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CpG location and methylation level are
crucial factors for the early detection of
oral squamous cell carcinoma in brushing
samples using bisulfite sequencing of a
13-gene panel
Luca Morandi1* , Davide Gissi2, Achille Tarsitano3, Sofia Asioli1, Andrea Gabusi2, Claudio Marchetti3,
Lucio Montebugnoli2 and Maria Pia Foschini1

Abstract

Background: Oral squamous cell carcinoma (OSCC) is usually diagnosed at an advanced stage and is commonly
preceded by oral premalignant lesions. The mortality rates have remained unchanged (50% within 5 years after
diagnosis), and it is related to tobacco smoking and alcohol intake. Novel molecular markers for early diagnosis are
urgently needed. The purpose of this study was to evaluate the diagnostic value of methylation level in a set of 18
genes by bisulfite next-generation sequencing.

Methods: With minimally invasive oral brushing, 28 consecutive OSCC, one squamous cell carcinoma with sarcomatoid
features, six high-grade squamous intraepithelial lesions (HGSIL), 30 normal contralateral mucosa from the same
patients, and 65 healthy donors were evaluated for DNA methylation analyzing 18 target genes by quantitative bisulfite
next-generation sequencing. We further evaluated an independent cohort (validation dataset) made of 20 normal
donors, one oral fibroma, 14 oral lichen planus (OLP), three proliferative verrucous leukoplakia (PVL), and two OSCC.

Results: Comparing OSCC with normal healthy donors and contralateral mucosa in 355 CpGs, we identified the
following epigenetically altered genes: ZAP70, ITGA4, KIF1A, PARP15, EPHX3, NTM, LRRTM1, FLI1, MIR193, LINC00599,
PAX1, and MIR137HG showing hypermethylation and MIR296, TERT, and GP1BB showing hypomethylation. The
behavior of ZAP70, GP1BB, H19, EPHX3, and MIR193 fluctuated among different interrogated CpGs. The gap between
normal and OSCC samples remained mostly the same (Kruskal-Wallis P values < 0.05), but the absolute values
changed conspicuously. ROC curve analysis identified the most informative CpGs, and we correctly stratified
OSCC and HGSIL from normal donors using a multiclass linear discriminant analysis in a 13-gene panel (AUC 0.981).
Only the OSCC with sarcomatoid features was negative. Three contralateral mucosa were positive, a sign of a possible
field cancerization. Among imprinted genes, only MIR296 showed loss of imprinting. DNMT1, TERC, and H19 together
with the global methylation of long interspersed element 1 were unchanged. In the validation dataset, values over the
threshold were detected in 2/2 OSCC, in 3/3 PVL, and in 2/14 OLP.

Conclusions: Our data highlight the importance of CpG location and correct estimation of DNA methylation
level for highly accurate early diagnosis of OSCC.
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cell carcinoma
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Background
Oral and pharyngeal cancer, grouped together, is the
sixth most common cancer in the world. The annual es-
timated incidence is approximately 600,000 per year, two
thirds of these cases occurring in developing countries
[1]. The prevalence of oral cancers is high especially in
South and Southeast Asia, where distinct cultural prac-
tices such as betel-quid chewing and varying patterns of
tobacco and alcohol use are important risk factors that
predispose to cancer of the oral cavity. The mortality
rates of these tumors have remained unchanged (50%
within 5 years after diagnosis) and are related to tobacco
smoking and alcohol intake. Oral cancer patients are
usually diagnosed at an advanced stage (two thirds are
III–IV), which is associated with a worse prognosis and
higher radio- and chemotherapy morbidity. Moreover,
quality of life is disproportionately compromised in the
oral cavity patient since surgical therapy can be mutilat-
ing and often has significant effects on swallowing,
speech, and physical appearance. Evidently, improved
oral cancer prevention, early detection, and better diag-
nostic and clinical management tools are needed to
identify high-risk patients, such as those with smoking
and alcohol exposure, patients without adequate access
to health care, and patients with high-risk lesions such
as oral leukoplakia (OL), which may progress to carcin-
oma. The estimated prevalence of OL is approximately
0.5% worldwide. Oral squamous cell carcinoma (OSCC)
is the most common neoplastic disease in the head and
neck region and is commonly preceded by oral prema-
lignant lesions (OPML) such as OL. In Western coun-
tries, the annual malignant transformation rate from OL
to OSCC varies from 0.13 to 36.4% [2, 3].
In addition, OSCC patients can develop a second pri-

mary OSCC, with a frequency ranging between 17 and
30% [4]. Clinical and histological features of OPML do
not provide enough information to identify premalignant
lesions at high risk of malignant transformation or pa-
tients who will develop an OSCC during follow-up.
OSCC or high-grade squamous intraepithelial lesions
(HGSIL) are usually diagnosed by incisional biopsy.
Nevertheless, the biopsy requires a minimally invasive
surgical approach that can create discomfort and may be
refused by the patient. Moreover, only one third of pa-
tients present with early stage disease (T1–2, N0), and
for the remainder, life expectancy is very short. Different
researchers, including our group, have recently proposed
an attractive strategy to reduce the burden of OSCC by
analyzing the methylation status of a panel of genes
starting from saliva and/or brushing specimens [5–10].
In many cancers, gene silencing by promoter methylation
seems to be an early event in carcinogenesis and may
occur even more frequently than structural inactivation
of genes by mutations and deletions [11]. Histologically

normal tissue adjacent to tumors and OPML can have
an aberrant methylation pattern in candidate genes, sug-
gesting that these epigenetic modifications are early
events in oral carcinogenesis [12]. This study assessed
the methylation status of a set of 18 gene promoters and
long interspersed element 1 (LINE1) to detect early OSCC
and OPML by bisulfite next-generation sequencing
(NGS), starting from minimal invasive collection speci-
mens obtained by oral brushing.

