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A Limited Memory BFGS method for a nonlinear

inverse problem in digital breast tomosynthesis

G. Landi E. Loli Piccolomini J. G. Nagy

November 9, 2016

Abstract

Digital breast tomosynthesis (DBT) is an imaging technique that al-
lows the reconstruction of a pseudo three-dimensional image of the breast
from a finite number of low-dose two-dimensional projections obtained by
different x-ray tube angles. An issue that is often ignored in DBT is the
fact that an x-ray beam is polyenergetic, i.e. it is composed of photons
with different levels of energy. The polyenergetic model requires solving
a large-scale, nonlinear inverse problem, which is more expensive than
the typically used simplified, linear monoenergetic model. However, the
polyenergetic model is much less susceptible to beam hardening artifacts,
which show up as dark streaks and cupping (i.e., background nonunifor-
mities) in the reconstructed image. In addition, it has been shown that
the polyenergetic model can be exploited to obtain additional quantitative
information about the material of the object being imaged. In this paper
we consider the multimaterial polyenergetic DBT model, and solve the
nonlinear inverse problem with a limited memory BFGS quasi-Newton
method. Regularization is enforced at each iteration using a diagonally
modified approximation of the Hessian matrix, and by truncating the it-
erations.

1 Introduction

Digital breast tomosynthesis (DBT) is an imaging technique that allows the
reconstruction of a pseudo three-dimensional image of the breast from a fi-
nite number of low-dose two-dimensional projections obtained by different x-
ray tube angles. DBT is becoming increasingly popular in healthcare, since
this innovative technology may address some of the long-standing limitations of
conventional two-dimensional mammography such as the phenomena of summa-
tion and subtraction, potentially responsible for the production of false positive
findings and for masking of true positive findings. Since DBT image acquisition
allows the breast to be viewed in as a pseudo 3D volume (i.e., as slices), these
phenomena are minimized and the accuracy of screening and diagnostic breast
imaging is improved by ruling out overlapping structures and facilitating identi-
fication of small lesions [19]. Two crucial issues are faced when implementing a
reconstruction algorithm for DBT. First, because the angular range over which
projections are obtained is very limited (e.g., between 15 and 30 degrees), the
mathematical problem is very ill-posed. Secondly, DBT systems generally use
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high resolution detectors (e.g., 2048×2048), so the transfer and storage of this
data can be challenging as far as the time required for image reconstruction.

An issue that is often ignored in DBT, as well as in full computed tomog-
raphy (CT) applications, is the fact that an x-ray beam is polyenergetic, i.e.
it is composed of photons with different levels of energy. Instead, the image
formation model usually assumes the x-ray source to be monoenergetic. The
polyenergetic model requires solving a nonlinear inverse problem, whereas the
monoergetic model results in a much simpler linear inverse problem. However,
the unrealistic physical assumption of the monoenergetic model leads to so-
called beam hardening artifacts in reconstructed images, which typically contain
dark streaks and overall cupping (i.e., background nonuniformities) [1].

Although it is more computationally expensive, previous work has been done
to develop algorithms that use the more accurate polyenergetic model of the
source x-rays; in the case of CT, see for example [3, 8, 9, 17], and in the limited
angle case of tomosynthesis, see [6, 7, 12]. In [7], a polyenergetic tomosyn-
thesis model was described under the assumption of Poisson noise. Iterative
techniques, such as gradient descent and Newton-type methods, were used for
image reconstruction. In [6], the polyenergetic model was further developed by
also taking into account the various materials composing the object. The model
allows for computing weight fractions of the linear attenuation coefficients of
the materials composing the object and reconstructing density mappings of each
material, giving quantitative information about the tissue, which can facilitate
clinical diagnoses. In [12], a multimaterial polyenergetic model was proposed
which is based on the mass (instead of linear) attenuation coefficients of the ma-
terials composing the object and allows for the restoration of pseudo-3D images
of the mass attenuation coefficients of each material. Under Gaussian noise as-
sumption, the image reconstruction process was formulated in a nonlinear least
squares framework, which was solved using the Levenberg-Marquardt method.

In this work, we consider the multimaterial polyenergetic DBT model based
on the linear attenuation coefficients described in [6] and we assume the data
noise to have a Gaussian distribution. We remark that the Gaussian noise
assumption is not restrictive since the quality of the reconstructed images is
reported to be not significantly influenced by the noise model [14]. In [6] a
Poisson noise was assumed and the problem was solved by minimizing a likeli-
hood function by a gradient descent method. In that paper, the efficiency of the
numerical method was not deeply investigated, since the attention was mainly
on the information and quality of the results obtained by the proposed model.
As previously mentioned, computing a solution of the optimization problem is
challenging because it is large-scale and because the limited angular range of
projections causes the problem to be severely ill-posed. Moreover, in a clinical
setting it is desirable to have a quite good reconstruction in as short a time as
possible.

