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Abstract: In this paper, the seeming inconsistency highlighted by Fabrizio and Lazzari (Stability and second
law of thermodynamics in dual-phase-lag heat conduction, Int. J. Heat Mass Transfer 74 (2014), 484–489)
and Quintanilla and Racke (A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer
49 (2007), 1209–1213) for a thermoelastic material, between the thermodynamic restrictions and the stability
conditions is studied. Actually, we show as these results are due to the use of different formulations of the
thermodynamic principles, which are not always equivalent. So that, we prove by the model considered in
the paper that these two formulations do not lead to the same restrictions on the constitutive equations. This
analysis allowed us to restore the compatibility by an appropriate and wide representation of the Second
Law.

Keywords: stability, thermodynamics, heat flux, fading memory

1 Introduction
The formulation of the Second Law of Thermodynamics has had over time various formulations, not all equi-
valent [1–3]. This is probably due to the complexity of the phenomenon to describe, but also to the broad
class of materials to be studied [4].

In this paper, through a particular thermal model, we will show how it is necessary to represent the
Second Law by a wide (or weak) formulation [5–7]. On the other hand, the notion of stability for a system can
be conditioned by the topology used. Therefore, in this paper the suitable conditions that ensure the stability
will be studied by a weak formulation of the Second Law.

For several materials it is sufficient to formulate the Second Law by restrictive representations, which
allows equally to provide all the necessary restrictions on the constitutive equations.

The systems studied in Refs. [8–10] given by classical fading memory models (see Refs. [1, 2, 4]) and
defined by the constitutive equation between the heat flow q and the gradient of the temperature∇(

q(x, t) = –
k
42q

[
42(∇((x, t) +

∫
∞

0
*(s)∇(t(x, s) ds

]
, (1)

where (t(x, s) = ((x, t – s), s ∈ (0,∞) denotes the past history of the temperature, and

*(s) = 2(4q – 4()e–s/4q
[4(
4q

cos
s
4q

+ sin
s
4q

]
, (2)

with suitable positive coefficients k, 4q and 4(.
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2 M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model

So that, it has been shown in Ref. [8] that if the system (1) and (2) satisfies the Second Law on any closed
cycles, then the coefficients 4q and 4( of the constitutive eqs. (1) and (2) have to verify the restriction

(2 –
√
3)4( < 4q < (2 +

√
3)4(. (3)

This result does not confirm the theory that there is a close relationship between the conditions which
provide the stability and those which ensure the status of the Second Law [3]. Indeed, in Ref. [8] in agreement
with Ref. [11], the stability of the problem is obtained for

4( > (2 –
√
3)4q. (4)

This anomalous result suggests to better investigate the problem and in particular the formulation of the
Second Law for this material system.

In the framework of the continuum thermomechanics, the formulation more used in the literature
requires the existence of the entropy function combined with Clausius–Duhem inequality

1'̇(t) ≥ P
i
m(t)
((t) +

1
(2(t)q(t) ⋅ ∇((t), (5)

where 1 is the density, ' the entropy and P i
m the internal mechanical power. This representation has the

drawback of requiring the existence of the entropy function, which is not defined apriory by a constitutive
equation.

To correct this view point, Coleman and Owen [2] proposed to formulate the Second Law on closed cycles,
therefore the notions of state and process were introduced. This allows to define closed loops so, instead of
eq. (5), the Second Law is formulated on closed cycles in the following form

∮ [
P
i
m(t)
((t) +

q(t) ⋅ ∇((t)
(2(t)

]
dt ≤ 0. (6)

Now, it is worth to observe that the definition of a material system involves a precise definition of state
and process sets that are compatible with the studied material. In the definition of the system considered in
Ref. [8], the concept of state and process is related to a large set of histories, and accordingly of closed cycles.
This means that inequality (6) requires the restrictions (3) on the coefficients 4q and 4(.

In papers [8] and [12], the material system is defined by a more restrictive set of closed cycles. In fact in
Ref. [8] it investigates the stability of the problem

c(̇(x, t) = k
42q
∇ ⋅

[
∇((x, t) +

∫ t

0
*(s)∇(t(x, s) ds

]
+ f (x, t)

(|∂K (x, t) = 0 , ((x, 0) = 0

(7)

where the initial state is given by the zero history.
This restriction reduces the class of states and cycle processes. Therefore, the constraints deriving from

eq. (3) will be weaker. Indeed for such a problem, we are able to show, also through numerical simulations,
the inconsistence between the conditions that ensure the stability and the thermodynamic restrictions fol-
lowing by general formulation of Second Law. On the contrary, if we restrict the class of cyclic processes
to those compatible with system (7), we show as the results of this comparison always ensure a consist-
ency between these two view points. Therefore, we have reasons to believe that there is agreement between
the conditions that ensure the stability and thermodynamic constraints, when we consider a consistent and
suitable formulation of Second Law.