Methods
Clinical samples
Ethics statement
All clinical investigations were conducted according to
the principles of the Declaration of Helsinki. The study
was approved by the local ethics committee (study
number 14092, protocol number 899/CE). All informa-
tion regarding the human material used in this study
was managed using anonymous numerical codes.

Training dataset
We enrolled 28 consecutive patients with a clinical and
histological diagnosis of OSCC, one case of OSCC with
sarcomatoid features, six consecutive patients with a
clinical and histological diagnosis of HGSIL as defined
by Gale et al. [13, 14], 35 related contralateral clinically
normal mucosa, and 65 normal mucosa of healthy do-
nors as reference controls. Clinical data including smok-
ing status are summarized in Table 1, and all these cases
referred to the Department of Oral Sciences, University
of Bologna, from January 2014 to December 2016. All
patients presenting with a suspected oral neoplastic
lesion that required diagnostic incisional biopsy also
underwent oral brushing sampling. Lesions with an obvi-
ous etiology such as trauma and infective aphthous ul-
cerations were excluded. Oral brushing for histological
diagnosis was performed as previously reported [15].
Specimens were always selected before incisional biopsy
and samples were enrolled in the population study only
after histological confirmation of OSCC. Two different
brushing specimens were collected in OSCC and HGSIL
patients: one from the area with a lesion and the other
from clinically normal distant mucosa (cheek opposite).
Histological examination was performed blindly by

two pathologists (MPF, SA) at the Department of Bio-
medical and Neuromotor Sciences, “M. Malpighi” Sec-
tion of Anatomic Pathology, at Bellaria Hospital,
University of Bologna, Italy. A multihead microscope
discussion was made on discordant cases to obtain a
common diagnosis. Histological diagnoses were estab-
lished following the WHO criteria [14, 16] and accord-
ing to the 2014 Ljubljana classification [17]. The oral
brushing sample series included a group of 65 normal
mucosa samples collected from healthy donors as
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normal controls. Only one oral brushing sample was
collected in this group from similar areas with respect
to the OSCC group. The flow chart in Fig. 1 depicts the
experimental design of the study.

Validation dataset
We validate our results by an independent cohort of
cases including 20 normal donors, one oral fibroma,
14 oral lichen planus, three proliferative verrucous
leukoplakia, and two OSCC enrolled from January to
May 2017.

DNA purification and bisulfite treatment
DNA from exfoliating brush specimens was purified
using The MasterPure™ Complete DNA Purification Kit
(Epicentre, cod. MC85200). Bisulfite treatment of gen-
omic DNA (200–500 ng) was carried out with the EZ
DNA Methylation-Lightning™ Kit (Zymo Research, cod.
D5031) according to the manufacturer’s protocol.

Gene selection
A set of 19 gene targets were selected because they were
previously identified with altered methylation pattern in
OSCC. A detailed list of reference for each gene is avail-
able in Table 2. In particular, ZAP70, KIF1A, GP1BB,
and MIR137HG were previously described to be differ-
entially methylated in OSCC by our group [15] and
others [5, 18, 19], while PAX1, LRRTM1, PARP15, FLI1,
NTM, LINC00599, EPHX3, and ITGA4 were discovered

by Guerrero-Preston et al. [20]. Additionally, the
remaining MIR193A, MIR296, TERT, TERC, H19,
DNMT1A, and LINE1 were found to be epigenetically
altered in OSCC by various authors [21–27] (see Table
2 for details).

In silico prediction of CpG island and primer design
To identify the putative CpG island on the promoter
region or in the first part of the coding region, the gen-
omic sequence stored on the Ensembl genome browser
(http://www.ensembl.org/index.html) including 1000 bp
upstream of the ATG site were employed as query se-
quence. MethPrimer (http://www.urogene.org/cgi-bin/
methprimer/methprimer.cgi) [28] designing was applied
to identify CpGs and the best primers of choice.
Regions of interest and mapping coordinates are listed
in Table 2.

NGS library preparation
The library was prepared in two steps: a first multiplex
PCR amplification for target enrichment and a second
round of amplification with a low number of cycles
allowing the barcoding of the template-specific ampli-
cons obtained from the first amplification step. Bar-
coding was performed using the Nextera™ index kit as
previously described [29]. Locus-specific bisulfite
amplicon libraries were generated with tagged primers
using Phusion U DNA polymerase (ThermoFisher,
cod. F555L).

Table 1 Clinical features of study population

Number Sex Median age Smoke Site T status N status

Training dataset

OSCC 29 14 males
15 females

69 ± 13 21 non-smokers
8 smokers

8 tongue
4 floor of mouth
8 gum
5 cheek
3 palate
1 lip

11 T1
10 T2
2 T3
6 T4

28 N0
1 N1

HGSIL 6 5 males
1 females

63 ± 18 6 non-smokers 6 tongue

Healthy donors 65 32 males
33 females

58 ± 18 57 non-smokers
8 smokers

18 tongue
10 floor of mouth
12 gum
20 cheek
5 palate

Validation dataset

Healthy donors 20 10 males
10 females

45 ± 9 16 non-smokers
4 smokers

20 tongue + cheek

OSCC 2 1 male
1 female

61 ± 4 2 non-smokers 1 tongue
1 hard palate

1 T2
1 T1

1 N1
1 N0

PVL 3 2 male
1 female

57 ± 6 2 non-smokers
1 smoker

2 tongue
1 cheek

OLP 14 10 male
4 female

59 ± 6 11 non-smokers
3 smokers

12 cheek
2 gum

Morandi et al. Clinical Epigenetics  (2017) 9:85 Page 3 of 17

http://www.ensembl.org/index.html
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi)
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi)


