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Abstract

EEG is a standard non-invasive technique used in neural disease diagnostics and neurosciences. Frequency-tagging
is an increasingly popular experimental paradigm that efficiently tests brain function by measuring EEG responses to
periodic stimulation. Recently, frequency-tagging paradigms have proven successful with low stimulation frequencies
(0.5 - 6 Hz), but the EEG signal is intrinsically noisy in this frequency range, requiring heavy signal processing and
significant human intervention for response estimation. This limits the possibility to process the EEG on resource-
constrained systems and to design smart EEG based devices for automated diagnostic. We propose an algorithm for
artifact removal and automated detection of frequency tagging responses in a wide range of stimulation frequencies,
which we test on a visual stimulation protocol. The algorithm is rooted on machine learning based pattern recognition
techniques and it is tailored for a new generation parallel ultra low power processing platform (PULP), reaching
performance of more that 90% accuracy in the frequency detection even for very low stimulation frequencies (< 1 Hz)
with a power budget of 56 mW.

Keywords: EEG; BCI; Machine learning; Frequency-tagging; SVM; Embedded systems

1. Introduction

Neurological disorders affect nearly one billion peo-
ple, a considerable percentage of the world population
[1]. The estimated economic costs were more than 2
trillions of USD in 2010 [2], with a high social im-
pact. Despite the fact that effective treatments are avail-
able, a significant part of the population is untreated,
because of inadequate healthcare infrastructure, lack of
trained staff, effective diagnostics and screening tools.
Among diagnostic and screening techniques, Electroen-
cephalography (EEG) analysis and instrumentation is an
established standard, since it directly records the elec-
trical field generated by neural activity with a set of
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electrodes distributed on the head surface (scalp) [3].
Thanks to its effectiveness, non-invasiveness, low cost
and portability, EEG is one of the most used techniques
for investigating brain function and pathology, both in
clinical settings and scientific research [4] [5] [6].

One effective use of the EEG signals is to analyze
brain responses to specific stimuli. The most popular
method to measure the EEG response to a stimulus is to
average the EEG signal across several stimulus presen-
tations (Event-Related Potential, ERP [7]). Since the
neural activity unrelated to the stimulus typically fluc-
tuates within the same time scales of the stimulus re-
lated activity, a high number of stimulus presentations is
needed to average it out and extract the stimulus-related
response.

An alternative technique, frequency-tagging (FT),
has been developed to reliably measure stimulus-related
EEG responses in a much shorter time. This technique
exploits the property of the brain activity to respond to
a visual or auditory stimulus presented periodically at a
specific (i.e. ”tag”) temporal frequency by resonating at
the same frequency during the stimulation period [8, 9].



This effect is manifested in the EEG recordings by a
sharp peak in the power spectrum of the signal at that
specific tag frequency. Since the EEG ongoing activ-
ity is broad-band in frequency, the stimulus-related re-
sponse in the frequency domain is very easily discrim-
inated from the stimulus-unrelated activity, yielding a
much higher SNR than the one obtained with ERPs.
Moreover, since most EEG artifacts (eye movements,
blinks) are also broad-band in frequency, FT is more ro-
bust than ERP to artifacts and requires a lighter artifact
rejection procedure.

Thanks to the short time needed to have a reliable re-
sponse, FT has always been used in clinical settings to
test the integrity of sensory areas [3] in the visual do-
main (classically defined Steady-State Visually Evoked
Potentials - SSVEP [9]) and in the auditory domain
(classically defined auditory steady-state responses -
ASSR [8]), by presenting simple visual and auditory
stimuli at relatively high frequencies (10 to 40 Hz),
since sensory systems are most responsive at those fre-
quencies. Since the amplitude of both ongoing EEG ac-
tivity and eye-movement-related artifacts are relatively
low in this frequency range, fast, automatic techniques
have been developed to rapidly extract the frequency re-
sponses, in particular in the field of SSVEP-based BCI
systems [10].

Most recently, the use of FT has been extended to
investigate the neural responses related to higher-level
perceptual or cognitive functions, such as attention [11],
speech [12] or face [13] recognition. Since such func-
tions require longer neural processing, stimulation fre-
quencies in a low-frequency range (0.5-6Hz, hereafter
referred to as ”low-frequency”) have to be used. It has
been shown that FT is still effective at those frequen-
cies [12]. Because of their performance in obtaining a
stimulus-specific neural response in a short time, very
recent FT designs based on stimulations in the low-
frequency range have been successfully used as a tool
for investigating the neural basis of cognitive develop-
ment in very young children [14], [15]. Given these
positive results, FT is a promising tool for testing brain
function in clinical settings and/or with vulnerable pop-
ulations as newborns or aged people.

However, for FT designs based on the low-frequency
range, EEG ongoing fluctations and artifacts are much
more relevant than in the typical frequency range of
SSVEP (>6Hz). Therefore a significant human inter-
vention is needed to clean the data from artifacts and
extract the response. Typically, the EEG traces are ac-
quired and processed off-line on benchtop platforms,
since most of the techniques to analyze brainwaves re-
quires heavy computational processing and visual in-

spection from technicians or medical staff. This pro-
cedure implies significant cost and time for an accurate
analysis, due to the need for data transfer, off-line visu-
alization, manual inspection and tagging. For instance,
artifacts identification and removal requires a combina-
tion of the visual evaluation of the EEG trace and of al-
gorithmic techniques such as Independent Component
Analysis (ICA), digital filtering, interpolations and av-
eraging. Automating these analyses for FT stimulations
in the low-frequency range would dramatically improve
research and diagnosis, enabling the design of extensive
screening systems for many neural disorders.