Finally, for this analysis it is important to note that the notion of material system must be defined not
only by the constitutive equations but also by initial conditions and supplies.
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M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model 3

The present paper is organized as follows. In the Chapter 2, we provide the classical basic elements of
Thermodynamics, as the notion of state and process and the Second Law as proposed by Coleman and Owen
[2]. In the Section 3, the differential system for a dual-phase-lag of a rigid heat conductor is formulated and
the consequence restrictions of the Second Law on closed cycles are studied. The notion of minimal state is
presented in the Section 4, where we prove as for this model, the state is represented by a vector of finite
dimensions. Finally in the Section 5, a numerical analysis is shown for the study of the sign of the inequality
(23). So that, we shown as the numerical simulations are in full agreement with thermodynamics.

2 Thermodynamics
In this section, following the framework of Coleman and Owen [2] and [13], we present the basic elements of
Thermodynamics.

A material system is defined by the normed set G of the states 3 and by the collection F of the processes
P : [0, dP) → V × R × R

3 of duration dP ∈ (0,∞] and admissible with the system, defined by

P(t) =
(
L(t), (̇(t),∇((t)

)
,

where L ∈ V denotes the velocity gradient. So that, there exists a map 1̂ : G × F → G that to the initial state
3i ∈ G and process P ∈ F provides the final state 3f .

Following Ref. [2], we formulate

Second Law of Thermodynamics. There is at least one state 30 ∈ G at which for any % > 0 there exists
$% > 0 such that for any process P% whereby

∥∥1̂(30,P%) – 30∥∥ < $%, we have

∫ dP

0

[
P
i
m(t)
((t) +

q(t) ⋅ ∇((t)
(2(t)

]
dt < % . (8)

In this framework, the internal mechanical power is given by

P
i
m(t) = ((t)ė(t) – T(t) ⋅ L(t), (9)

where e is the internal energy and T the stress tensor.
In this work, we study only thermal phenomena in the linear approximation, so that the process

P = ((̇,∇(), while the state 3 is reduced only to thermal phenomena. Then, the inequality (8) assumes the
new form:

Second Law (only for thermal processes). There is at least one state 30 ∈ G, such that for any % > 0 there
exists $% > 0 so for any process P% for which

∥∥1̂(30,P%) – 30∥∥ < $%, we have

∫ dP

0
q(t) ⋅ ∇((t)dt < %. (10)

In this paper, the heat flux q is defined by eqs. (1) and (2) and the initial state 30 is given by the zero past
history.
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4 M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model

3 Statement of the problem
The differential problem for a rigid heat conductor in a smooth domain K ⊂ R

3, related with the energy
balance, is given by

1ė(x, t) = –∇ ⋅ q(x, t) + r(x, t) (11)

where e(x, t) = c((x, t) (c > 0) and r denotes the heat supply. In the following we suppose the density 1 = 1
and identify ((x, t) with the relative temperature

(
((x, t) – (r

)
, where (r is the reference temperature of initial

and boundary conditions. So, the differential problem related with the constitutive eqs. (1) and (2) is given by

c(̇(x, t) = k
42q
∇ ⋅

[
42(∇((t) +

∫
∞

0
*(s)∇(t(x, s) ds

]
+ r(x, t) , (12)

with the initial and boundary conditions

(|∂K (x, t) = 0 , ((x, 0) = 0, (t=0(x, s) = (0(x, s) , s > 0 (13)

In the following we suppose the supply r(x, t) = e–t/4q r0(x, t) with r0 ∈ L∞(0,∞; L2(K)), where

L∞(0,∞; L2(K)) =
{
((x, t) : ((t̄, x) ∈ L2(K), a.e. t̄ ∈ (0,∞); ((t, x̄) ∈ L∞(0,∞), a.e. x̄ ∈ K

}
.