Fig. 1 Assay flow chart: the assay design is based on various steps including minimal invasive collection of specimens by simple oral brushing
in the suspected area. DNA purification and bisulfite treatment (unmethylated cytosines are chemically converted to uracyls, while methylated
cytosines remained unchanged). Target-specific amplification of a set of 18 genes and LINE1 with primers of choice. Barcoding using Nextera™
index kit (Illumina), pooling and loading onto MiSEQ. Quality control of FASTQ files and filtering for > Q30 and > 80 bp in length. FASTQ to FASTA
conversion and loading onto BSPAT for mapping and methylation level evaluation; parallel evaluation using perl followed by BISMA and Methylation
plotter. ROC curve analysis of each of the 355 CpGs. Identification of the most informative CpGs from the following genes: ZAP70, ITGA4, KIF1A, PARP15,
EPHX3, NTM, LRRTM1, FLI1, MIR193, LINC00599, MIR296, TERT, and GP1BB. An algorithm of choice was then created taking into account all of the
most informative CpGs from a panel of 13 genes, using linear discriminant analysis followed by a ROC curve to calculate the exact threshold able
to discriminate OSCC from normal samples. In case of a positive score, the patient follows conventional treatment with incisional biopsy and
surgical intervention. After 3 months, we propose evaluating the area around the surgical intervention to identify any field cancerization and
an associated high risk of recurrence
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Amplification products were purified using SPRI-
AMPure XT (Agencourt-Beckman Coulter, cod. A63881)
quantified with Fluorometer Quantus™ (Promega, cod.
E6150) and then employed as template (100 ng) for a sec-
ond round of PCR (6 cycles). Sample-specific barcode se-
quences were added in this second PCR. The amplicon
library was purified using Agencourt AMPure XP beads
(Agencourt-Beckman Coulter, cod. A63881) and then
quantitated with the Quantus™ Fluorometer (Promega,
cod. E6150). Sequencing was conducted on the MiSEQ
(Illumina, cod. 15027617) according to the manufacturer’s
protocol. A set of three genes KIF1A, ZAP70, and GP1BB
were initially evaluated in parallel by the protocol de-
scribed by Morandi et al. [15] using pyrosequencing on
GSJunior (Roche) to verify the quantification method in
a set of 10 normal donors.

NGS data analysis
FASTQ files already trimmed for multiplex identifier
were processed for quality control (> Q30) and for read
lengths (> 100 bp) and converted into FASTA format
in a Galaxy Project environment [30]. To evaluate the
methylation ratio of each CpG, we loaded FASTA files
into the bisulfite sequencing pattern analysis tool
(BSPAT—http://cbc.case.edu/BSPAT/index.jsp) [31]. In
parallel, we used Perl to create single specific files for
every interrogated gene, which were then visualized
using BiQ Analyzer [32], QUMA [33], and BISMA [34]
to confirm data from BSPAT analysis. Methylation plotter
(http://gattaca.imppc.org:3838/methylation_plotter/) [35]
was used to create Fig. 4 and Additional file 1.

Statistical analysis
Multiclass linear discriminant analysis and receiver oper-
ating characteristic (ROC) curve analysis were calculated
using IBM SPSS Statistics 21 (IBM) and the easyROC
web tool (http://www.biosoft.hacettepe.edu.tr/easyROC/).
PCA analysis and the methylation plot were created using
ClustVis, a web tool for visualizing clustering multivariate
data (http://biit.cs.ut.ee/clustvis/) [36].

Results
Methylation analysis
Bisulfite NGS was used to examine the set of 18 genes
listed in Table 2 together with global methylation ana-
lysis evaluating long interspersed element 1 (LINE1), with
a total of 355 CpGs, mostly located within the first exon.
Parallel evaluation using our new bisulfite NGS

method on Illumina MiSEQ and the one described by
Morandi et al. [15] using pyrosequencing on GSJunior
(Roche) was performed in a set of 10 normal donors for
KIF1A, GP1BB, and ZAP70 giving almost identical results
(Spearman correlation of 0.969). A further index of reli-
ability of the assay is the H19 mean value of 13 CpGs eval-
uated in normal donors, which was found very close to
50% as expected: 0.47 ± 0.14 (see Additional file 2).
An example of the methylation analysis using BISMA

(http://services.ibc.uni-stuttgart.de/BDPC/BISMA/manual_
unique.php) [34] as a web tool is shown in Fig. 2, repre-
senting a comparison for KIF1A among case 1 (OSCC),
its normal contralateral mucosa, case 31 (HG-SIL), and
a healthy donor. Most OSCC cases had a homogeneous
methylation pattern independently of the ratio, while all

Fig. 2 Graphic representation of methylation analysis for KIF1A among a normal healthy donor, contralateral mucosa and OSCC from case 1, and
HGSIL case 31. Unmethylated CpGs are in blue, while methylated CpGs are in red. A single table for each specimen summarized the whole
methylation frequency for the 27 CpGs tested
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six HGSIL enrolled in this study showed an irregular
methylation pattern among various CpGs as exemplified
in Fig. 2 for case 31.
After BSPAT data processing [31] (see “Methods” for

the bioinformatic pipeline), a ROC analysis for each
CpG of all 18 genes evaluating differences between
OSCC and normal healthy donors is performed and
summarized in Additional file 3 (only the three best
CpGs were shown for simplicity). In Fig. 3, the ROC of
the most performant genes GP1BB and ZAP70 were
displayed. DNMT1, TERC, and H19 were found to be
unchanged both evaluating OSCC vs normal donors
and vs normal contralateral mucosa.
Among the remaining 15 differentially methylated

genes, 12 were hypermethylated (ZAP70, PAX1, KIF1A,
LRRTM1, PARP15, FLI1, NTM, LINC0059, EPHX3,
MIR137HG, ITGA4, MIR193), whereas three were hypo-
methylated (GP1BB, MIR296, TERT) in OSCC/HGSIL.
Additional file 1 depicts the mean methylation level for
each group of the interrogated genes visualized using the
Methylation plotter tool [35] and the Kruskal-Wallis test
for single CpG. Figure 4 shows the fluctuating methyla-
tion level among different CpGs evaluated in GP1BB
and ZAP70. Mean methylation level and corresponding
standard deviation of each group for all target genes is
available in Additional file 2.
Considering only one gene at a time, the AUC varied

depending on the various CpGs involved; ranges are
summarized in Table 3 for the best and worst AUC
values.

