤ Nx− 1, 1 ≤ j ≤ Ny− 1 excluding furthermore the indexes ib, jb identifying
the inner boundary ∂Ωin) and to the Aβ m-polymers with m = 2, . . . , N − 1.
Because of the adopted approximation of the diffusion part, the following constraint
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on the time and space steps has to be enforced for the stability of the numerical
scheme:

(19) ∆t ≤ ε

4
· min{∆x2, ∆y2}

max
1≤m≤N−1

dm
.

For m = 1 the equation is discretised in a similar way but for the addition of
the source term F . We refer the reader to the next subsection for discretisation
methods of the integral contained in it.

Finally, for m = N the equation is actually an ODE, which we approximate by
the explicit Euler formula:

(uN )n+1
i,j = (uN )ni,j +

∆t

2ε

∑
h+k≥N
h, k<N

ah,k(uh)ni,j(uk)ni,j .

3.3. Discretisation of the equation for f . In the interval [0, 1], which consti-
tutes the domain of the variable a, we introduce a Finite Volume partition made
of Na cells of the form [ak−1/2, ak+1/2] with central point ak =

(
k − 1

2

)
∆a, where

∆a = 1
Na

. The cell index k runs from 1 to Na. Then we discretise the first equation

in (16) using again a fractional step procedure in time.
First, we solve the homogeneous transport part by means of the push-forward

scheme introduced by e.g., [34, 41], which is particularly suited to deal with non-
local fluxes. Denoting fni,j,k ≈ f(xi,j , ak, tn), we have:

(20) f∗i,j,k = fni,j,k −
∆t

∆a

(
fni,j,k|vni,j,k| − fni,j,k−1(vni,j,k−1)+ − fni,j,k+1(vni,j,k+1)−

)
,

where vni,j,k ≈ v(xi,j , ak, tn) indicates an approximation of the deterioration rate of

the neurons and (·)− is the negative part (x− := max{0, −x}). Here we compute
vni,j,k by approximating the integral contained in the expression (12) via a zeroth

order Euler formula and then adding the expression (13):

vni,j,k =

Na∑
h=1

G(xi,j , ak, ah)fni,j,h∆a+ CS(1− ak)

(
N−1∑
m=1

m(um)ni,j − U

)+

.

If the form G(x, a, b) = CG(b − a)+ is used then in the formula above we simply
have G(xi,j , ak, ah) = CG(ah − ak)+.

The stability of the scheme (20) requires that the grid steps ∆a, ∆t be linked
by the following CFL condition:

(21) ∆t ≤ ∆a

max
i, j, k
|vni,j,k|

.

Second, we update the values f∗i,j,k by including the jump process:

fn+1
i,j,k = f∗i,j,k + η∆t

(
Na∑
h=1

P kh f
∗
i,j,h∆a− f∗i,j,k

)
χni,j ,

where we have denoted P kh := P (ah → ak) and χni, j := χ(xi,j , tn).

3.4. Final choice of the time step. On the whole, the time step of the com-
plete numerical scheme has to comply with both the parabolic and the hyperbolic
constraints (19), (21), respectively. Therefore, it is ultimately chosen as:

∆t ≤ min

 ε

4
· min{∆x2, ∆y2}

max
1≤m≤N−1

dm
,

∆a

max
i, j, k
|vni,j,k|
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at each time iteration of the numerical scheme.

3.5. Computing physiological indicators. Several macroscopic (aggregate) quant-
ities can be computed out of the results of model (16). In the next Section 4 the
outputs of the simulations will be discussed in terms of a few of such quantities,
which can be directly compared with real clinical images and known qualitative
time evolution of Alzheimer’s disease.

The macroscopic distribution of neuron malfunctioning A = A(x, t) is computed
over the cerebral domain Ω as the local average of the degree of malfunctioning a:

A(x, t) :=

∫ 1

0

af(x, a, t) da,

which is numerically approximated as

A(xi,j , tn) ≈ Ani,j =

Na∑
k=1

akf
n
i,j,k.

