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Significance This paper presents unprecedented evidence on the transmission mechanism underlying the spread of a 
broad cross-cultural assemblage of folktales in Eurasia and Africa. State-of-the-art genomic evidence is used to directly 
assess the relevance of demic diffusion processes, in particular on the distribution of Old World folktales at intermediate 
geographic scales, and identify individual stories that are more likely to be transmitted through population movement 
and replacement. The results provide an empirical solution to operate with linguistic barriers and highlight the 
impossibility of disentangling genetic from geographic relationships at a cross-continental scale, warning against the 
direct use of extant genetic variability to infer processes of long-range cultural transmission.

Abstract Observable patterns of cultural variation are consistently intertwined with demic movements, 
cultural diffusion, and adaptation to different ecological contexts [Cavalli-Sforza and Feldman (1981) 
Cultural Transmission and Evolution: A Quantitative Approach; Boyd and Richerson (1985) Culture and 
the Evolutionary Process]. The quantitative study of gene–culture coevolution has focused in particular on 
the mechanisms responsible for change in frequency and attributes of cultural traits, the spread of cultural 
information through demic and cultural diffusion, and detecting relationships between genetic and cultural 
lineages. Here, we make use of worldwide whole-genome sequences [Pagani et al. (2016) Nature 538:238–
242] to assess the impact of processes involving population movement and replacement on cultural
diversity, focusing on the variability observed in folktale traditions (n = 596) [Uther (2004) The Types of
International Folktales: A Classification and Bibliography. Based on the System of Antti Aarne and Stith
Thompson] in Eurasia. We find that a model of cultural diffusion predicted by isolation-by-distance alone is
not sufficient to explain the observed patterns, especially at small spatial scales (up to  ∼ 4,000 km). We
also provide an empirical approach to infer presence and impact of ethnolinguistic barriers preventing the 
unbiased transmission of both genetic and cultural information. After correcting for the effect of 
ethnolinguistic boundaries, we show that, of the alternative models that we propose, the one entailing 
cultural diffusion biased by linguistic differences is the most plausible. Additionally, we identify 15 tales 
that are more likely to be predominantly transmitted through population movement and replacement and 
locate putative focal areas for a set of tales that are spread worldwide.
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Advances in DNA sequencing have opened new ways for exploring the demographic histories of 
human populations and the relationship between patterns of genetic and cultural diversity around the 
world. Newly available genome-wide evidence enables us to go beyond the use of linguistic relationship 
as a measure of common ancestry (1–3) and offers unprecedented support for studying the mechanisms 
underlying the transmission of cultural information over space and time (4–11) as well as the 
coevolution of genetic and cultural traits (12–18) across populations.

A key question for research in this area concerns the extent to which patterns of cultural diversity 
documented in the archaeological and ethnographic records have been generated by demic processes 
(i.e., the movement of people carrying their own cultural traditions with them) or cultural diffusion (i.e., 
the transfer of information without or with limited population movement/replacement) (6, 19, 20). 
Before tackling this question, however, it is critical to note that demic processes and cultural diffusion 
are not mutually exclusive conditions but rather, are opposite extremes of a continuous gradient, with 
intermediate and composite positions that more accurately represent empirical reality.

A broadly adopted null model of cultural diffusion draws on the expectation that selectively neutral 
variants would form geographic clines produced over time by isolation-by-distance (IBD) processes
(21). Under an IBD model, individuals or groups that are spatially closer to each other are expected to 
be more similar than individuals or groups that are located farther apart. A positive correlation between 
cultural dissimilarity and geographic distance between samples is, therefore, used to infer processes of 
cultural transmission of nonadaptive information without population replacement (8, 17). However, 
observed genetic distance is the composite result of serial founder events, long-term IBD, and 
subsequent migratory events, which imply recent movement and resettling of people (22). A higher 
correlation between genetic distance and cultural dissimilarity than between culture and geography has, 
therefore, been proposed as a way to single out the relative effect of demic processes on the distribution 
of cultural variants (8).

In a recent study, Creanza et al. (17) investigated the process responsible for the observed global 
distribution of (phonetic) linguistic variability by comparing it with genetic and geographic distances. 
The authors found high correlation between genetic and geographic distances at a worldwide scale, 
whereas linguistic distances were spatially autocorrelated only within a range of   10,000 km. The lack 
of residual correlation between genetic and linguistic distances up to this spatial scale did not allow the 
authors to reject their null model and was interpreted as a signal of cultural diffusion being the main 
driver of the distribution of phonetic variants in human populations.



The use of genetic variability as a plausible proxy to reject cultural diffusion as the sole responsible for 
the distribution of cultural traits depends on being able to disentangle genetic signals from geography. 
The high correlation between genetic and geographic distances at a global scale (22) lowers the 
inferential power of this model. However, this relationship is not constant across different geographic 
scales. We noted that the correlation obtained between pairwise genetic distances is stronger when 
measured across all possible population pairs at larger geographic scales, whereas it is considerably 
lower at smaller geographic distances (below   6,000 km for this dataset), possibly because of more 
recent and short-range population movements (Fig. 1A, yellow line). It is worth remembering that 
global trends have been forming over the past   40,000 y, whereas most cultural traditions are likely to 
have evolved more recently. This claim is supported by previous studies (17) and suggests that the 
effect of population movements independent from IBD can be identified only within limited geographic 
scales. At this spatial resolution, events shaping the distributions of genetic and cultural divergence are 
more likely to occur at the same temporal scale and hence, be more probably causally related.