The aim of this work is to propose an efficient method for the solution of the
nonlinear inverse problem formulated as a nonlinear least squares minimization.
There are many numerical approaches to solve nonlinear least squares problems,
ranging from gradient-like methods to Newton-like methods, and there are well
known trade-offs to consider when deciding on which algorithm to use. For
example, a gradient approach uses only first order information, and hence each
iteration is less expensive, but typically exhibits much slower convergence than
a Newton-like method. On the other hand, a Newton-like method uses second
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order information, which can result in much faster convergence than a gradient
method, but each iteration is more expensive as it requires the solution of a linear
system involving the Hessian (or its approximation). This additional cost per
iteration can be very expensive, and often prevents from applying Newton-type
methods to large-scale problems. In order to address the high dimensionality of
the tomosynthesis problem together with the need of a good solution in a short
time, we propose to use a Newton-like method with a limited memory BFGS
strategy. The BFGS strategy1 requires, at each iteration, the solution of a linear
system whose coefficient matrix is a low-cost Hessian approximation, and the
limited memory version, referred to as LBFGS, uses curvature information only
from the most recent iterations [16]. Due to the ill-posedness of the continuous
problem, the approximation of the Hessian matrix is ill-conditioned. To avoid
magnifying errors when solving linear systems with this ill-conditioned matrix,
which is required at each LBFGS iteration, we use a diagonal modification of
the Hessian approximation. Two strategies are proposed and compared for the
numerical inversion of this diagonally modified linear system. Regularization is
also enforced by truncating the iterations of the LBFGS algorithm.

The rest of the paper is organized as follows. In Section 2, we formulate
polyenergetic DBT image reconstruction as a nonlinear least squares problem.
In Section 3 we describe the diagonally modified limited memory BFGS method
and analyze its convergence property. The results of numerical experiments
are presented in Section 4 in order to illustrate the potential of the proposed
approach. Finally, conclusions are given in Section 5.

2 The mathematical model

We present in this section the nonlinear model for the image formation process
considered in this paper. The nonlinear model is described in [6] and it is derived
from the Beer’s law [10] taking into account both the polyenergetic nature of the
x-ray beam and the various materials composing the object. Before proceeding
with the model description, let us fix our notation. We assume that the object
being imaged is made up of a small number of known materials; for example,
in the case of breast imaging, this would include adipose and glandular tissue,
and possibly calcium and/or iodine (which, when injected into the blood stream
can highlight blood vessels and tissues). We denote the number of materials by
Nm. In particular, we suppose that the linear attenuation coefficients µj,e of
each voxel j at the energy level e is approximated as a linear combination of
individual materials with unknown weights wj,m:

µj,e =

Nm∑
m=1

wj,mcm,e (1)

where cm,e is the linear attenuation coefficient of the m-th material at e-th
energy. In addition, we denote the number of voxels in the discretized 3D
volume (object) by Nv, the number of pixels in each 2D projection by Np, the
number of discrete energies by Ne, and the number of angles by Nθ. We use aθi,j
to denote the length of the x-ray beam through the voxel j, incident onto the

1The acronym BFGS is based on the names of Broyden, Fletcher, Goldfarb and Shannon
who are credited with discovering the method.
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pixel i in the detector, with source at angle θ, and bθi to denote the measured
projection value in the i-th pixel, with source at angle θ. Finally, we indicate by
se the energy fluence, which is a product of the x-ray energy with the number
of incident photons at that energy.

Using this notation, and following [6], we have the following discrete image
formation model

bθi =

Ne∑
e=1

se exp

− Nv∑
j=1

aθi,j

Nm∑
m=1

wj,mcm,e

+ ηθi ,

{
i = 1, . . . Np,
θ = 1, . . . Nθ,

(2)

where ηθi represents noise measured at the detector, which can include x-ray
scatter and electronic noise and which is assumed to follow a Gaussian dis-
tribution. We also assume that the weight fractions for each voxel add to 1,
i.e:

Nm∑
m=1

wj,m = 1, j = 1, . . . Nv. (3)

We refer the reader to [6, 7] for a more detailed presentation of the multi-material
model (2) for polyenergetic digital breast tomosynthesis.