Under these hypotheses, the eq. (12) assumes the new form

c(̇(x, t) = k
42q
∇ ⋅

[
42(∇((t) +

∫ t

0
*(s)∇(t(x, s) ds

]
+ f (x, t) (14)

where we suppose the initial history (0 such that the function

h(x, t) =
k
42q
∇ ⋅

∫
∞

t
*(s)∇(0(x, s – t) ds =

k
42q
∇ ⋅

∫ 0

–∞
*(t – 4)∇(0(x, 4) d4

is well defined and f = h + r.
The equivalence of the eq. (14) with the differential system without fading memory studied in Refs. [12,

14–16] was proved in Ref. [8].
Because * is given by eq. (2), we have that

h(x, t) = e–t/4q
k
42q
∇ ⋅

∫ 0

–∞
2(4q – 4()e4/4q

[4(
4q

cos
t – 4
4q

+ sin
t – 4
4q

]
∇(0(x, 4) d4 ,

so that

h(x, t) = e–t/4qh0(x, t) (15)

where the initial history (0 is supposed such that h0 ∈ L∞(0,∞; L2(K)). So, we can prove that there exists two
functions A(x) and B(x), whereby the supply h(x, t) is given by

h(x, t) = e–t/4q
[
A(x) sin

t
4q

+ B(x) cos
t
4q

]
. (16)

In the following, we work with quasi-cyclic processes that start from the state defined by the zero ini-
tial history and decay exponentially, but compatible within the system under consideration and the initial
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M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model 5

condition ((x, 0) = 0. So that, by a suitable coefficient (C(x), we consider the functions

((x, t) = (C(x)e–t/4q sin
t
4q

(17)

which satisfies the eq. (14) with the supply eq. (16).
Then from Second Law, we have that for any % > 0, there exists a time T% such that

–
k
42q

|∇(C(x)|2
∫ T%

0

[
42(e–t/4q sin

t
4q

∫ t

0
*(s)e–(t–s)/4q sin t – s

4q
ds

]
⋅ e–t/4q sin

t
4q
dt < % . (18)

From eq. (18) and the definition (2) of *, we obtain

k
42q

|∇(C(x)|2
∫ T%

0
e–2t/4q sin

t
4q

{
42( sin

t
4q

+ 2(4q – 4()
∫ t

0

[4(
4q

cos
s
4q

+ sin
s
4q

]
sin

t – s
4q

dsdt
}
> –% (19)

and the arbitrariness of % yields
∫
∞

0
e–2t/4q sin

t
4q

{
42( sin

t
4q

+ 2(4q – 4()
∫ t

0

[4(
4q

cos
s
4q

+ sin
s
4q

]
sin

t – s
4q

dsdt
}
≥ 0 . (20)

Now, we consider a more general supply of the type

f̄ (x, t) = e–t/4q
[
A(x) sin

t
40

+ B(x) cos
t
40

]
(21)

with 40 ∈ R. Then, we obtain solutions given by

((x, t) = (C(x)e–t/4q sin
t
40

(22)

In the Section 5, we study the value of 40 for which
∫
∞

0
e–2t/4q sin

t
4q

{
42( sin

t
40

+ 2(4q – 4()
∫ t

0

[4(
4q

cos
s
4q

+ sin
s
4q

]
sin

t – s
40

dsdt
}
≥ 0 (23)

so that, the Second Law is satisfied.

4 Minimal state
The kernel *, defined in eq. (2) is solution of the linear ordinary differential equation

*̈(t) + 24q*̇(t) + 242q*(t) = 0 .

By using a suitable linear combination of the function q, defined in eq. (1) with its first and second derivative
with respect to time, we obtained (see Refs. [8, 15, 17])

42q
2
q̈(x, t) + 4qq̇(x, t) + q(x, t) = –k

[
∇((x, t) + 4(∇(̇(x, t) +

42(
2
∇(̈(x, t)

]
. (24)

It should be noted that the constitutive eq. (24) as eq. (1) requires knowledge of the history of the temper-
ature gradient. By the concept of minimal state, we prove that for this model the state is represented through
a finite vector-valued variable.
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6 M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model

Let us consider the vector space of the admissible histories of temperature gradient

A =
{
∇(t : R+ → V;

∣∣∣∣
∫ +∞

0
*(s + 4)∇(t(x, s) ds

∣∣∣∣ < +∞ , ∀4 ≥ 0
}
, (25)

it is possible to give the following equivalence relation.

Definition 4.1 Two histories∇(j(t), (j = 1, 2) are said to be equivalent, if

∫ +∞

0
*(s + 4)∇(t1(x, s) ds =

∫ +∞

0
*(s + 4)∇(t2(x, s) ds ∀4 . (26)

Therefore the function

Ĭt(x, 4) =
∫ +∞

0
*(s + 4)∇(t(x, s) ds (27)

characterizes the equivalence class AR and defines the minimal state.