Algorithm development
The best CpGs identified by the ROC analysis were used
to create an algorithm of choice to correctly discriminate
OSCC and HGSIL, with the exception of MIR137HG,
which was previously shown to be aberrantly methylated
also in oral lichen planus (OLP) [15], and PAX1 which

was used as an informative marker for a patent related
to prognosis prediction in Head and Neck Squamous
Cell Carcinoma (HNSCC) [20]. A multiclass linear dis-
criminant analysis (LDA) that weighted the contribution
of each CpG was used to calculate the score.
ROC curve analysis applied to these scores discriminat-

ing OSCC and HGSIL from normal donors gave an area
under the curve (AUC) of 0.981, identifying a threshold of
1.0615547 as the best value for sensitivity and specificity
(97.1 and 100% respectively, see Fig. 5). Twenty-eight out
of 29 OSCC (96.6%) and six out of six HGSIL (100%)
specimens exceeded the threshold value. The squamous
cell carcinoma with sarcomatoid features was the only
OSCC case found to be negative for the score with no sign
of epigenetic changes in any of the genes evaluated. None
of the 65 healthy donor specimens showed a positive re-
sult, and three out of 30 available contralateral normal
mucosa specimens from OSCC patients exceeded the
threshold value (10%). Five cases of contralateral mucosa
did not yield enough DNA to perform the test, probably
for inadequate repeat brushings.

Kruskal-Wallis test and multiple range test analyses
Most of the investigated CpGs had a Kruskal-Wallis P
value < 0.05 (Fig. 4). Kruskal-Wallis test showed a sig-
nificant between-group difference for scores generated
with linear discriminant analysis (LDA) (T = 78.8587,
P < 0.05) (Fig. 6). Multiple range test for LDA-generated
scores did not show a statistical difference between the
OSCC and HGSIL groups, whereas it identified a statis-
tical difference between the OSCC group and healthy
donors and contralateral mucosa. Furthermore, multiple
range test showed a statistical difference between the
HGSIL group and healthy donors and contralateral mu-
cosa. Multiple range test identified a statistical differ-
ence between healthy donors and contralateral mucosa
(see Table 4 for details).

Fig. 3 ROC analysis discriminating OSCC vs normal healthy donors using easyROC as a webtool, showing the three best performing CpGs
from GP1BB and ZAP70. Comparing OSCC vs normal healthy donors, these two genes revealed the highest discrimination power: ZAP70
showing hypermethylation and GP1BB showing hypomethylation. ROC analysis of all of the gene targets evaluated in this study is available
in Additional file 3
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Imprinted gene evaluation
Among the 18 genes tested, DNMT1, MIR296, NTM,
LRRTM1, and H19 were previously considered to be
imprinted (see geneimprint database, http://www.geneim
print.com/site/genes-by-species). In this study, DNMT1,
NTM, and LRRTM1 showed very low levels or absence of
methylation in normal donors and in contralateral mucosa.
We further analyzed DNA from whole blood DNA of a
pool of healthy female donors (DNA female pool, Cod.
G1521, Promega, Madison, WI, USA, data not shown)
with absence of methylation as confirmation. On the con-
trary, H19 showed a classical imprinted status with 50%
methylation both in normal mucosa and in different le-
sions. No evidence of an altered methylation pattern in
OSCC cases was found with a mean methylation value of
0.56 ± 0.25 SD. A single CpG (Chr11: 2018169) revealed
lower values (mean 0.30 ± 0.26 SD). The fluctuating behav-
ior of the 12 CpGs in H19 is shown in Additional file 1.
For MIR296, full methylation was discovered (mean

value of 0.98 ± 0.02) in normal cells. This gene was
hypomethylated in all but four cases of OSCC consider-
ing the most informative CpG mapped at Chr20:
57392374 (mean value of 0.95 ± 0.05). A detailed pattern

of methylation for each CpG of this gene is shown in
Additional files 1 and 3.

PCA and heatmap
Using the principal component analysis with the highest
distribution of data (PC1) as the x-axis and the second
highest principal component (PC2) as the y-axis, the
data are distributed as evenly across the plot as possible
while maintaining the distance between points as a proxy
for how similar each point is to the other (Fig. 7). The
graph shows that OSCC elements (violet) and HGSIL
(red) are located in the left center of the plot, while
normal donors (blue) are clustered in a well-defined
and restricted area near the normal contralateral speci-
mens (green) which span in a less defined manner.
Figure 8 shows a heatmap based on the best three CpGs

of the 18 genes evaluated. Values in the matrix are color-
coded, and rows (CpGs) and columns (specimens) are clus-
tered using correlation distance and average linkage. The top
of the heatmap shows an overview of two annotations, hist-
ology and smoking status. Two clusters are marked: left clus-
ter: 65 normal donors, 24 contralateral mucosa, two OSCC,
and the OSCC with sarcomatoid features; right cluster: 26

Fig. 4 Methylation profile plot from GP1BB and ZAP70. For each group of samples, each line represents the methylation mean for each position.
Asterisks indicate a statistical significance as calculated by the Kruskal-Wallis test. ZAP70 and GP1BB, together with H19, EPHX3, and MIR193 (see
Additional file 1 for the methylation profile of all targets), revealed a fluctuating behavior among the various CpGs evaluated. The gap between
normal and OSCC remained mostly the same (Kruskal-Wallis P values were < 0.05), but the absolute values changed conspicuously among different
positions investigated
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Fig. 5 ROC curve analysis discriminating OSCC vs normal healthy donors using the score calculated form the algorithm. AUC detected is 0.981.
The best informative CpGs used in this new 13-gene algorithm and their values are shown in each column with chromosome number and
mapping information