The equations given in (2) can be rewritten in matrix-vector form as

b = exp(−AWCT )s + η (4)

where C is an Ne×Nm matrix with entries ce,m, W is an Nv×Nm matrix with
entries wj,m, and s is a vector with entries se. The matrix A and the vectors b
and η are defined in terms of blocks that depend on the angle θ. Specifically, if
we define the Np ×Nv matrices A(θ) with entries aθi,j and the Np vectors b(θ)

and η(θ) with, respectively, entries bθi and ηθi , then

A =


A(1)

A(2)

...
A(Nθ)

 , b =


b(1)

b(2)

...
b(Nθ)

 , η =


η(1)

η(2)

...
η(Nθ)

 .
We remark that, usually, the noise vector η is not available while both s and
C are known since an accurate estimate of the x-ray energy distribution can be
obtained by using well-known spectra models and the linear attenuation coeffi-
cients ce,m can be derived by taking x-ray transmission measurements of objects
with known dimension, density and material composition. Moreover, although
we can use modestly sized problems for numerical simulations, in actual clin-
ical applications typical values are Nv = nxnynz with nx = 1280, ny = 2048
and nz = 50, Np = nxny, Ne ≤ 30 and Nm ≤ 4. Such large scale problems
require very efficient algorithms, and efficient implementation of computational
kernels, such as operations to perform matrix-vector multiplication with A (i.e.,
projection) and with AT (i.e., back projection).

Assuming model (4), DBT reconstruction is a large-scale nonlinear inverse
problem where the weight fractions matrix W has to be determined, given the
ray tracing matrix A, the noisy projections vector b, the x-ray energies vector
s and the linear attenuation coefficients matrix C.
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3 Numerical solution of the inverse problem

Under a Gaussian noise assumption, the maximum likelihood solution to (4) is
obtained by solving the nonlinear least squares problem

min
W

1

2
‖b− exp(−AWCT )s‖2. (5)

By imposing the constraint (3) on problem (5) and by employing variable sub-
stitution for

wj,1 = 1−
Nm∑
m=2

wj,m, (6)

we obtain the nonlinear least squares problem

min
X

f(X) =
1

2
‖r(X)‖2 (7)

where the unknown X is defined as

X = [w2 | w3 | . . . | wNm ]. (8)

If wm and xm denote the m-th column of W and X, respectively, then the
residual r(X) has the form

r(X) = b− exp

(
A

[
1−

Nm−1∑
m=1

xm

∣∣∣∣∣ X
]
CT

)
s. (9)

If we define the Ne × (Nm − 1) matrix Ĉ as

Ĉ = [c2 − c1 | c3 − c1 | . . . | cNm − c1 ] (10)

where c` denotes the `-th column of C, then equation (9) can be written com-
ponent wise as

rθi = bθi −
Ne∑
e=1

se exp

− Nv∑
j=1

aθi,j

(
c1,e +

Nm∑
m=2

xj,m(cm,e − c1,e)

) (11)

= bθi −
Ne∑
e=1

se exp

− Nv∑
j=1

aθi,j

(
c1,e +

Nm−1∑
m=1

xj,mĉm,e

) . (12)

3.1 Computing the gradient

Due to the high dimensionality of tomosynthesis imaging problems, computing
the gradient of f(X) is a crucial issue for the implementation of any numerical
method for the solution of (7). The gradient of f(X) is expressed in terms of
the Jacobian J(X) of r(X):

∇f(X) = J(X)T r(X) (13)
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where J(X) is the NpNθ ×NvNm matrix defined by

{J(X)}i,θ,j,m =
∂

∂xj,m
rθi

=
∂

∂xj,m

Ne∑
e=1

se exp

(
−

Nv∑
`=1

aθi,`

Nm−1∑
n=1

x`,nĉn,e

)

=

Ne∑
e=1

se exp

(
−

Nv∑
`=1

aθi,`

Nm−1∑
n=1

x`,nĉn,e

)(
−aθi,j ĉm,e

)
= −aθi,j

Ne∑
e=1

exp

(
−

Nv∑
`=1

aθi,`

Nm−1∑
n=1

x`,nĉn,e

)
seĉm,e

= −aθi,j
Ne∑
e=1

{
exp

(
−AXĈ

)}
i,θ,e

(s� ĉm)e (14)

for i = 1, . . . , Np, θ = 1, . . . , Nθ, j = 1, . . . , Nv and m = 1, . . . , Nm, where �
denotes component wise multiplication. Equation (14) shows that the (`, n)-th
entry of J(X), for ` = 1, . . . , NpNθ and n = 1, . . . , NvNm, is the scalar product

of the `-th row of exp(−AXĈ) and the vector −aθi,j(s� ĉm).
However, even if it is possible to explicitly calculate the first partial deriva-

tives of r(X) making up J(X), computer memory may be insufficient to store
the full Jacobian matrix. In order to avoid the storage of J(X), we compute
directly the n-th partial derivative of f(X), n = 1, . . . , NvNm, as the scalar
product of the n-th column of J(X) by the residual vector r(X). This results
in a considerable reduction of the memory demand for the gradient ∇f(X).
However, since we do not have access to J(X), in order to solve (7) we can not
use standard algorithms for nonlinear least squares problems such as the Gauss-
Newton and Levenberg-Marquardt methods. Therefore, we propose to use two
alternative algorithms requiring only the gradient of the objective function to
be supplied at each iteration.