Following [21], we relate then the local brain atrophy φ(x, t) to the average neuron
malfunctioning A as:

φ(x, t) := max

{
0,
A(x, t)−A0

1−A0

}
,

A0 ∈ (0, 1) being a threshold of malfunctioning over which the brain is considered
locally atrophic. The corresponding numerical approximation is

φni,j = max

{
0,
Ani,j −A0

1−A0

}
.

Next we define the global brain atrophy in time Φ = Φ(t) as the average of φ over
the whole domain Ω, i.e.,

Φ(t) :=
1

|Ω|

∫
Ω

φ(x, t) dx,

|Ω| denoting the area of Ω, which is numerically approximated as

Φn :=
1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

φni,j∆x∆y,

In this formula we conventionally consider φni,j = 0 if the grid point xi,j does not
belong to the domain Ω, i.e., if it is a point inside the cerebral ventricles.

The total concentration of soluble amyloid US = US(t) in the brain occipital
region, to be related to the Aβ concentration found in the cerebrospinal fluid by
clinical exams (CSF Aβ), is given by:

US(t) :=
1

|Ω̂|

∫
Ω̂

N−1∑
m=1

mum(x, t) dx,

where Ω̂ ⊂ Ω is a subdomain located in the bottom part of Ω, entirely contained
in the region below the cerebral ventricles. Assuming for simplicity that it is a
rectangle as well, whose grid coordinates are comprised between two indexes 0 <
î1 < î2 < Nx in the x-direction and between j = 0 and j = ĵ > 0 in the y-direction,
we obtain the numerical values of US as:

UnS :=
1

|Ω̂|

î2−1∑
i=î1

ĵ−1∑
j=0

N−1∑
m=1

m(um)ni,j∆x∆y =
1

(̂i2 − î1)ĵ

î2−1∑
i=î1

ĵ−1∑
j=0

N−1∑
m=1

m(um)ni,j ,

where we have used that |Ω̂| = (̂i2 − î1)ĵ∆x∆y.



ALZHEIMER’S DISEASE: A MATHEMATICAL MODEL FOR ONSET AND PROGRESSION11

Finally, the average quantity of brain Aβ deposits in time is:

UN (t) :=
1

|Ω|

∫
Ω

NuN (x, t) dx,

which is naturally discretised as

UN (tn) ≈ UnN =
1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

N(uN )ni,j∆x∆y

by letting conventionally (uN )ni,j = 0 if xi,j 6∈ Ω (inside the cerebral ventricles).

4. Numerical results

To begin with, we provide a typical output of the numerical simulations. In
Figure 2 we plot the evolution of three crucial biomarkers of AD (as a function of
the computational time):

− the CSF Aβ42 (purple dashed curve);
− the average quantity of brain Aβ42 deposits (red solid curve);
− the global brain atrophy (blue dash-dot curve).

All curves are normalised to their maxima. The values of the constants used in the
simulation are specified in the figure caption.
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Figure 2. Graph for the following constants: β = 1, D = 0.01,
α = 10, ε = 0.1, T = 100, N = 50, CG = 0.1, CS = 0.001,
CF = 10, r0 = 0.0, U = 0.1, µ0 = 0.01, η = 1, and σm = 1/m.

The level of Aβ42-deposition (red solid curve) grows rapidly, reaches its max-
imum, and then stabilises. The purple dashed curve, corresponding to CSF-Aβ42,
decreases after having reached a peak. The blue dash-dot curve corresponds to the
brain atrophy and increases in time as expected. The graphs in Figure 2 can be
well illustrated by the following quote from [20]:

The initiating event in AD is related to abnormal processing of
β-amyloid peptide, ultimately leading to formation of Aβ plaques
in the brain. This process occurs while individuals are still cog-
nitively normal. Biomarkers of brain β-amyloidosis are reductions
in CSF Aβ42 and increased amyloid PET tracer retention. After
a lag period, which varies from patient to patient, neuronal dys-
function and neurodegeneration become the dominant pathological
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processes. Biomarkers of neuronal injury and neurodegeneration
are increased CSF tau and structural MRI measures of cerebral
atrophy. Neurodegeneration is accompanied by synaptic dysfunc-
tion, which is indicated by decreased fluorodeoxyglucose uptake
on PET. We propose a model that relates disease stage to AD
biomarkers in which Aβ biomarkers become abnormal first, be-
fore neurodegenerative biomarkers and cognitive symptoms, and
neurodegenerative biomarkers become abnormal later, and correl-
ate with clinical symptom severity.

The plots we obtain should be compared with the clinical graphs in [21], [45],
[5], and with the data of [11] and [37]. For the reader’s convenience we reproduce
here a picture from [21], see Figure 3, and a picture from [45], see Figure 4.

Figure 3. Fig. 6 reproduced from [21] with kind permission of the publisher.

Figure 4. Fig. 4 reproduced from [45] with kind permission of the publisher.

There is a satisfactory agreement between the plots of the qualitative temporal
behaviour of the biomarkers and those obtained from clinical data. Observe that
not only the shapes of the curves are comparable (CSF Aβ corresponds to CSF
Aβ42, Brain Aβ deposits correspond to Amyloid PET and Global brain atrophy
corresponds to MRI + FDG PET)), but also the temporal order of the events is in
good agreement with clinical data.

Obviously the details of the numerical output depend on the choice of the con-
stants used in the mathematical model. Performing a considerable amount of nu-
merical runs with different values of the constants in the model, we have reached
the conclusion that, at least qualitatively, the behaviour of the solutions does not
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depend on the precise choice of those constants, as long as their variation is re-
stricted to reasonable ranges. In other words, the values of the constants taken in
Figure 2 can be considered as an indication for the order of magnitude. For ex-
ample, the longitudinal graphs of the biomarkers CFS-Aβ, brain Aβ deposits and
brain atrophy are - in this sense - qualitatively stable under variations of CS , CF ,
CG and α.

It is particularly instructive to consider the constants U in (13) and β in (18).
We recall that U is a threshold value for the minimal amount of toxic Aβ necessary
to damage neurons (see (13)). In Figure 2 we have used the value U = 0.1, but
if we make it considerably larger, for example U = 1 (the remaining constants are
unchanged), then the threshold becomes so high that the illness does not develop
at all.

The constant β enters the model through condition (18) at the boundary of the
cerebral ventricles. Smaller values of β mean that less Aβ is removed from the
CSF through the choroid plexus. Figure 5 shows what happens if we change it
into β = 0.01: the three curves are moved to the left and become steeper: the
illness starts earlier and develops faster. Recalling that in Figures 2 and 5 we have
plotted values which are normalised with respect to their maximal values, one could
wonder how the latter ones depend on β. It turns out that the maximal values of
CSF Aβ and the brain atrophy are essentially independent of β. The Aβ deposits
(the plaques) however increase by a factor 6 if β is changed from 1 to 0.01. This
result is compatible with our modelling Ansatz (in accordance with the medical
literature) that plaques are not toxic (even healthy brains may contain plaques).
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Figure 5. Graph for the following constants: β = 0.01, D = 0.01,
α = 100, ε = 0.1, T = 100, N = 50, CG = 0.1, CS = 0.001,
CF = 10, r0 = 0.0, U = 0.1,µ0 = 0.01, η = 1, and σm = 1/m.

The comparison of the cases β = 1 and β = 0.01 becomes even clearer when
we create spatial plots of f and of the distribution and density of the cerebral
plaques at fixed computational times t = T . The plots of f at different times are
meant to be compared with FDG-PET images (see e.g., [11]). More precisely, we
take a schematic image of a transverse section of the brain and attribute different
colors (varying from red to blue) to those parts of the brain where probabilistic-
ally the level of malfunctioning lies in different ranges. As in the FDG-PET, the
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red corresponds to a healthy tissue. Here AD originates only from the hippocam-
pus and propagates, at the beginning, along privileged directions (such as those
corresponding to denser neural bundles) mimicked by two triangles.