Table 3 The best and worst AUC values among the 18 genes evaluated in this study. KIF1A showed a minimal variation among all
27 CpGs interrogated, whereas TERT displayed the widest gap between different AUC, highlighting the importance of CpG location

Gene Best AUC position Best AUC value Worst AUC position Worst AUC value Best to worst AUC gap

KIF1A Chr2: 241759621 0.94 Chr2: 241759702 0.87 0.0694444

MIR137 Chr1: 98046097 0.78 Chr1: 98046237 0.69 0.0916666

GP1BB Chr22: 19710956 0.97 Chr22: 19710954 0.88 0.0921717

H19 Chr11: 2018169 0.66 Chr11: 2018228 0.56 0.0992425

LRRTM1 Chr2: 80531799 0.9 Chr2: 80531776 0.8 0.1012626

NTM Chr11: 131781167 0.86 Chr11: 131781080 0.75 0.1063131

ZAP70 Chr2: 98340854 0.96 Chr2: 98340816 0.85 0.1073232

MIR193A Chr17: 29886944 0.84 Chr17: 29886881 0.72 0.1252525

EPHX3 Chr19: 15342885 0.83 Chr19: 15342831 0.71 0.1260101

LINC00599 Chr8: 9760888 0.83 Chr8: 9760805 0.69 0.1436869

FLI1 Chr11: 128564158 0.84 Chr11: 128564065 0.67 0.1643940

PAX1 Chr20: 21686312 0.9 Chr20: 21686253 0.74 0.1648990

ITGA4 Chr2: 1823229.02 0.84 Chr2: 182323028 0.66 0.1813131

PARP15 Chr3: 122296586 0.84 Chr3: 122296671 0.65 0.1919191

TERT Chr5: 1279758 0.92 Chr5: 1279838 0.67 0.2563132

MIR296 Chr20: 57392374 0.75 Chr20: 57392419 0.44 0.3151516

DNMT1 Chr19: 10305597 0.67 Chr19: 10305652 0.34 0.3338384

TERC Chr3: 169482446 0.69 Chr3: 169482370 0.28 0.4047980
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OSCC, six HGSIL, and six contralateral mucosa. Complete
heatmap from all CpGs is available in Additional file 4.

LINE1 global methylation
LINE1 methylation analysis was evaluated to interrogate
global methylation status of repetitive elements distrib-
uted genome-wide [37]. As seen in Additional file 5, no
differences among groups and no signs of hypomethyla-
tion were detected in OSCC.

Algorithm validation in an independent cohort
Considering the validation dataset, all normal donors
were detected under the threshold value, as well as one
oral fibroma and 12 out of 14 OLP; on the contrary, the
remaining two OLP, all PVL, and all OSCC were posi-
tives. PCA is available in Additional file 6 and heatmap
in Additional file 7.

Discussion
Screening populations for the early detection of asymp-
tomatic carcinoma or precursor lesions is an attractive
strategy to reduce the burden of OSCC. A major ex-
ample of this approach is the cytological smear test in
women for cervical cancer screening. However, low sen-
sitivity and specificity have precluded the widescale
adoption of microscopic cytology for the detection of
oral cancer and OPML [38]. Methods such as toluidine
blue staining and autofluorescence imaging have been
proposed to improve the clinical identification of high-
risk OPML, but a recent meta-analysis confirmed there
was no evidence to support the use of these adjunctive
technologies as screening tools to reduce oral cancer
mortality [39]. Recent findings indicated that DNA
methylation analysis of a specific set of genes may serve
to detect early stage oral cancer lesions [22, 40], while

Fig. 6 Box plots obtained using the scores calculated from the algorithm showed a between-group significant difference (Kruskal-Wallis test
T = 78.8587, P < 0.05)

Table 4 Multiple range test did not show significant differences in the generated score between OSCC group and HGSIL group.
Both groups showed significant higher values whether considering healthy donors or considering contralateral mucosa. Multiple
range test showed a statistical difference between contralateral mucosa of OSCC and HGSIL patients and healthy donors

Method: 95.0% LSD

Pathology Count Mean Homogeneous groups

Healthy donors 65 −1.586 C

Distant mucosa in OSCC patients 30 −0.444399 B

OSCC 29 2.66856 A

HGSIL 6 2.71892 A

Contrast Sig. Difference ± limits

OSCC–HGSIL −0.0503633 0.983538

OSCC–distant mucosa in OSCC patients * 3.11296 0.571081

OSCC–healthy donors * 4.25456 0.489711

HGSIL–distant mucosa in OSCC patients * 3.16332 0.980724

HGSIL–healthy donors * 4.30492 0.935683

Distant mucosa in OSCC patients–healthy donors * 1.1416 0.484034

*Statistically significant difference
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the location of core regions and the density of methyla-
tion are required for gene silencing [41].
This study adopted a different approach from 450k

methylation arrays to interrogate a set of genes already
known to be altered in HNSCC [5, 15, 19, 20, 27]. For
in-depth investigation of the true methylation level, we
developed a novel accurate, sensitive, and specific assay
to detect early OSCC and HGSIL from oral brushing
specimens using bisulfite NGS. Quantitative DNA
methylation analysis of the following 13 genes: ZAP70,
ITGA4, KIF1A, PARP15, EPHX3, NTM, LRRTM1, FLI1,
MIR193, LINC00599, MIR296, TERT, and GP1BB, clearly
discriminated OSCC and HGSIL from healthy donors or
from contralateral normal mucosa from the same pa-
tients. In particular, we found in OSCC and HGSIL
hypermethylation of ZAP70, ITGA4, KIF1A, PARP15,
EPHX3, NTM, LRRTM1, FLI1, MIR193, LINC00599,
PAX1, and MIR137HG and hypomethylation of TERT,
MIR296, and GP1BB at various CpGs. No epigenetic
changes were found in DNMT1, H19, TERC, or any glo-
bal hypomethylation of repetitive LINE1. Best perfor-
mances were found for ZAP70, GP1BB, PAX1, LRRTM1,
KIF1A, and TERT showing the best sensitivity and speci-
ficity in a ROC curve analysis (see the best CpGs for
each gene in Figs. 3, 4, 5, and 6). Despite its high dis-
criminant potential, we excluded the new panel PAX1
described by Guerrero-Preston [20] because it was