3.2 Newton method with diagonally modified Hessian ma-
trix

Before describing the proposed algorithms, let us briefly recall that Newton’s
method uses the iterative updating strategy

X(k+1) = X(k) + αkp
(k) (15)

where p(k) is the step direction, obtained by solving the linear system

∇2f(X(k))p = −∇f(X(k)), (16)

and αk is the step-length. For the line search, we consider a standard approach
where αk is initially set to 1, and a back tracking strategy is employed until αk
satisfies the Armijo condition [16].

We remark that because the tomosynthesis image reconstruction problem
is ill-posed the Hessian matrix ∇2f(X(k)) can be severely ill-conditioned. In
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order to stabilize the computation for the step direction, we employ Lavrentyev
method [2] replacing (16) with the regularized linear system

(∇2f(X(k)) + µkI)p = −∇f(X(k)) (17)

where the positive parameter µk controls the amount of regularization. In ad-
dition, to reduce the computational cost of working with the Hessian, we re-
place the Hessian with an approximation based on the limited memory BFGS
(LBFGS) formula [15, 13].

In the following subsections, we first discuss an efficient strategy for the
choice of the regularization parameter µk. Then we describe two algorithms,
which use the LBFGS updating strategy, to efficiently compute the step direc-
tion. Although the LBFGS strategy results in slower convergence compared to
Newton’s method, the advantage of LBFGS over a full Newton algorithm is that
each iteration can be computed more efficiently and substantially reduces the
storage requirements.

3.3 Choice of the regularization parameter µk

The performance of modified Newton method (17) depends on the value of
the regularization parameter µk both in terms of reconstruction quality and
method efficiency. In our implementation, at each iteration, we use the following
criterion for the choice of the regularization parameter:

µk = max
(
µinf ,min

(
µsup, ‖∇f(X(k))‖

))
(18)

where µ0 = µsup. The regularization parameter µk is then bounded both above
and below:

µinf ≤ µk ≤ µsup. (19)

In section 4 we report the results of some tests for tuning the values of µinf

and µsup. We have done extensive numerical experiments on tomosynthesis
applications, and have found that criterion (18) is quite robust in preventing
ill-conditioning and speeding up convergence when the gradient norms are small.

3.4 Algorithm 1: a quasi-Newton method with diagonally
modified LBFGS matrix

In the first algorithm, hereinafter referred to as Algorithm 1, we consider the
LBFGS updating formula to obtain a positive definite approximation B(k) to
the Hessian matrix ∇2f(X(k)). The LBFGS method uses information only from
the most recent iterations in order to obtain B(k). Specifically, at iteration k,
the method uses only at most a fixed number M of vectors di and yi defined as

di = X(i+1)−X(i), yi = ∇f(X(i+1))−∇f(X(i)), i = k−M, . . . , k−1 (20)

to construct B(k) as follows

B(k) = B
(k)
0 +

k−1∑
i=k−M

(
ziz

T
i − aia

T
i

)
(21)
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where

ai =
B

(k)
i di√

dTi B
(k)
i di

, zi =
yi√
yTi di

, i = k −M, . . . , k − 1 (22)

B(0) = γ−1
k I (23)

with γk a positive constant. The number M of vector pairs {di,yi} stored at
each iteration is usually very small.

The general iteration of Algorithm 1 has therefore the form

X(k+1) = X(k) + αkp
(k) (24)

where the step p(k) solves the diagonally modified LBFGS system

(B(k) + µkI)p = −∇f(X(k)). (25)

Algorithm 1 can therefore be viewed as a quasi-Newton method with diagonally
modified LBFGS matrix. Following the convergence analysis for the LBFGS
method [13], global convergence of Algorithm 1 can be proved with µk satisfying
(18).