Luckily, we are witnessing the massive technologi-
cal trend of embedded wearable applications, that are
quickly becoming pervasive [16], led by the constant
growth of the healthcare market and by the boost of dig-
ital technologies integration [17]. This trend paves the
way for designing embedded, energy-efficient systems
for biosignal processing based on advanced algorithmic
techniques [18, 19, 20].

This work presents a framework for automated anal-
ysis of FT responses in EEG traces from FT stimula-
tion protocols, with the specific purpose of application
both in the standard frequency range (>6Hz) and in the
low-frequency range (0.5-6Hz) of FT stimulation. The
algorithm, using machine learning techniques, automat-
ically removes the EEG segments affected by artifacts of
various origin and detects the presence of the resonant
frequency even at very low (< 1Hz) stimulation frequen-
cies, for which detection is typically very challenging.
We tested the algorithm on 4 subjects undergoing a vi-
sual stimulation with an on-off checkerboard pattern at
0.667Hz, 0.8Hz, 4Hz and 12.5Hz, showing that auto-
mated processing is able to detect the presence of reso-
nance at all the target frequencies. Results are compared
with the manual processing performed by an expert hu-
man. Furthermore, we show the implementation and
the profiling of the algorithm on a programmable ultra
low power multicore platform (PULP), demonstrating
that it is possible to design a fully wearable system for
autonomous on line detection of resonant frequencies
during in vivo tests featuring a power consumption of
56mW leading to a battery-life of almost 24h.

2. Related Work

Processing of EEG data is a complex and multiple
steps process involving filtering, feature extraction, ma-
chine learning and classification techniques [31]. A
general structure of BCI system is presented in [32],
showing a series of functional processing blocks among
which signal pre-processing, artifact removal, feature
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Table 1: Comparison with state-of-the-art of Artifact Removal.

Barbati Delorme Mantini Li Viola Joyce Okada Mognon This
[21] [22] [23] [24] [25] [26] [27] [28] Work

STIMULI - visual auditory,visual visual auditory,visual - visual auditory,visual visual

HUMAN INTERVENTION X X X X X X X x x

ICA X X X X X X X X x

DOMAIN time time time space space both both both both

EMBEDDED x x x x x x x x X

REAL-TIME x x x x x x x x X

NUMBER OF ELECTRODES 28 32 153 32 30-128 6 306 64 64

Table 2: Comparison with state-of-the-art of Frequency Tagging.

Buiatti Ding Baldauf Kim Rossion Karbdebon de Heering This
[12] [29] [30] [11] [13] [14] [15] Work

STIMULI auditory auditory visual visual visual auditory visual visual

METHOD FT FT FT FT FT FT FT FT

FREQUENCY RANGE [Hz] 1.4-4.2 1-4 1-2 12.5-16.67 1.18-16.37 1.39-4.17 1.2-6 0.667-12.5

EMBEDDED x x x x x x x X

NUMBER OF ELECTRODES 129 157 - 59 128 64 32 64

extraction that can be preceded by signal enhancement
and accompanied by dimensionality reduction, feature
selection, classification and post-processing. In case a
direct real-time feedback is required, further processing
steps are considered such as algorithms for actuator con-
trol, tuning for adaptive and smart feedback, etc. The
complexity, the non-automatization and the number of
processing steps are some of the barriers to the design
and use of wearable EEG solutions in daily life [33].

It is convenient to tailor the choices of the algorithm
for artifact removal, as well as those for the following
steps, such as feature extraction and classification, to
the target application. As described in the Introduc-
tion, here we focus on experimental protocols based on
FT designs, where the response to be detected is deter-
mined by the stimulation frequency. In this case, the
influence of artifacts on the response depends on the
stimulation frequency. Since most artifacts (blinks, eye
movements, heart beats) are characterized by a broad
frequency range mainly on frequencies lower than ap-
proximately 6Hz, the response to visual or auditory pe-
riodic stimulation at frequencies higher than 6 Hz (the
standard frequency range of SSVEP) is easily detectable
with very light artifact correction, and efficient tech-
niques for on-line processing of SSVEP-based BCI al-
ready exist (e.g. [10]). Conversely, for stimulation fre-
quencies in the low-frequency range (0.5-6Hz), accu-
rate artifact correction/removal is fundamental for the
correct identification of the frequency-tagged response,
although artifact rejection thresholds are generally 2-3
times higher than for ERP designs [12]. Despite the

recent rising of studies using FT designs in the low-
frequency range [12] [29] [30], artifact correction/re-
moval employed in these studies is usually the same
used in ERP designs with lighter thresholds, and no tool
specific for low-frequency FT design exists in the liter-
ature.

Several solutions have been proposed to perform au-
tomatic EEG artifact removal. For example, ICA, that
we already mentioned as one of the most efficient meth-
ods for artifact identification, has been subject to several
attempts of semi-automatization in time [21] [22] [23]
and space domain [24] [25] or both domains [26] [27].
An interesting fully automatic approach is presented by
Mognon et al. [28], based on the automatic adjustments
of the algorithm’s parameters to the data used for the
spatial and temporal feature extraction for IC classifi-
cation. However, this method still requires to process
data in two domains, time and space, and fuse results,
and is uniquely based on the computationally intensive
ICA decomposition. It therefore presents challenges for
a resource constrained device and it can only be per-
formed off-line. Table 1 shows a summary of compari-
son between the state of the art of artifact removal solu-
tions. Table 2 present the state of the art in FT solutions.
The comparison covers the most relevant characteristics
mentioned in the references.