patented by the same group, and MIR137HG which
yielded ambiguous results (see Additional files 1 and 3)
and was previously found to be differentially methylated
in OLP [15, 42].
The stratification among distinct groups (OSCC vs

healthy normal individuals, OSCC vs normal contralat-
eral mucosa) was based not simply on evaluation of the
methylated/unmethylated allele but also on quantitative
identification of the correct threshold among various
CpGs of the different genes considered. Combining the
methylation level of 13 genes, the discrimination power
of this new assay reached an optimal level of accuracy
(AUC 0.981). The only OSCC case negative for the score
was the OSCC with sarcomatoid features. No aberrant
methylation pattern was found in any of the genes investi-
gated, signifying that this rare variant of oral carcinoma
does not share the same epigenetic status as the other
OSCC cases, as shown in Fig. 8 in cluster analysis. This re-
sult may be considered for clinical management, and fur-
ther investigation into genomic alterations is required.
Linear discriminant analysis allowed us to generate a

score that weighted the best CpGs from the most in-
formative genes investigated in the study. A single gene
discriminating method or a single CpG may be inad-
equate for our purpose. Considering only one gene at a
time such as GP1BB, the AUC varied between 0.968 and
0.876 depending on the CpGs, while for TERT, it varied

Fig. 7 Principal component analysis (PCA): Unit variance scaling is applied to rows; SVD with imputation is used to calculate the principal
components. X and Y axes show principal component 1 and principal component 2 that explain 42.1 and 9.6% of the total variance, respectively.
Prediction ellipses are such that with probability 0.95, a new observation from the same group will fall inside the ellipse. N = 130 data points
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from 0.924 to 0.667, implying the central role of CpG lo-
cation (see Table 3 for the best and worst AUC values).
By using an independent cohort of samples, we further

validate our algorithm confirming a clear negative value
for all normal donors enrolled, together with one oral fi-
broma and 12 OLP. On the contrary, values over the
threshold were detected in the two OSCC, in all three
PVL, and in two OLP. Positivity for all PVL may be re-
lated to its nature of a progressive, multifocal, exophytic
form of leukoplakia with high rates of malignant trans-
formation. For two OLP positives (14.3%), the World
Health Organization (WHO) has considered OLP as a
premalignant lesion. The range of malignant transform-
ation varies between 0 and 10% [43], which is consistent
with our findings.
Basically, the calculated thresholds of most interro-

gated CpGs were proximal to 0 in the following genes:
FLI1, ITGA4, KIF1A, MIR193, NTM, LINC00599, PAX1,
and MIR137. Overall, the aberrant methylation pattern
of these OSCC-related markers was estimated to be
0.33 ± 0.3 SD, simply overcoming the basal unmethy-
lated condition seen in normal cells from both the
contralateral mucosa of the same patients and the oral
mucosa of healthy donors. By contrast, EPHX3,
LRRTM1, and PARP15 showed higher values both for

threshold and mean values for the OSCC group
(0.61 ± 0.31 SD). This implies that the basal level of
methylated CpG in these genes in normal tissues is not
close to 0, and a small fraction of epialleles are methyl-
ated. Moreover, methylation levels in OSCC exceeded
50%. The behavior of a set of five genes including
ZAP70, GP1BB, H19, EPHX3, and MIR193 fluctuated
among the various CpGs as shown in Additional file 1.
Interestingly, the gap between normal and OSCC
remained the same (Kruskal-Wallis P values were mostly
< 0.05) but the absolute values changed conspicuously
among different positions investigated. This implies that
each CpG must be considered apart, and a specific
threshold calculated. Recently, van Vlodrop et al. [41]
emphasized the emerging evidence on the importance of
the location of CpG methylation in relation to gene ex-
pression and associations with clinicopathologic charac-
teristics in cancer. Crucial CpG islands or single CpGs
for regulating gene expression not only are often situ-
ated around the transcriptional start site but can also be
observed more upstream or downstream.
We used bisulfite NGS methods because of their

advantages: (i) many CpG sites, so that complex methy-
lation patterns of individual DNA molecules can be
determined; (ii) the longer reads can be aligned to the

Fig. 8 Heatmap from the best three CpG methylation data points (54 rows) for each gene and 130 samples (column). Annotation labels refer to
histology and smoking status. Rows are centered; unit variance scaling is applied to rows. Both rows and columns are clustered using correlation
distance and average linkage. Smoking status and histology are highlighted in color. Two clusters are marked: left cluster: 65 normal donors, 24
contralateral mucosa, two OSCC, and the OSCC with sarcomatoid features; right cluster: 26 OSCC, six HGSIL, and six contralateral mucosa.
Complete heatmap from each of the 325 CpGs is available in Additional file 4
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reference sequence more easily and accurately, especially
in repetitive regions of the genome; and (iii) the long
reads are more likely to cover more genotype informa-
tion like single nucleotide polymorphisms (SNPs) in the
neighborhood of cytosines for correlation analysis be-
tween DNA methylation and genotype. These features
identified not simply different methylation levels among
groups but for instance a different pattern of methyla-
tion between OSCC and HGSIL. Usually, OSCC revealed
a homogeneous pattern with most epialleles methylated
in cis, whereas HGSIL disclosed an irregular pattern of
CpG methylation as shown in Fig. 2 for case 31. This be-
havior was shared among all five HGSIL for all the genes
involved and is probably due to partial epigenetic modifi-
cations which reach a complete pattern only in full-blown
OSCC. This behavior is visible only using bisulfite NGS
and not methylation-sensitive PCR or qPCR, or Infinium™.
A previous report by Bock et al. [44] compared the most
promising assays for measuring DNA methylation in large
cohorts, clinical diagnostics, and biomarker development,
including amplicon bisulfite sequencing, enrichment bi-
sulfite sequencing, Infinium™, EpiTyper®, and Pyroseq™.
Best performances were obtained using amplicon bisulfite
sequencing with high accuracy and robustness. In
addition, this approach guarantees high throughput and a
variable number of targets to interrogate, depending on
the assay design [45].
We did not identify LINE1 global hypomethylation in