Proposition 3.1. Assume that the objective function f is twice continuously
differentiable and that there exist positive constants c1 and c2 such that

c1‖z‖2 ≤ zT∇2f(X)z ≤ c2‖z‖2 (26)

for all z and for all X ∈ {X | f(X) ≤ f(X(0))} and assume that the matrices

B
(k)
0 are chosen so that {‖B(k)

0 ‖} and {‖(B(k)
0 )−1‖} are bounded. Then, the

eigenvalues of B(k) +µkI are bounded above and bounded away from zero. That
is, there are positive scalars d1 and d2 such that

d1‖z‖2 ≤ zT (B(k) + µkI)z ≤ d2‖z‖2 for all k. (27)

Proof. The proof follows [13, Theorem 6.1] very closely. If we define

G
(k)

=

∫ 1

0

∇2f(X(k) + τdk)dτ (28)

then we have
yk = G

(k)
dk. (29)

From (26) and (29), we obtain

c1‖dk‖2 ≤ yTk dk ≤ c2‖dk‖2 (30)

and

‖yk‖2

yTk dk
=

dTk (G
(k)

)2dk

dTkG
(k)

dk
≤ c2. (31)

From the definition of B(k), the boundedness of {‖B(k)
0 ‖} and (31), we have

tr(B(k)) ≤ tr(B
(k)
0 ) +

k−1∑
i=k−M

‖yi‖2

yTi di
≤ tr(B

(k)
0 ) + c2M ≤ L (32)

8



where tr(B(k)) denotes the trace of B(k) and L is some positive constant. Then,
it follows that a constant L > 0 exists such that the largest eigenvalue of B(k)

is less than L. We have that

µinf‖z‖2 ≤ zT (B(k) + µkI)z ≤ (L+ µsup)‖z‖2. (33)

The proof follows by setting d1 = µinf and d2 = L+ µsup.

Since the positive definite matrices B(k)+µkI satisfy the bounded eigenvalues
condition (27), the sequence of directions {p(k)} is gradient related to {X(k)}
[4, pp. 35] and [4, Proposition 1.2.1] guarantees that {X(k)} converges to a
stationary point.

The computation of the step p(k) requires the inversion of the diagonally
modified LBFGS matrix B(k) + µkI in (17). In [11], an efficient and effective
algorithm, based on the Sherman-Morrison-Woodbury formula, is presented for
the recursive computation of (B(k) + µkI)

−1 with complexity O(M2NvNm).
The following theorem shows that (B(k) + µkI)

−1 can be computed recur-
sively, if γkµk is bounded away from zero.

Theorem 3.1 ([11]). Let γk > 0 and µk > 0 with γkµk > ε for some ε > 0.

Let G = (B(0) + µkI) = (γ−1
k + µk)I and let H =

∑2M̃−1
i=0 Ei where

E0 = −a0aT0 , E1 = −z0zT0 ,
...

...

E
2M̃−2

= −a
M̃−1

aT
M̃−1

, E
2M̃−1

= −z
M̃−1

zT
M̃−1

.

Then, (B(k) + µkI)
−1 = (G + H)−1 is given by

(G + H)−1 = C−1
M−1 − vM−1C

−1
M−1EM−1C

−1
M−1 (34)

together with

C−1
k+1 = C−1

k − vkC
−1
k EkC

−1
k , vk =

1

trace
(
C−1
k Ek

) . (35)

For a proof and an exhaustive description of the recursive formula, we refer
readers to [11].

3.5 Algorithm 2: a quasi-Newton method with LBFGS
update of the diagonally modified Hessian matrix

In the second algorithm, hereinafter referred to as Algorithm 2, we consider the
LBFGS update formula to obtain a positive definite approximation B̃(k) to the
diagonally modified Hessian matrix ∇2f(X(k)) + µkI.

The general iteration of Algorithm 2 has therefore the form

X(k+1) = X(k) + αkp
(k) (36)

where the step p(k) solves the LBFGS system

B̃(k)p = −∇f(X(k)) (37)
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and B̃(k) is the LBFGS approximation to the Hessian of the function f(X) +
µk
2 ‖X‖

2 at X(k).
Algorithm 2 can therefore be viewed as a quasi-Newton method with LBFGS

update of the diagonally modified Hessian matrix. As for Algorithm 1, if the
positive definite matrices B̃(k) satisfy the bounded eigenvalues condition [4,
Proposition 1.2.1], the limit of iteration (36) is a stationary point.

Proposition 3.2. Assume that the objective function f is twice continuously
differentiable and that there exist positive constants c1 and c2 such that

c1‖z‖2 ≤ zT∇2f(X)z ≤ c2‖z‖2 (38)

for all z and for all X ∈ {X | f(X) ≤ f(X(0))} and assume that the matrices

B̃
(k)
0 are chosen so that {‖B̃(k)

0 ‖} and {‖(B̃(k)
0 )−1‖} are bounded. Then, the

eigenvalues of B̃(k) are bounded above and bounded away from zero. That is,
there are positive scalars d1 and d2 such that

d1‖z‖2 ≤ zT B̃(k)z ≤ d2‖z‖2 for all k. (39)

Proof. Following the proof of Proposition 3.1, we can show that a positive con-
stant L1 exists such that the largest eigenvalue of B̃(k) is less than L1. Since
the largest eigenvalue of B̃(k) is less than L1, if we consider the expression for
the determinant

det
(
B̃(k+1)