Concerning the hardware requirements, most of the
previously mentioned algorithms are meant to run on
desktop machines or servers, eventually equipped with
real-time monitoring tools which synchronize through
a USB cable with the helmet for EEG tracks visual-
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ization, while data analysis is often performed off-line
using EEG feature extraction and interpretation tool-
boxes such as EEGLAB [34] or OpenViBE [35]. While
most traditional EEG monitoring systems used today in
hospitals are stationary, wired, and cumbersome sys-
tems, several clinical applications can benefit from in-
telligent wearable, wireless, convenient, and comfort-
able solutions that provide high signal quality. Trans-
ferring the technology used in hospitals to users homes
would allow a large scale deployment of such clini-
cal applications, significantly improving the therapies
and knowledge by increasing the amount of data that
can be collected and analyzed by the experts. For this
reason, some portable EEG acquisition and monitoring
systems have been recently developed, mainly meant for
raw data transmission through wireless communication
stacks [36]. Notable examples of recent wireless EEG
monitoring systems are offered by Quasar [37], IMEC
[38], Emotiv [39], NeuroSky [40]. However, these sys-
tems are only meant for consumer applications featuring
2 to 8 electrodes; the only one featuring a reasonable
number of electrodes suitable for medical applications
is g.tech [41].

In these systems tiny micro-controllers (MCUs) such
as PIC-32 [42] or Cypress CY8C38 [36] are only used
for transmission setup and control purposes. There-
fore, due to the limited computational capability of the
processors, these devices are only capable of transmit-
ting raw EEG data, leading to a huge amount of wire-
less bandwidth. While Bluetooth (BT) is widely used
for data transfer, the sheer amount of raw data trans-
mitted during an EEG recording makes this protocol
quite power hungry, especially for systems with a large
number of electrodes (e.g., 64). Alternative more en-
ergy efficient protocols can be considered, such as Blue-
tooth Low Energy (BLE), even if at the price of lower
throughputs and higher latency, therefore not always ad-
equate for physiological data streaming [43] [44]. How-
ever, the use of a powerful and energy efficient proces-
sor into the system enables processing of data before
transmission and consequent bandwidth reduction. In
fact, only relevant content is sent with lower through-
put, allowing the use of low-power protocols.

The lesson learned from the analysis of the literature
is that the design of an energy efficient embedded sys-
tem for real time EEG processing requires a multilevel
design. Combining the algorithm and technology ap-
proaches, we designed an algorithm tailored for paral-
lel, ultra-low power processing platforms [45][46]. We
exploit low-voltage operation and parallel computing
to provide more than one order of magnitude of better
performance and energy efficiency with respect to tra-

Figure 1: EEG traces with bad segments

ditional MCUs. By exploiting close-to-sensor energy
efficient data processing, it is possible to significantly
reduce wireless transmission, designing more compact
EEG monitoring systems and eliminating the need of an
external host (e.g. a PC or a notebook), which can be re-
placed with a portable device such as a smartphone or a
tablet with data visualization or device diagnostics.

3. Materials and Methods

3.1. Stimuli and EEG Acquisition Setup
Four right-handed (Edinburgh Inventory) native Ital-

ian speakers participated in the experiment (2 females;
21-29 years, mean age 23.3 years). All participants
had normal or corrected-to-normal visual acuity, and
reported no history of neurological or psychiatric dis-
orders. All participants provided informed written con-
sent to take part in the experiment, which was approved
by the Ethical Committee of the University of Trento
(Italy).

Stimuli consisted of a black and white 10x10 square
checkerboard subtending approximately 15◦ by 15◦ of
visual angle, on a uniform grey background, presented
at a distance of 80 cm from the subjects eyes. Stimuli
were presented with a sinusoidal on-off 100% contrast
temporal modulation (black/white squares starting gray
as the background, turning black/white at half cycle and
ending gray at the end of the cycle) at 4 frequency rates
(0.667 Hz, 0.8 Hz, 4 Hz, 12.5 Hz) in blocks of 28 cy-
cles (42s), 32 cycles (40s), 160 cycles (40s), 360 cycles
(28.8s), respectively, using the Psychtoolbox 3.0.12 for
Windows in Matlab 8.0 (MathWorks Inc.). A sinusoidal
contrast modulation was used because it generates fewer
harmonics (i.e., responses at exact multiple of the stimu-
lation frequency, reflecting the non linearity of the brain
response [9, 47]) and because, since the on-off dynam-
ics is smooth, it is a more pleasant and less fatiguing
visual stimulation than a squarewave stimulation mode
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Figure 2: Block diagram of the standard analysis steps

for the subjects. Subjects were asked to fixate at the cen-
ter of a grey diagonal cross overlapped to the checker-
board. Each subject was presented with two series of
blocks (presentation rates were randomized within each
series).

The experiment was performed in an electrically
shielded and sound-attenuated cabin. EEG was
recorded with a BrainAmp amplifier (Brain Products,
Munich) using 64 Ag/AgCl sintered ring electrodes
mounted in an elastic cap (Easycap, Munich) and placed
equidistantly according to the 10/20 system [48], with
a vertex reference (Cz) and ground electrode in AFz.
Electrode impedances were kept below 15kOhm. Data
were sampled at 500Hz and analog filtered between
0.016 and 250Hz during recording.