In Figures 7 and 8 we compare plots of f at, respectively, times T = 34 and
T = 52 for the two different values of β = 0.01 and β = 1. Figures 7 and 8 do not
only confirm the temporal acceleration of the development of the illness for smaller
values of β, but also show that the spatial pattern and heterogeneity become less
evident as β becomes smaller. Since experimental data suggest a strong spatial
heterogeneity of the illness, this could indicate the potential importance of the
removal of Aβ through the choroid plexus to slow down the temporal development
of AD.

In Figure 9 we plot the plaques’ distribution for the two different values of
β = 0.01 and β = 1 and at T = 52. This figure confirms the strong increase of the
plaques when β becomes smaller.

We stress that, though our images represent a mean value of brain activity
instead of a single patient’s brain activity, still they show a good agreement with
clinical neuroimaging: compare Figures 7 and 8 with Figure 6 below.

Figure 6. FDG -PET images showing patterns of metabolic
activity: an elderly individual with no dementia (left) and with
AD (right). Reproduced from [26] with permission.
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Figure 7. Neuron malfunctioning: β = 0.01 (left), β = 1 (right),
T = 34.

Looking for more realistic images, we have to take into account randomness of the
spatial distribution of the sources of the disease. For example, we have performed
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Figure 8. Neuron malfunctioning: β = 0.01 (left), β = 1 (right),
T = 52.
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Figure 9. Density of plaques for β = 0.01 (left), β = 1 (right),
T = 52.

some runs where the AD does not only originate from the hippocampus, but also
from several sources of Aβ randomly distributed in the occipital part of the brain.
We report the outputs of such runs in Figure 10. The random distributed sources
appear as the small blue spots.

5. Discussion and future research directions

We have presented a new mathematical model for the onset and evolution of AD.
The model is characterised by a high level of flexibility, which potentially allows one
to simulate different modelling hypotheses and compare them with clinical data. In
fact, the model provides a flexible tool to test in the future alternative hypotheses
on the evolution of the disease. In the paper we have chosen some specific aspects
of the illness, such as the aggregation, diffusion and removal of Aβ, the possible
spread of neuronal damage in the neural pathway, and, to describe the onset of AD,
a random neural deterioration mechanism. Numerical simulations are compared
with clinical data and, although oversimplified and restricted to a 2-dimensional
rectangular section of the brain, they are in good qualitative agreement with the
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Figure 10. Neuron disease with random sources with β = 1 at
T = 47

spread of the illness in the brain at various stages of its evolution. In particular,
our model captures the cerebral damage in the early stage of MCI.

There are multiple future research developments in quite different directions,
each of which requires substantial research efforts. We mention some of them.

Further development of the model is needed and should be carefully guided by
clinical data. The constants appearing in the equations should be well calibrated
to optimise quantitative agreement with clinical data. Simulations should become
more realistic, in a three-dimensional domain which matches the geometric charac-
teristics of the brain.

The true challenge in AD research is a breakthrough which allows one to develop
effective therapies to stop or slow down the evolution of AD, possibly in an early
stage of the illness. Also effective mathematical models can give a contribution
in this direction. For example, a certain sensibility of the numerical output to
the value of the constant β in (18), which models the removal of Aβ through the
choroid plexus, spontaneously leads to the question whether dialysis-mechanisms
can be introduced to enhance Aβ-removal artificially. Most probably, a serious
answer to this question requires, in addition to a detailed comparison with clinical
data, a more refined modelling of the removal which takes into account the transport
of soluble Aβ by the cerebral fluid.

Finally, some mathematical effort is necessary to check the mathematical cor-
rectness (well-posedness) of the model.
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