The definition 4.1 characterizes the set of equivalence histories, because provide the same heat flux. Let
AR be the quotient space with respect to the equivalence relation (26).

The evolution equation for Ĭ is

˙̆It(x, 4) = Ĭt4(x, 4) + *(4)∇((x, t) , (28)

where the index 4 denotes the 4–derivative and the constitutive equation for the heat flux becomes

q(t) = –
k
42q

[
42(∇((t) + Ĭt(x, 0)

]
. (29)

Later on the dependence on xwill be omitted. Nowwewrite explicitly the dependence of Ĭt(4) on the variables
t ant 4 to prove the following result

Lemma 4.1 For a material with memory, characterized by the kernel * defined in eq. (2) the minimal state can
be written as follow

Ĭt(4) = e–4/4q
[
A(t) cos 4

4q
+ B(t) sin 4

4q

]
, (30)

where

A(t) = Ĭt(0) ,

B(t) = 4q ˙̆It(0) + Ĭt(0) – 2(4q – 4()4(∇((t) .
(31)

Proof. Introducing eq. (2) in eq. (27), we obtain

Ĭt(4) =2(4q – 4()4q
e–4/4q×

×

{∫
∞

0
e–s/4q

[
4( cos

s
4q

+ 4q sin
s
4q

]
∇(t(s) ds cos 4

4q

+
∫
∞

0
e–s/4q

[
4q cos

s
4q

– 4( sin
s
4q

]
∇(t(s) ds sin 4

4q

}
.

(32)

then eq. (31)1 holds.
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M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model 7

To obtain eq. (31)2, we observe that, by using an integration by parts, we get

˙̆It(0) = – 2(4q – 4()
4q

∫
∞

0
e–s/4q

[
4( cos

s
4q

+ 4q sin
s
4q

]
d
ds
∇(t(s) ds

=
2(4q – 4()4(

4q
∇((t)

–
2(4q – 4()

42q

∫
∞

0
e–s/4q

[
4( cos

s
4q

+ 4q sin
s
4q

]
∇(t(s) ds

+
2(4q – 4()

42q

∫
∞

0
e–s/4q

[
4q cos

s
4q

– 4( sin
s
4q

]
∇(t(s) ds ,

(33)

which gives eq. (31)2. ◻

We also want to show that the evolution eq. (28) coincides with the differential eq. (24). In fact we have

˙̆It(x, 4) = e–4/4q
[
Ȧ(t) cos 4

4q
+ Ḃ(t) sin 4

4q

]
(34)

while

Ĭt4(x, 4) = –
e–4/4q
4q

{[
A(t) – B(t)

]
cos

4
4q

+ [A(t) + B(t)] sin 4
4q

}

=
e–4/4q
4q

{[
4q ˙̆It(0) – 2(4q – 4()4(∇((t)

]
cos

4
4q

–
[
4q ˙̆It(0) + 2Ĭt(0) – 2(4q – 4()4(∇((t)

]
sin

4
4q

}
.

(35)

Replacing in eq. (28), we get

1
4q
e–4/4q cos

4
4q

[
4qȦ(t) + A(t) – B(t) – 2(4q – 4()4(∇((t)

]
1
4q
e–4/4q sin

4
4q

[
4qḂ(t) + A(t) + B(t) – 2(4q – 4()4q∇((t)

]
= 0 .

(36)

By using eq. (31), we obtain

Ȧ(t) = ˙̆It(x, 0) , Ḃ(t) = 4q ¨̆It(0) + ˙̆It(0) – 2(4q – 4()4(∇(̇(t) ,

so that eq. (36) becomes

2
4q
e–4/4q sin

4
4q
×

[
42q
2

¨̆It(0) + 4q ˙̆It(0) + Ĭt(0) – (4q – 4()4(4q∇(̇(t) – (42q – 42()∇((t)
]
= 0 ,

for any 4 ≥ 0.
Finally, by using eq. (29), we obtain

Ĭt(0) = –
42q
k
q(t) – 42(∇((t) ,

˙̆It(0) = –
42q
k
q̇(t) – 42(∇(̇(t) ,

¨̆It(0) = –
42q
k
q̈(t) – 42(∇(̈(t)

and it is easy to show the equivalence between eqs. (24) and (28).
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8 M. Fabrizio et al.: Stability and Restrictions in Dual-Phase-Lag Model

5 Numerical analysis for quasi-closed cycles
In this section we study the conditions for which the sign is not negative in the inequality (23).