3.2. Standard analysis
3.2.1. Pre-processing and artifact removal

In Fig. 1 a typical EEG trace is shown. Segments
affected by artifacts are highlighted under red transpar-
ent boxes. Fig. 2 shows the block diagram of the stan-
dard analysis, based on visual inspection of the whole
EEG trace. Continuous raw data were imported in the
EEGLAB software [34] and band-pass filtered between
0.1 and 40Hz with the default EEGLAB filter (a Ham-
ming windowed sinc FIR filter) to remove DC and high-
frequency noise. Data were segmented in windows cor-
responding to the stimulation blocks. Each segment
was visually inspected and portions containing non-
stereotyped paroxysmal artifacts were discarded. Bad
channels containing jumps larger than 200µV were dis-
carded (no more than one per subject). To identify
and remove stereotypical artifacts, the default EEGLAB
ICA decomposition was computed on the concatenation
of all segments. Blinks, eye-movements and other topo-
graphically localized artifacts were discarded by remov-
ing the corresponding independent components iden-
tified by ADJUST, an algorithm for automatic detec-
tion of artifacted ICA components [28]. Muscle arti-
facts were discarded by removing related ICA compo-
nents identified by visual inspection of their topogra-
phy and spectro-temporal profile. EEG signals in bad
channels were interpolated with the EEG signals from

neighbouring channels (standard spherical interpolation
method in EEGLAB), and the resulting clean data were
re-referenced to average reference. In summary, this
standard procedure requires expert off-line intervention
for the identification of bad data segments and artifacted
ICA components, and computationally heavy ICA de-
composition.

3.2.2. Frequency-Tagging Analysis (FTA)
To obtain a high frequency resolution with one bin

centered on the stimulation frequency, for each tag fre-
quency, EEG data from each channel were segmented
into epochs of 18s (9000 time points, frequency reso-
lution=0.0556Hz), 20s (10000 time points, frequency
resolution=0.05Hz), 10s (5000 time points, frequency
resolution=0.1Hz) and 10s (5000 time points, fre-
quency resolution=0.1Hz) for the stimulation frequen-
cies 0.667Hz, 0.8Hz, 4Hz, 12.5Hz, respectively, over-
lapping for half of their length. For each electrode, the
Fourier transform Fm( f ) of each epoch was calculated
using a Fast Fourier Transform (FFT) algorithm (MAT-
LAB, Natick, MA) on m samples. The power spectrum
was calculated from these Fourier coefficients as the av-
erage over epochs of the single-epoch power spectrum:

Pm( f ) = Fm( f )Fm( f ) (1)

Normalized power (NP) at the tagged frequencies
(0.667Hz, 0.8Hz, 4Hz, 12.5Hz, respectively) was cal-
culated as the ratio between the power spectrum at the
tagged frequency and the average power spectrum at 2
neighboring frequency bins.

3.3. Automated Analysis
This sub-section describes the proposed machine-

learning approach for automated analysis of EEG traces.
The algorithm detects frequency peaks correlated to
given visual stimula. The detection is composed of 2
parts described in the following: Artifact Removal and
Frequency Detection.

3.3.1. Artifact Removal
In the artifact removal section a supervised classifi-

cation algorithm detects and removes signal segments
affected by artifacts that can degrade the analysis. A di-
agram of the algorithm is shown in Fig. 3. First, the sig-
nal is preprocessed using a bandpass FIR filter from 0.1
to 40Hz to remove higher frequencies. After filtering,
the data is windowed and signal features are extracted
calculating the DWT (Discrete Wavelet Transform) to
provide information on the frequency content of the sig-
nal in the time domain. Detail Coefficients of the DWT
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Figure 3: Block diagram of the automated artifact removal

are used to extract the energy of the signal. Energy val-
ues are calculated at the 4 level of decomposition of the
DWT according to (2) resulting in a vector of 1x256 el-
ements for each level.

ED(n) =
∑
i=0

∣∣∣(D(n)[i])
∣∣∣2 (2)

The energy coefficients are the input for a Support
Vector Machine (SVM) classifier [49], widely used in
biosignal embedded application by virtue of its theoret-
ical robustness and implementation efficiency [50]. The
classifier detects if the acquired segments are affected
by movement or muscular artifacts and discards them.
For the training phase 30% of samples belonging to the
starting dataset and the related labels are used. Data is
scrambled, downsampled and scaled to improve accu-
racy during prediction. The remaining samples of the
dataset are tested during the classification phase. The
SVM has 256 input features, thus we compared linear
against Gaussian kernels to find the best tradeoff be-
tween accuracy and computational cost. In this appli-
cation, the accuracy of the two kernels is similar but
the linear kernel needs a smaller computational effort,
hence we selected it for our embedded implementation
[51]. The tuning of the parameters of the classifier
is performed calculating the ROC curve [52] obtained

Figure 4: ROC curve for SVM performance evaluation.

varying the parameter C of the classifier. For small val-
ues of C the separation hyperplane presents a smaller-
margin while a larger-margin is obtained increasing C
values. In Fig. 4 we present the ROC curve with a clas-
sification accuracy ranges between 85% to 96% and the
best value shown is C = 20.

3.3.2. Frequency Tagging Analysis (FTA)
A diagram of the proposed algorithm is shown in Fig.

5. As in the standard analysis, data derived from the Ar-
tifact Removal stage are segmented into epochs of 18s
(9000 time points, frequency resolution = 0.0556 Hz),
20 s (10000 time points, frequency resolution = 0.05
Hz), 10 s (5000 time points, frequency resolution = 0.1
Hz) and 10 s (5000 time points, frequency resolution =

0.1 Hz) for the stimulation frequencies 0.667 Hz, 0.8
Hz, 4 Hz, 12.5 Hz, respectively, overlapping for half of
their length.

The signals in which we are interested are gener-
ated by the visual cortex, located in the occipital region
of the head. Hence, to extract the frequency informa-
tion among the sensors placed in this region we apply
the Principal Component Analysis (PCA), an orthogo-
nal transformation that converts possibly correlated data
distributed on p sensors into a set of linearly uncorre-
lated components (l < p). This algorithm is widely used
in neural processing [53], to extract maximum variance
components from a dataset or for dimensionality reduc-
tion [54] converting an input matrix into a new coordi-
nates system through a linear transformation.