)
= det

(
B̃

(k)
0

) k−1∏
i=k−M

yTi si

sTi B̃
(i)si

,

we have, using the boundness of {‖(B̃(k)
0 )−1‖}, that

det
(
B̃(k+1)

)
≥ det

(
B̃

(k)
0

) (c1
L

)M
≥ L2

for some positive constant L2 (cfr. [13, Theorem 6.1]). Let now λ̃
(k+1)
min and

λ̃
(k+1)
max be, respectively, the smallest and largest eigenvalues of B̃(k+1). Thus

λ̃
(k+1)
min (λ̃(k+1)

max )NvNm−1 ≥ det
(
B̃(k+1)

)
≥ L2

and

λ̃
(k+1)
min ≥ L2

(λ̃
(k+1)
max )NvNm−1

≥ M

Ln−1

The proof follows by setting d1 = L2

LNvNm−1
1

and d2 = L1.

The two loop recursive formula described in [16] can be used to determine

the inverse of B̃(k) and efficiently compute the step p(k) as

p(k) = −(B̃(k))−1∇f(X(k)). (40)
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4 Numerical results

In this section, we present the results obtained on a simulated breast imaging
problem, using MATLAB R2016b on a workstation with two 230 Ghz Intel
processors equipped with 132 Gb of RAM. The experiments have been per-
formed on two 3D digital phantoms constituted of glandular and adipose tissue
(Nm = 2). The P1 phantom has size Nv = 129 × 129 × 7 and it has an ho-
mogeneous background made of a mixture of 50% adipose and 50% glandular
tissue and four spheres with different percentages of the two materials (20%,
40%, 60% and 80%). We can visually represent the weights wj,m of the adipose
tissue (cf. Figure 1(a)) and glandular tissue (Figure 1(b)). The P2 phantom
differs from P1 only in the background, which has a pointwise variable concen-
tration of adipose and glandular tissue (central slices are displayed). Figures 2
and 3 show the seven layers of the adipose and glandular tissue, respectively.
The weights wj,m, j = 1, . . . Nv,m = 1, 2, have been randomly generated in the
interval [0.4,0.6].

(a) P1 adipose exact image (b) P1 glandular exact image

(c) P2 adipose exact image (d) P2 glandular exact image

Figure 1: Central slices of the exact images of P1 phantom (top row) and of P2
phantom (bottom row).

The simulated projections are obtained as:

b = exp(−AWCT )s + η

where the exact weights matrix W = [W1 W2], the vector s of the simulated
x-ray energy levels (Ne = 37 different levels of energy were considered from 10
keV to 28 keV, in 0.5 keV steps) and the linear attenuation coefficients matrix

11



Figure 2: P1 adipose weights for slices 1 . . . 7.

C are given. The matrix A is the projection ray tracing matrix obtained with
the Siddon algorithm [18] from a geometry with Nθ = 15 angles in the range
[−17, 17] degrees and η is the vector simulating Gaussian white noise of relative
level

nl =
‖η‖2
‖b− η‖2

.

The results obtained by the proposed algorithms are evaluated by measuring
the relative error:

Er =
‖W − W̃‖F
‖W‖F

where W is the exact weights matrix, W̃ is the reconstructed one and the norm
is the Frobenius norm.

In order to get the best possible results obtained by the methods in a rea-
sonable time, the algorithms are stopped at the iteration k as soon as one of
the following conditions is reached:

• the semiconvergence condition, i.e.:

Erk ≤ Erk+1

where Erk is the relative error at the iteration k;

• k ≤ kmax (maximum number of iterations reached).

In our experiments, kmax = 50 for the LBFGS methods.

The remainder of this section is divided into two parts. In the first part, we
present some tests on a reduced size P1 phantom, in order to tune some param-
eters with many fast simulations; in the second part, we use this information in
tests on the full P1 and P2 phantom data.

12



Figure 3: P1 glandular weights for slices 1 . . . 7.

JN COMMENT: I separated these parts into formal subsections, because
I think there is a lot of information in them. But if you prefer to not use
subsections, I don’t have a very strong opinion about it.

4.1 Analysis of the sensitivity of the algorithms to the
parameter µ and comparison with other methods.

In this subsection we present tests performed on a small P1 phantom of size
Nv = 31× 31× 7, Np = 31× 31 and Nθ = 15. We added noise of different levels
5 · 10−4 ≤ nl ≤ 5 · 10−3 to the exact projections b.