OSCC with respect to the normal donors and normal
contralateral mucosa as previously described [25] using
pyrosequencing technique. With respect to the pyrose-
quencing approach which interrogates only four CpGs, as
indicated by Ogino et al. [46], we evaluated more CpGs
(21), with high number of reads per single specimen (hun-
dreds). However, probably, we select a CpG-rich region
which may not be involved in changes in methylation.
From a bioinformatic point of view, bisulfite NGS ana-

lysis is complex and the pipeline requires many steps.
Commonly, NGS runs produce FASTQ files as output
already trimmed for multiplex identifier or MID/IonX-
press/Index (a short barcode sequence used to label
samples/patients when multiplexing) to recognize loaded
specimens. Firstly, these FASTQ files are processed for
quality control (> Q30 for Illumina) and read lengths
(> 100 bp) to discard primer dimers, then FASTQ files are
converted to FASTA. With the advent of cloud computing
and the availability of NGS webtools such as Galaxy Pro-
ject [47], these steps have minimal PC requirements and
are user friendly. Using perl to recognize specific sequence
motifs, several FASTA files were created for each gene for
each patient and then loaded onto a visualization tool
such as BiQ Analyzer [48], MethVisual [49], QUMA [33],
or BISMA [34]. However, these tools do not scale up with
massively parallel sequencing having been designed for

Sanger sequencing. Newer tools such as Bismark [50] and
BS-Seeker [51] have been utilized more efficiently and can
handle larger datasets generated by NGS technologies. In
addition, a web application service named bisulfite se-
quencing pattern analysis tool (BSPAT) uses Bismark’s
read alignments and methylation calling functionalities
to provide further quality control, co-occurrence pattern
analysis, simple allele-specific methylation analysis,
visualization, and integration with other databases and
tools [31]. BSPAT gives the correct methylation ratio of
each epiallele investigated to be included in subsequent
statistical analysis. We therefore used this tool to analyze
our data as the best option, maintaining BISMA as a
supporting tool for confirmation.
NTM, LRRTM1, MIR296, H19, and DNMT1 are known

to be imprinted genes and are included in the imprinting
gene database (http://www.geneimprint.com). However, no
normal healthy donors, contralateral normal mucosa or
DNA from whole blood of a pool of healthy female donors
was either hemimethylated or fully methylated in DNMT1,
LRRTM1, and NTM in our series. By contrast, H19 showed
common signs of imprinting with half of the epialleles
methylated in normal donors and contralateral normal
mucosa. We found no evidence for an altered methylation
pattern in OSCC cases with a mean methylation value of
0.56 ± 0.25 SD. For MIR296, another imprinted gene, a
mean value of 0.95 ± 0.05 was discovered in normal
donors, while it was found to be hypomethylated in all
but two cases of OSCC (mean 0.91 ± 0.07, see Additional
file 2). This is in agreement with a full methylation of both
epialleles, while in lesions, we found a partial demethyla-
tion of only nine out of 15 CpGs tested (Additional file 1).
Aberrant expression of MIR296 was previously related to
gastric [52], bladder [53], and lung cancer [54]. The same
behavior was found for TERT which was fully methylated
in both epialleles in normal samples and partially hypo-
methylated in OSCC/HGSIL. Hypomethylation of this
gene was previously reported in glioblastoma [55, 56].
Five out of six CpGs of the TERT gene were inform-
ative, even if the discriminating gap among different
classes was found to be very slight, but calculating the
ROC curve, the AUC obtained was highly consistent
(0.921, see Additional file 3 for ROC between OSCC
and normal donors).
Among the other 11 genes included in our algorithm,

Marsit et al. [19] and our group previously identified
three (GP1BB, ZAP70, KIF1A) as possible markers [15].
The present study provided evidence for a complete
demonstration of their real value with the best AUC in
the ROC analysis.
GP1BB encodes heterodimeric transmembrane protein

that constitutes the receptor for von Willebrand factor
and mediates platelet adhesion in the arterial circulation.
Mutations of GP1BB are associated with Bernard-Soulier
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syndrome, an extremely rare inherited bleeding disorder
[57]. ZAP70 gene encodes the ζ-chain associated protein
kinase 70 kDa, which is a tyrosine kinase normally
expressed by natural killer cells and T cells. Hyperme-
thylation of ZAP70 gene predicted an unfavorable dis-
ease course in terms of disease progression and overall
survival in chronic lymphocytic leukemia [58]. KIF1A
(kinesin family member 1A) encodes a protein that is
microtubule-dependent molecular motor involved in im-
portant intracellular functions such as organelle trans-
port and cell division [59].
The other eight markers identified here included PAX1

and PARP15 already described by Guerrero-Preston et al.
[20] as related to oral cancer, FLI1 involved in Ewing sar-
coma [60], rectal cancer [61], and gastric cancer [62],
NTM in prostate [63], EPHX3 in salivary gland adenoid
cystic carcinoma [64], ITGA4 in colorectal cancer [65]
,and MIR193 in gastric cancer [66].
A second interesting finding of the present study was