In this application, we extract the maximum variance
of the data from the 8 occipital EEG channels of the
10/20 system [48] maintaining 3 components with more
than the 90% (to ensure this condition to be always sat-
isfied, the number of PCs is fixed to 3) of the variance
of the original input data.

This step of the processing chain has the double ad-
vantage to extract the frequency information among sev-
eral sensors and to reduce the memory requirements
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Figure 5: Block diagram of the automated frequency detection

of the computational framework, making it suitable for
embedded implementation. The FT analysis is applied
to the three components extracted by the PCA. This is
a powerful method that allows to maximize variance in
the first Principal Components through a linear trans-
formation. Performing FTA on each channel shows that
the target frequency is not always present or clear in
all channels of the visual cortex and in this case they
usually show small magnitude peaks. This means that
clinicians should manually inspect the traces and select
the best channels, i.e. the closest to the EEG response,
to obtain a clear peak that allows to make an accurate
diagnosis. PCA shows that the peak at the target fre-
quency is always present and visible in the first PC and
the magnitude is higher (up to 10 times in the 0.667Hz)
compared to the peak obtained considering only data
acquired from one channel. In this way, the compu-
tational effort dramatically decreases because FTA is
performed only on three components rather than on the
whole channels of the occipital region.

Since signals and FFT coefficients are affected by
high variability caused by physiological or setup-
dependent reasons, a simple threshold detection does
not guarantee adequate robustness for this application.

Machine learning provides robust solutions such as lo-
gistic regression [55]; this algorithm is used to detect
the presence of a frequency peak.

The features used in this algorithm are the amplitude
of the frequency peak, the normalized ratio between
neighbours coefficients (i.e. the coefficients adjacent to
the target frequency) and the ratio between the peak and
the sum of the left and right neighbours, to evaluate if
the peak is localized and narrowband. Formulas of the
3 features are shown below, in (3)

x0 = pn

x1 =
pn

|pn−1 − pn+1| + εd

x2 =
pn−1 + pn+1

pn

(3)

where pn is the target bin, pn−1 and pn+1 are the pre-
vious and the next bin respectively and εd is a given
constant to prevent division by zero. Even in this case
the classifier is trained off-line, once, using a training
dataset. The weight parameters θ are obtained by ap-
plication of the gradient descent technique, an iterative
method to minimize convex functions. In this applica-
tion, the peak recognition based on the LR reaches 92%
accuracy. This accuracy values are aligned with SoA of
machine learning applications for biomedical purposes
[56, 57, 58].

3.4. PULP platform

With the aim of implementing a complex processing
chain that implies a considerable computational effort at
energy levels compatible with a wearable setup, PULP
is chosen as reference platform. PULP1 is an ultra-low-
power parallel computing platform targeting the per-
formance and power requirements of several emerging
near-sensor processing applications, such as low-power
image, video and audio analytics, and processing of bio-
metrical signals. By exploiting near-threshold opera-
tion, advanced low-power FD-SOI technology and an
architecture carefully tuned for low-power operation,
PULP can deliver several hundreds of MOPS within a
power envelope of up to few tens of mW [46], satisfy-
ing the requirements of these applications both in terms
of performance and power. Fig. 6(b) shows the die mi-
crograph of the third embodiment of the PULP platform
that was used for characterization of the performance

1The first generation PULP architecture is presented in [45], while
the second generation is presented in [46]. Further information re-
garding the PULP platform can be found in the project web page
http://www.pulp-platform.org.
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(a) (b)

Figure 6: A general view of PULP Architecture (a) and the layout of the PULPv3 chip used for performance and power characterization (b).

and power models, while the system on chip architec-
ture used in this work is reported in Fig. 6(a) and de-
scribed below.

PULP is a cluster with a parametric number of pro-
cessors (2-16). The processors used in the cluster are
based on an optimized implementation of the open-
source OpenRISC Instruction Set Architecture (ISA),
and they feature micro-architectural optimizations and
instruction extensions targeting energy efficient digital
signal processing. The ISA extensions include zero-
overhead hardware loops, load and store operations with
automatic pointers increment and floating-point units
[59], necessary to deal with applications requiring high
precision and high dynamic range such those in the field
of EEG data processing.

The L1 data memory is composed of 64kB of multi-
banked Tightly Coupled Data Memory (TCDM) acting
as software-managed scratchpad memory. The 512kB
off-cluster L2 memory can be accessed by a tightly cou-
pled DMA optimized for low power through the 64-
bit AXI4 interconnect, which guarantees high L1 to
L2 communication bandwidth (i.e. up to 32Gbit/s at
500MHz). The cluster and the rest of the SoC reside in
two clock and power domains controlled by Frequency-
Locked Loops (FLLs) and external voltage regulators.
Hence, voltage and frequency can be scaled according
to the performance requirements of the applications.