In order to analize the sensitivity of the proposed LBFGS algorithms with
respect to µ, in Figures 4(a) and 4(b) we plot the relative error values obtained
with the LBFGS methods when nl = 10−3 and nl = 5 · 10−3 as a function of µ
varying with logarithmic distribution in the interval [10−6, 109] and [10−5, 109],
respectively. The blue lines represent LBFGS1 (i.e., Algorithm 1) while the red
lines are related to LBFGS2 (i.e., Algorithm 2). The plots have a convex shape,
with a flat minimum around a nonzero value of µ that depends on the level of
noise on the data. This means that regularization is necessary, showing the ill-
conditioning of the problem. In Figure 4(c) and 4(d) we plot the computational
times in seconds versus µ. From these plots we can deduce that when the value
of µ is small the solution is very noisy and the iterations terminate due to
semiconvergence after few iterations. On the other hand, when the value of µ
is large the methods perform more iterations.

On this small size phantom, the two proposed implementations of the LBFGS
strategy produce comparable results, both in terms of precision and computa-
tional cost.
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In each subfigure, the horizontal (dashed) lines have a y-coordinate corre-
sponding to the relative error (Figures 4(a) and 4(b)) and computational times
(Figures 4(c) and 4(d)) obtained by choosing µ with the automatic rule (18),
where µinf and µsup are heuristically fixed from the previous plots. They con-
firm that the proposed rule to automatically choose the value of the parameter
µ gives excellent results, since we obtain lower errors in shorter times than with
the best heuristic choices of a fixed value of µ. Moreover, the boundary values
µinf and µsup can be easily fixed: for all the experimets µinf = 10−1 is a good
value, while µsup is set to 102 or 103 depending on the noise intensity.

(a) medium noise (nl = 10−3). (b) high noise (nl = 5 · 10−3).

(c) medium noise (nl = 10−3). (d) high noise (nl = 5 · 10−3).

Figure 4: Results obtained with the LBFGS1 (blue line) and LBFGS2 (red line)
methods with µ varying. In the top row the relative errors and in the bottom
row the computational times versus µ.

We now consider numerical tests with the aim of showing that the greater
efficiency of the LBFGS methods in terms of memory requirements and compu-
tational times with respect to other known numerical methods for the solution
of nonlinear least squares problems is not at the expense of the precision in
the results. Specifically, we compare the proposed diagonally modified LBFGS
algorithms with the Levenberg-Marquardt (LM) method and an accelerated
gradient descent (GR) method.

The LM method is a Gauss-Newton like method [16] and we consider here
a variable step-length implementation whose general iteration is defined by:

xk+1 = xk + αkpk
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and the direction pk is the solution of the linear system

(JTk Jk + µkI)p = −JTk rk

where µk is chosen with the rule (18) and the Jacobian matrix J is computed
by (14). The step-length is determined by the backtracking Armijo procedure
with initial unit step-length. Since the LM method requires the computation
and storage of the Jacobian matrix at each iteration, it cannot readily be used
in real applications because the memory requirements can become prohibitive,
and solving the Jacobian system can become too time consuming.

The accelerated GR method is a gradient method with a Barzilai-Borwein
based rule for the choice of the steplength. The reader can refer to [5] for more
details about the algorithm (in the present work we use the GR method [5]
without the projection onto the positive orthant).

In Table (1) we show the results obtained by the LBFGS1, LBFGS2, LM and
GR methods in terms of relative error values (column 3), number k of iterations
(column 4) and computational time in seconds (column 5). In these experiments
we choose µk with the automatic rule (18), where the values µinf and µsup are
reported in the first column between square brackets.

nl([µinf , µsup]) meth erel k time

LBFGS1 0.0246 53 43
5 · 10−4 LBFGS2 0.0244 61 46
[10−1, 102] LM 0.0236 4 62

GR 0.0238 1004 858

LBFGS1 0.0313 23 18
10−3 LBFGS2 0.0314 25 19
[10−1, 102] LM 0.0306 3 49

GR 0.0307 190 163

LBFGS1 0.0385 9 7
2 · 10−3 LBFGS2 0.0378 13 10
[10−1, 103] LM 0.0370 3 49

GR 0.0373 41 35

LBFGS1 0.0420 3 3
5 · 10−3 LBFGS2 0.0421 2 3
[10−1, 103] LM 0.0420 1 25

GR 0.0440 4 4

Table 1: Results on the small phantom obtained with the different methods
with four levels of noise with µ varying in [µinf , µsup].

The table shows that the four methods have comparable errors, but they
differ in terms of computational time required. It is immediate to see that the
GR method is the slowest one; only in the case of nl = 5 · 10−3 the GR is
as fast as LM and LBFGS methods, but semiconvergence occurs in only a few
iterations, and the recovered image is of poorer quality.