the behavior of normal distant mucosa from OSCC pa-
tients. Kruskal-Wallis test and multiple range test
showed that the mean methylation value obtained in the
group of normal distant mucosa of OSCC patients was
significantly (P < 0.01) lower than the methylation value
of the OSCC area but, at the same time, significantly
higher (P < 0.01) than the methylation value of normal
mucosa from healthy donors. Furthermore, three out of
30 normal distant mucosa (10%) exceeded the threshold,
and this behavior in our opinion may not be due to a
possible contamination of few cancer cells during the
collection of normal mucosa, since our algorithm is based
on quantitative methylation analysis and not simply on
methylated/unmethylated status.
Genetic and epigenetic changes are also detected in

histopathologically clean resection fields and could cause
local relapse in mucosa primarily free of cancer cells.
This has been explained by Slaughter’s model of “field
cancerization” [67], whereas Braakhuis et al. [68] pro-
posed a “patch-field” model in which a stem cell ac-
quires genetic and epigenetic alterations in the initial
phase, forming a clonal unit of altered daughter cells
called a “patch.” A patch will transform into an expand-
ing field acquiring additional genetic alterations, and by
virtue of its growth advantage, a proliferating field grad-
ually displaces the normal mucosa. Assuming that mu-
cosa is predisposed to carcinogenesis due to exposure to
exogenous genotoxins, an important clinical implication
is that fields often remain after surgery of the primary
tumor and may lead to new cancers clinicians currently
refer to as “a second primary tumor” or “local recur-
rence,” depending on the exact site and time interval.
The areas at highest risk for development of a second
squamous cell carcinoma are large, sometimes extending
to the lung [69]. Genetically altered cells may escape

macroscopic or histopathological examination and may
require sophisticated biomolecular approaches. An al-
tered pattern of gene methylation in morphologically
normal mucosa in OSCC patients may indicate field
cancerization, so that these patients could have a higher
risk of developing a second primary tumor or local re-
currence. Further study on the methylation pattern in
surgically resected patients may expand the potential of
our new assay even for prognostic applications.

Conclusions
In conclusion, the present study confirmed the role of
epigenetic alterations and aberrant methylation DNA
status in HGSIL/OSCC and also revealed an altered
methylation pattern in normal mucosa distant from the
OSCC area. Early diagnosis of OSCC may be important
for clinical management, particularly in high-risk popula-
tions, and our novel assay based on quantitative bisulfite
NGS analysis could be a highly sensitive and specific
method to detect early OSCC starting from non-invasive,
easy-to-perform brush sampling. Further studies with a
larger cohort including more HGSIL, low-grade SIL, and
OLP with 5 years of follow-up are needed to elucidate the
intrinsic prognostic potential of our assay.
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Additional file 1: Methylation profile plot from 18 genes evaluated. For
each group of samples, each line represents the methylation mean for
each position. Asterisks indicate a statistical significance as calculated by
the Kruskal-Wallis test. ZAP70, GP1BB, H19, EPHX3, and MIR193 revealed a
fluctuating behavior among the various CpGs evaluated. The gap between
normal and OSCC remained mostly the same (Kruskal-Wallis P values
were < 0.05), but the absolute values changed conspicuously among
different positions investigated. (PDF 415 kb)

Additional file 2: Summary tables of each gene targets with the mean,
the standard deviation, the minimum, the maximum, and the number of
missing data for each position and group of samples. This test is the
non-parametric version of the ANOVA (one-way analysis of variance) and
tests whether samples originate from the same distribution. If the test is
statistically significant (P value less than 0.05), it means that at least one
of the samples is different from the other samples. (XLSX 122 kb)

Additional file 3: ROC analysis discriminating OSCC vs normal healthy
donors using easyROC as a webtool, showing the three best performing
CpGs from each gene of 18 evaluated. Comparing OSCC vs normal
healthy donors in 355 CpGs, the following epigenetically altered genes
revealed high discrimination power: ZAP70, ITGA4, KIF1A, PARP15, EPHX3,
NTM, LRRTM1, FLI1, MIR193, LINC00599, PAX1, and MIR137HG showing
hypermethylation and MIR296, TERT, and GP1BB showing hypomethylation.
(PDF 255 kb)

Additional file 4: Heatmap from 325 CpG methylation data points
(rows) and 130 samples (column). Annotation labels refer to histology
and smoking status. Rows are centered; unit variance scaling is applied
to rows. Both rows and columns are clustered using correlation distance
and average linkage. Smoking status and histology are highlighted in color.
Three clusters are marked: left cluster: 55 normal donors, 21 contralateral
mucosa, one OSCC, and the OSCC with sarcomatoid features; center cluster:
three HGSIL, 11 OSCC, five contralateral mucosa, and one normal donor;
right cluster: 16 OSCC, three HGSIL, four contralateral mucosa, and nine
normal donors. (PDF 376 kb)
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Additional file 5: LINE1 mean methylation levels among OSCC, HGSIL,
normal healthy donors, and contralateral normal mucosa. Asterisks indicate
a statistical significance as calculated by the Kruskal-Wallis test. (PDF 22 kb)

Additional file 6: PCA for validation dataset: Unit variance scaling is
applied to rows; SVD with imputation is used to calculate principal
components. X and Y axes show principal component 1 and principal
component 2 that explain 53.9 and 9.8% of the total variance, respectively.
Prediction ellipses are such that with probability 0.95, a new observation from
the same group will fall inside the ellipse. N = 40 data points. (PDF 29 kb)

Additional file 7: Heatmap for validation dataset. Rows are centered;
unit variance scaling is applied to rows. Imputation is used for missing
value estimation. Both rows and columns are clustered using correlation
distance and average linkage; 54 rows, 40 columns. (PDF 45 kb)
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