The SoC features a wide set of peripherals, includ-
ing I2C, I2S, UART, GPIOs, a JTAG port for debug, a
(quad) SPI slave, and a (quad) SPI master, which en-
ables data transfers as fast as 400Mbit/s toward external
SRAMs or FLASH memories acting as the third level
of memory hierarchy. For this purpose, a non-volatile
Cypress CY15B104Q ferroelectric RAM (FRAM) is
employed as external L3 memory. It is connected to

the chip through a QSPI and can reach 400Mbit/s as
maximum bandwidth, assuming that the QSPI works
at a frequency equal to 100MHz. Power consumption
of L3 memory goes from 16.2mW in active mode to
0.33mW in sleep mode. An I/O DMA subsystem allows
to autonomously copy data between the L2 memory and
the external interfaces, even when the cluster is power
gated. This feature allows to relieve cores from the fre-
quent control of peripherals necessary in most of com-
mercial micro-controllers, and to implement a double
buffering mechanism both between IOs and L2 mem-
ory and between L2 memory and TCDM. Therefore, I/O
transfers, L2 memory to TCDM transfers, and compu-
tation phases can be fully overlapped within the PULP
SoC, hiding the latency of transfers from slow peripher-
als typical of micro-controllers.

The PULP platform relies on OpenMP 3.0 parallel li-
brary that operates on top of GCC 4.9 toolchain for pro-
gramming. The OpenMP implementation is based on a
highly optimized bare-metal library [60], which avoids
the presence of an operating system that would intro-
duce huge software overheads not suitable for ultra-low-
power parallel accelerators. The PULP platform fea-
tures a set of software tools that include a virtual plat-
form and support for parallel profiling, useful to imple-
ment and debug applications that run on the architec-
ture, and estimate their execution time. The toolchain
was used in this work to evaluate the parameters of the
system, simulating architectural configurations not nec-
essarily implemented on the silicon prototypes, such as
the number of processors, and the presence of floating-
point units. To estimate the power consumption of the
architecture, data were extracted from measurements on
the silicon prototypes and adapted to the configurations
actually employed in the exploration.
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Figure 7: Automated Artifacts Removal and Frequency Detection computational Kernels.

3.5. Implementation on PULP

This section describes the implementation of the pro-
cessing chain described in Section 3.3 on the PULP ar-
chitecture. The processing chain was decomposed in 6
sub-kernels, and each kernel was analyzed individually.
The level of parallelism that can be achieved depends
on the nature of the kernel itself. Fig. 7 shows a block
diagram describing the processing chain emphasizing
the two key aspects of the proposed implementation on
a low-power parallel embedded system: parallelization
scheme and memory requirements. In the following, we
assume a configuration of the PULP platform with 8
cores and floating point units, unless differently speci-
fied.

Sampling data from 64 channels with a sample rate
equal to 500Hz produces 64x500 samples per second,
which have to be processed in real-time. We have as-
sumed the data to be streamed into the SoC by 8 x 8-
channels Texas Instrument ADS1298 ADCs through the
SPI master port in 16-bit format, which are then stored
in the L2 memory by the IO DMA. As first processing
step, a low-pass FIR filter with 166 taps and a high-
pass filter with 16500 taps are employed. Hence, before
the processing can start, 1s of latency is needed to fill
the samples buffer. After the first second of acquisi-
tion, a new 64x500 sample window is available every
second. Hence, given that the order of the FIR filter
is 16500 a delay of 33 seconds is necessary before the
first meaningful filtered sample is produced. This leads

an L2 memory requirement of 2 x 125kB to store the
current and previous input samples windows, 66kB of
L2 memory to store the FIR coefficients (i.e. High-pass
FIR coeff and Low-pass FIR coeff ), and 8kB to store
the partial accumulations (i.e. Accumulator), which can
be kept into the L1 memory. Every second, a new set
of partial accumulations are computed by the proces-
sor, taking as input the current 64x500 input sample
window. To overlap the computation and data transfer
(L2 to L1) phases, a double-buffering mechanism is em-
ployed, with 3 buffers, each one of 16kB (one for the in-
put data, one for the output data, and one for the current
data). The FIR filter is parallelized at block level (i.e.
every core operates on 8 channels); once a new block
of samples is available, threads compute outputs using
past values of the filter and the latest samples, and store
the accumulated data into the L1 memory buffer. Since
the parallel FIR implementation is based on weighted
sums without any dependency and the number of chan-
nels is a multiple of the number of cores, the workload
is always perfectly balanced among cores and there is
no need to use synchronization barriers leading to an
almost ideal speed-up with respect to the single core ex-
ecution. A copy of the filtered channels is also stored
into the L3 memory, to be eventually re-loaded by the
processing chain for frequency detection, if marked as
good segment by the artifact removal algorithm.

After filtering the first samples window, DWT and
Energy kernels (i.e. feature extraction) can be executed.
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Both kernels can be efficiently parallelized on the archi-
tecture since each thread can operate independently on a
separate channel. Moreover, being the number of chan-
nels a multiple of the number of cores, the workload is
again perfectly balanced, scales perfectly upon 2, 4 or
8 cores showing nearly ideal speed-ups. The output of
the DWT and the Energy kernels are stored in a vector
of dimension 1x256, (i.e. feature, 1kB) that can be allo-
cated into the L1 memory.

The next processing step is the SVM classification.
The main issue with the SVM algorithm is the large
amount of memory required to store the support vectors
that implement the model (i.e. SV). Each SV is com-
posed of 256 values plus a coefficient, thus the total size
per support vector is 1kB. The chosen model includes
480 SVs, requiring a storage of 482kB. In the proposed
implementation, SVs are permanently stored in the L3
memory. With an SPI, data is transferred from the exter-
nal L3 to L2 memory and from L2 to L1 with the DMA
exploiting a double buffering polity. The parallelization
of this kernel is also highly efficient since each thread
independently operates on one of the 480 support vec-
tors of the model, and the parallelism is so high (i.e.
480) that workload unbalancing does not impact perfor-
mance.