The sign of the left-hand side of inequality (23) does not depend on the value of 4q, in particular we can
use 4q as the unit of time, setting 4q = 1, so that eq. (23) becomes

∫
∞

0
e–2t sin

t
40

[
42( sin

t
40

+
∫ t

0
2(1 – 4() [4( cos s + sin s] sin

t – s
40

ds
]
dt ≥ 0

This integral can be calculated explicitly, and its value, setting 9 = 1/40 > 0, is

G(9, 4() =
92 [(

94 – 1
)
42( + 8

(
92 + 1

)
4( – 2

(
92 – 9

)]
4

(
92 + 1

) (
94 + 692 + 25

)

Here we can see that the sign is determined only by the factor

P9(4() =
(
94 – 1

)
42( + 8

(
92 + 1

)
4( – 2

(
92 – 9

)

If for 9 ≠ 1 we consider this expression as a quadratic with respect to 4(, the discriminant is given by

B = 8
(
92 + 1

) [(
92 – 1

)2 + 16] > 0

so for any value of 9 ≠ 1 there are always two distinct values of 4( depending on 9, say 4(,1 < 4(,2 for which
P9(4(,i) = 0, with i = 1, 2.

We can study the given quadratic form in the domain 4( > 0 and in the following three intervals for
9 : (0, 1], (1, 3] and (3, +∞) (9 = 1 and 9 = 3 are the positive values of 9 in which the coefficients of the
quadratic change sign).
• when 9 ∈ (0, 1) the resulting functions of 4( are represented in Figure 1: the graphics of the function

is represented by a downward parabola, starting at a positive value P9(0) = 2(9 – 92), increasing until
4( = 4/(1 – 92), then decreasing and becoming negative at 4(,2 > lim9→0 4(,2 = 4 +

√
34 ≈ 9.831,

the zero being increasing with 9. In particular, when 9 = 1 the function becomes the straight line
P1(4() = 16(4( + 1), so it is always positive in the considered domain.

• when 9 ∈ (1, 3) the resulting functions of 4( are represented in Figure 2: the graphics of the function is
represented by an upward parabola, starting at a positive value P9(0) = 2(9 –92), then increasing, so it
is always positive in the considered domain. When 9 = 3 the starting point becomes 0, and so 4(,2 = 0.

2 4 6 8 10

20

40

60

Figure 1: In this picture we study the function P9(4()
depending on 9 in the interval 0 < 9 < 1.
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0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Figure 2: Here the function P9(4() is studied in the
interval 1 < 9 < 3.

0.1 0.2 0.3 0.4 0.5 0.6

20

40

60

80

100

Figure 3: In this picture the function P9(4() is given in
the interval 9 > 3.

• when 9 ∈ (3, +∞) the resulting functions of 4( are represented in Figure 3: the graphics of the func-
tion is still represented by an upward parabola, it starts at a negative value P9(0) = –2(92 – 9), then
increases becoming positive at the zero 4(,2, then keeps increasing, so it is positive from this point on.
It is interesting to analyze the behavior of the zero when9 ranges in (3, +∞), from which it is clear that
the zero never reach the limiting value 2 –

√
3 ≈ 0.268.

In all figures, the limit of the domain 4( = 2 –
√
3 is shown. With respect to this limit, we can see that

when 9 < 1 there is the interval (4(,2, +∞) where the function is negative. For 1 < 9 < 3 the function is always
positive, while for9 > 3 the interval (0, 4(,2) where the function is negative falls in the zone where 4( < 2–

√
3,

so it not of our interest.
From this analysis it results that restriction (4) is compatible with the thermodynamics on all quasi-

closed cycles obtained through solution of type eq. (22) in the hypothesis 9 ≥ 1 �⇒ 40 ≤ 4q. When 9 < 1,
and so 40 > 4q, there is compatibility only when 4( < 4(,2.

6 Conclusions
The examples presented in this paper show that for a complete characterization of a material system is not
enough to give the constitutive equations. In fact, the thermodynamic properties of a material are defined,
in addition to the constitutive equations, also by the set of initial conditions and sources of the differential
system. In fact, this research shows that the conditions that ensure the compatibility of the system with
thermodynamics can depend from the whole of definitions of initial data and sources.
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