Finally, Figure 5 plots the relative errors of the four considered methods as
a function of the computational time in the case of noise with nl = 2 · 10−3.
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These plots show the semiconvergence behavior of the algorithms due to the
ill-conditioning of the problem. It is evident that it is easier to find a suitable
stopping iteration for the LBFGS methods, whose semiconvergence curve is
smooth, than for the GR method. ???

JN QUESTION: Figure 5 is a nice plot, but is it possible to put these all on
the same axes? For example, if you use the same initial guess for each algorithm,
then include as first data point the relative error for the initial guess. Then all
plots will start at the same point.

(a) (b)

(c) (d)

Figure 5: Semiconvergence behavior of LBFGS1 (a), LBFGS2 (b), LM (c) and
GR (d) algorithms on the small phantom (nl = 2 · 10−3).

4.2 Full P1 and P2 phantom reconstructions

The following experiments are performed on the P1 and P2 phantoms of size
Nv = 129 × 129 × 7, Np = 129 × 129 and Nθ = 15. We report here the results
obtained in the case of noise with level nl = 2 · 10−3, with the parameter µ
chosen with the rule (18).

When the problem size is so large, it is impossible to store the Jacobian
matrix in the LM method. Hence, only the LBFGS1, LBFGS2 and GR methods
are involved in these experiments.

In Table 2 we show the results in terms of relative error, number of iterations
and computational time. Since the the reconstructed images for all the three
considered methods at their best are very similar, we show in Figure 6 the
central slice of the reconstructions obtained with the LBFGS1 method for the
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P1 and P2 phantoms. In both the spectral images, we can clearly distinguish
the different concentrations of the materials inside the objects.

In Figures 7 and 8 we plot line profiles using pixels from row 64 of the
adipose images in the P1 and P2 reconstructions, respectively. In each of these
figures, the plot shown in (a) displays exact solution as a continuous blue line,
and the LBFGS1 reconstruction in the red dashed line, and (b) displays the
error between the exact and LBFGS1 reconstructed profiles.

Finally in Figure 9 we display the relative errors versus the iterations for
P1 (Figure 9 (a)) and P2 (Figure 9 (b)). From the figures it is clear that in
the first iterations the LBFGS algorithms approximate faster the exact solution
than the GR method and can obtain good results with separate materials in
few iterations. In clinical applications, where computational time is important,
the LBFGS methods can be efficiently used to obtain spectral images in Digital
Breast Tomosynthesis.

(a) P1 adipose reconstruction (b) P1 glandular reconstruction

(c) P2 adipose reconstruction (d) P2 glandular reconstruction

Figure 6: Central slices of the reconstructed images of P1 (upper row) and P2
(lower row) phantoms with the LBFGS1 method

5 Conclusions

In this paper we have presented a numerical method for the solution of an
inverse nonlinear least squares problem obtained from the discretization of a
polyenergetic multimaterial model in Digital Breast Tomosynthesis. In order
to address the high dimensionality of the problem together with the need for
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Phantom([µinf , µsup]) meth erel k time

LBFGS1 0.0529 10 9.9 · 103

P1 LBFGS2 0.0530 6 7.26 · 103

[10−1, 102] GR 0.0526 17 7.64103

LBFGS1 0.0676 40 9.3 · 103

P2 LBFGS2 0.0676 50 1.1 · 104

[10−1, 103] GR 0.0670 208 5.76 · 104

Table 2: Results obtained on the P1 and P2 phantoms in the case of noise of
level nl = 2 · 10−3.

a fast algorithm we proposed a limited memory BFGS quasi-Newton method,
where the Hessian approximation is diagonally modified in order to enforce
regularization. We considered two different implementation strategies.

The tests executed on small and medium size digital phantoms show good
performance of the methods in obtaining good quality reconstructed images in
very few iterations, with moderate extra-storage requirement for the Hessian
approximation.

While our focus has been on Digital Breast Tomosynthesis, the proposed
methods are not restricted to this particular application, and they can be used
to solve other large-scale, ill-posed least squares problems, when the Hessian
approximation is too large to be explicitly constructed.
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(a)

(b)

Figure 7: Plot of line 64 of P1 adipose ([µinf , µsup] as in Table 1). (a) The
exact signal (blue continuous line) and the LBFGS1 reconstruction (red dashed
line);(b) the errors obtained with LBFGS1.
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(a)

(b)

Figure 8: Plot of line 64 of P2 adipose (([µinf , µsup] as in Table 1)). (a) The
exact signal (blue continuous line) and the LBFGS1 reconstruction (red dashed
line); (b) the errors obtained with LBFGS1.
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(a) P1 errors

(b) P2 errors

Figure 9: Errors versus iterations for P1 and P2 phantoms obtained with the
LBFGS1 (continuous blue line), LBFGS2 (continuous red line) and GR (dotted
green line) methods.
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