Each time a new window of data marked as good seg-
ments (i.e. not discarded) is available, the filtered sam-
ples are loaded from L3 memory, and the mean value
between all the channels is computed and subtracted
from all the samples of each channel. Since the analysis
is focused on the channels placed on the occipital area
of the scalp, useless data can be discarded loading only
data derived from the 8 channels of interest. This step
is implemented by the Average Reference kernel, where
each processor operates independently on the 64 sam-
ples of each time-step. Also in this case the computation
on each core is completely independent, hence showing
nearly ideal speed-ups with respect to the sequential ex-
ecution. After Average Reference calculation, data is
accumulated in the Chunks Accumulator (for a total of
320kB) and stored into the L2 memory.

In this application, PCA presents the most complex
parallelization scheme, which is described in details in
[54]. PCA is based on the Singular Vector Decompo-
sition (SVD), to calculate eigenvalues and eigenvectors
of a matrix. Both Householders and Givens matrices are
used to obtain the eigenvectors via bidiagonal transfor-
mation. The former part of the algorithm cannot be par-
allelized at block level, because there are dependencies
on the previous iterations of the bidiagonal reduction,
while the latter part reaches near-ideal speedups in the
parallel execution. The matrix where PCA is performed

Figure 8: Estimation of execution times between Standard and Auto-
matic Approaches.

has dimension 8x10000; the SVD part is performed on
the covariance matrix of dimension 8x8, while Mean
Value and Convariance Matrix and Principal Compo-
nents are performed on a matrix respectively of dimen-
sion 8x10000 and 3x10000. The execution is dominated
by this last two kernels achieving a total speed-up near
to the ideal one. Considering the memory management,
a single chunk of dimension 8x10000 is transferred to
L2 memory through SPI. Then, with double buffering,
smaller chunks are passed to L1 to continue the process.
After PCA, 3x10000 samples are held in L2 memory
(i.e. 3 Principal Components). Then, FTA can be com-
puted on each PC.

In the FTA stage, the most compute-intensive kernel
is the FFT. The algorithm follows a butterfly diagram
approach. Thus, in the parallel version butterflies are
distributed among the cores and computed separately.
Several synchronizations barriers are necessary at every
step, so the speed-up decreases as the number of cores
increases. For this reason, this kernel shows the lowest
speed-up with 8 cores, but it does not affect the overall
performance since FFT represent less than 1% of the en-
tire processing chain. FFT is computed on overlapped
chunks for each PCs. This data is stored in L2 and with
double buffering are transferred to L1. After comput-
ing FFT, the Power Spectrums are summed in a vector
allocated in L1 while the other data can be discarded.

4. Experimental Results

4.1. Execution Time Estimation

To provide an estimation of the computational effort
required for the application, a comparison between the
execution time in both the standard and the automatic
approach is performed. Fig. 8 shows the execution time
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Figure 9: Peaks obtained from the visual stimulus at 0.8Hz and 12.5Hz. Graphs show values obtained from 4 subjects exposed to stimulus at the
target frequencies.

of the two algorithms. As already mentioned, ICA de-
composition is computationally intensive, hence it was
excluded from the processing chain developed on the
PULP platform. This choice was dictated by the neces-
sity of finding a trade-off between accuracy and com-
putational effort; this is mandatory during the develop-
ment of embedded application, taking into account that
Artifact Removal stage is enough accurate even without
ICA.

The comparison is done considering the time required
to execute kernels on Matlab, in seconds. As shown
in Fig. 8, Automatic Approach results 6x faster than
the Standard Approach. Furthermore, in Standard Ap-
proach, we are not considering the time needed to scroll

and discard bad segments from the specialist, while in
the Automatic Approach this task is performed on-line
during the acquisition chain.

4.2. Frequency Detection
Results of the FTA are presented in Fig. 9. The power

spectrum of the raw data, without sample removal, is
shown in red dotted lines with diamond markers, while
the power spectra obtained with the standard analysis
(Section 3.2) and automated analysis (Section 3.3) are
shown in blue dashed (x markers) and black solid (round
markers), respectively. For convenience we present, for
each subject, the data of one low stimulation frequency
(0.8Hz, left-hand column) and one high stimulation fre-
quency (12.5Hz, right-hand column). While for the high
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Figure 10: Peaks obtained from the visual stimulus at 0.667Hz, 0.8Hz, 4Hz and 12.5Hz. Graphs show mean values obtained from 4 subjects
exposed to stimulus at the target frequencies.

stimulation frequency the resonant peak is evident even
in the power spectrum of raw data, for the low stimula-
tion frequency, the amplitude of the peak in the raw data
is comparable to that of ongoing brain fluctuations or
artifacts, therefore its identification is problematic (note
in particular the raw data power spectra of subjects 2
and 4). The denoising effect of the standard analysis
consists in removing a large part of unrelated fluctua-
tions and focusing on channels containing the stronger
frequency-tagged response. Therefore, even if the peak
amplitude decreases, the power spectrum at neighbour-
ing frequency bins decreases much more and flattens
across the whole frequency range, resulting in a much
higher normalized frequency-tagged response. The de-
noising effect of the automated analysis is almost as suc-
cessful: the stimulation peaks are clear and detectable,
even for the low stimulation frequency. An overview
of the power spectra for all the stimulation frequencies
averaged across the 4 subjects considered in the anal-
ysis (Fig. 10) confirms the practical feasibility of au-
tomated analysis: even though the power spectrum of
the stimulus-unrelated activity is generally higher than
the one obtained with the standard analysis, peaks at
the stimulation frequency are also higher, resulting in
a comparable peak detection efficacy, even for the low
stimulation frequencies. The purpose of Frequency De-
tection is to understand if the brain replies to the visual
stimulus properly, analyzing data acquired from the vi-
sual cortex of the subject. This means that the final re-
sponse of LR helps technicians or medical staff in di-

agnosis of possible dysfunctions of the neurological ac-
tivity (i.e. the peak is not localized or not narrowband).
Thus, it can be considered as a support tool for clini-
cians to decide if an accurate analysis is needed to make
a complete diagnosis.

4.3. Evaluation of Performance and Energy Metrics

Scaling the processing chain on a cluster of multi-
ple cores allows to decrease the operating frequency
required to achieve the real-time constrains, reducing
significantly voltage supply. Thus, the quadratic de-
pendency between supply voltage and dynamic power
brings an important improvement in power density. This
emphasizes a trade-off between the parallelization effi-
ciency and voltage scaling. Execution time of the pro-
cessing chain on the reference platform are shown in
Table 3. Among all kernels that compose the appli-
cation, FIR filter is the one that requires the majority
of the computational effort. In fact, it represents the
97,88% of the execution time on PULP. As already said
in the previous paragraphs, FTA kernel shows a lower
speed-up compared to the others. The butterfly diagram
approach used to compute FFT leads to a paralleliza-
tion scheme where a high number of synchronizations
barriers among cores are necessary. The weight of this
barriers grows as the number of cores increases. The
load of this kernel represents the 0.98% of the overall
processing chain, therefore the impact on the total per-
formance is negligible. Due to the high number of cy-
cles required to execute the process chain, a single core
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PULP 1 core PULP 2 cores PULP 4 cores PULP 8 cores
Kernel MCycles load % MCycles Speedupa MCycles Speedupa MCycles Speedupa

FIR FILTER 3303,67 97,88 1651,88 1,99 826,99 3,99 413,22 7,99
DWT+ENERGY 2,50 0,07 1,25 1,99 0,63 3,98 0,32 7,83
SVM 2,57 0,07 1,29 1.99 0,65 3,94 0,33 7,69
AVG REF 0,93 0,03 0,47 1,99 0,24 3,96 0,12 7,58
PCA 32,86 0,97 16,76 1,96 8,49 3,87 4,30 7,63
FTA 38,86 0,98 21,45 1,81 13,43 2,89 9,53 4,07
TOT 3380,86 100 1693,10 1.99 850,43 3.97 427,82 7.90

a Speed-Up with respect to single-core PULP paltform.

Table 3: Execution of automated frequency tagging analysis on embedded computing platform

is not able to achieve the necessary operating frequency
(i.e. 3.3GHz). The same constrains are worth for 2 and
4 cores (i.e. 1.6GHz and 830MHz). For these reason, a
cluster of 8 cores is employed. With 8 cores an overall
speed-up of 7.9x is reached, therefore, the application
demonstrates to scale easily on higher number of cores.
Based on these information, PULP platform can fulfill
computational effort and the real-time constrains with
8 cores with an operating frequency equal to 430MHz,
at the supply voltage of 0,85V consuming an average
power of 55mW. As an FRAM is used as external L3
memory, an estimation of load/store operations is nec-
essary to understand the impact on power consumption.
Considering that for an access in L3 0,162nJ are re-
quired, the average power consumed is around 1,5mW.
Thus, the total power consumption for the entire pro-
cess chain is 56,5mW. Therefore, taking into account
the power consumption and the supply voltage, approx-
imately 66mA are required to correctly operate. Hence,
assuming that this wearable device is provided with a
common battery with a capacity of 2200mAh, a battery
life around 24 hours can be guaranteed. For this estima-
tion, only the major power contributors of the system
are taken into account (i.e. the 8 cores in this applica-
tion).

5. Conclusion

This work presented a machine learning-based, auto-
mated, embedded, and real-time EEG monitoring sys-
tem targeting the analysis of the frequency tagging re-
sponse in a wide range of frequency stimulations in-
cluding both the standard range of SSVEPs (> 6 Hz)
and the low-frequency range related to slower, higher-
order neural processing (0.5-6 Hz). We compared the
proposed approach with a standard method based on a
mix of traditional signal processing chain (i.e. avail-
able in extraction and interpretation toolboxes such as
EEGLAB) and the manual inspection of the EEG traces

performed by an expert neuroscientist, on the same EEG
signals from 4 subjects. We have shown that by replac-
ing the most compute-intensive parts of the traditional
processing chain with a machine learning approach we
are still able to detect the presence of the same fre-
quency peaks.

Although the standard analysis performs better in
terms of signal cleaning, it is computationally intensive
(i.e. because of ICA algorithm), partially manual (i.e.
data scrolling and bad segments rejection) and therefore
not adequate for a real-time embedded platform. Ma-
chine learning techniques are key elements for the sys-
tem because they play an important role in Artifact Re-
moval and Frequency Detection. Our proposed solution
achieves 92% correct peak detection; as already shown
in Section 3.3.2 this result is in line with other medical
studies present in literature.

Furthermore, its implementation has been evaluated
on a parallel ultra low-power platform. The overall
power budget obtained is under 56mW with 8-cores,
thus making the system eligible for the future wearable
deployment. The next challenges to be addressed in-
clude the generalization of the machine learning mod-
els, creating a model that can fit with different sub-
jects without incurring in loss of accuracy. An other
important challenge is to identify and remove single
EEG channels that are recording bad segments of data
(i.e. if the electrode is broken or not perfectly stick on
the scalp) without discarding good data acquired by the
other channels. All these challenges will converge in
reducing the complexity of the processing chain for em-
bedded implementation while improving the accuracy
of the frequency detection. This paradigm is also suit-
able for a wide range of low-obtrusiveness applications
in healthcare and rehabilitation scenarios.
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