Fig. 1. (A) Plot of product–moment correlation values between pairwise genetic distance (both whole 

genome and biased for linguistic barriers) and pairwise geographic distance over cumulative geographic 

distance. (B) Map showing the spatial distribution of 33 populations in dataset MAIN. Surface colors 

represent interpolated richness values (i.e., the number of folktales exhibited by each population). Purple 

indicates higher values, whereas yellow indicates lower numbers. (C) Example of a map with SpaceMix 

results for genetic and folktale distance both projected on standard geographic coordinates. It is evident 

how, overall, folktale distribution (F) tends to cluster closer to geographic coordinates (dots), whereas the 

inferred source and direction of possible genetic admixture (G) are mismatched. For example, Burmese and 

Yakut exhibit quite segregated folktale assemblages, whereas their putative source of genetic admixture is 

closer in space. The case of Hungarian is emblematic for its folkloric assemblage rooted in Europe, whereas 

its putative genetic (and linguistic) source of admixture is located in the Ural region.

An additional confounder is the potential effect of linguistic barriers, which might cause departures 
from a pure IBD model by constraining the exchange of genetic and/or cultural information between 
demes belonging to different ethnolinguistic groups. Given the relevance that spoken language has on 
the transmission of folktales and the light but measurable impact that they have for variants of 
individual tales in Europe (23), ethnolinguistic barriers should also be considered as key components of 
plausible alternative models to IBD.



DIFFUSION OF FOLKTALES: INVESTIGATING MECHANISMS OF CULTURAL 
TRANSMISSION IN THE GENOMIC ERA

Here, we capitalize on the short-range decoupling of genetic and geographic distance to further infer 
mechanisms of genetic and cultural coevolution by using newly available genomic evidence (24) as an 
unbiased proxy of population relatedness. To do so, we analyzed the observed distribution of a set of 
individual folktales in Eurasia, looking for deviations from the null model of cultural diffusion 
predicted by geographic distance alone. Folktales are a ubiquitous and rigorously typed form of human 
cultural expression and hence, particularly well-suited for investigating cultural processes at wider 
cross-continental scale. Researchers since the Brothers Grimm (25) have long theorized about possible 
links between the spread of traditional narratives and population dispersals and structure but found 
mixed levels of support for this hypothesis when using indirect evidence for demic processes, such as 
linguistic relationships among cultures. One recent study suggested that, within the same linguistic 
family (Indo-European), the distributions of a substantial number of fairy tales were more consistent 
with linguistic relationships than with their geographical proximity, suggesting that they were inherited 
from common ancestral populations (3). This finding is confirmed by the relevance that ethnolinguistic 
boundaries may have for the transmission of variants of individual folktales in Europe. Ross et al. (23) 
have shown that, at population level, geographic distribution explains more variability than 
ethnolinguistic grouping. At this scale, when controlling for the effect of geography, linguistic 
boundaries do not show any residual significant relationship with folktale variant distribution, 
suggesting a possible temporal mismatch between folktale and linguistic traditions. However, when 
individual folktales are considered, ethnolinguistic identity is a significant predictor. This fact suggests 
that demes belonging to different ethnolinguistic affiliations may undergo higher costs for the 
transmission of individual folktales, even when they are closer in space. The simultaneous effect of 
shared linguistic ancestry and spatial proximity was also documented on the distributions of folktales 
recorded among Arctic hunter-gatherers (26).

OVERVIEW OF THIS STUDY

In this study, we focus on 596 folktales comprising “animal tales” and “tales of magic” (27) typed as 
present (one) or absent (zero) in 33 populations (dataset MAIN), for which whole-genome sequences are 
available and exhibiting presence of at least five folktales (Fig. 1B, SI Appendix, and Dataset S1 Tables 
S1-2.1, S1-2.2, S1-2.3, and S1-2.4). Following previous examples (8), we test for deviations from a null 
model of pure cultural diffusion without population replacement (IBD), in which geographic distance 
alone is the best predictor of the decreasing number of shared folktales between pairs of populations. We 
measure and compare the fit of a number of alternative models comprising (i) a clinal model, in which 
populations belonging to different ethnolinguistic groups are less likely to share folktales as predicted 
by IBD (cultural diffusion with linguistic barriers); (ii) population movement and admixture between 
demes (demic process) as a substantial additional driver of folktale transmission; and (iii) a demic 
process constrained by linguistic barriers.

We test our hypothesis first by visualizing possible mismatches between actual geographic location of 
each population and the location inferred by applying explicit models accounting for genetic and 
cultural admixture (population movement with replacement) (28). We quantify the impact of linguistic 
barriers on both genetic and folktale variability using analysis of molecular variance (AMOVA) (29). We 
further investigate this by looking for the set of linguistic barrier parameters (intensity and geographic 
buffer) that maximizes the fit between genetic distance and geographic distance on the one hand and 
folktale distance and geographic distance on the other hand. We use this parameter combination to 
generate alternative models, with fitness that is formally assessed at both a global scale and over 
cumulative geographic distance. Following the assumptions of previous works (8), we develop a method 
to identify those folktales that—in the whole corpus—may be more likely to have been transmitted 
through population movement and replacement, supporting the idea that individual tales may have 
undergone different processes. To provide a starting point for this additional analysis on the diffusion of 
individual or smaller packages of tales, we infer potential focal areas—intended as a putative proxy for 
center of origin—of the most popular tales in the dataset.



RESULTS

Effects of Ethnolinguistic Boundaries. We use AMOVA (29) to formally assess the impact of 
ethnolinguistic boundaries on both genetic and folktale variability, focusing only on Eurasian 
populations (dataset Eurasia; n = 30) to control for the effect of the Out of Africa expansion on genetic 
distance (SI Appendix and Dataset S1, Tables S1-3.1, S1-3.2, S1-3.3, and S1-3.4). We assign each 
population to an ethnolinguistic group (Materials and Methods, SI Appendix, and Dataset S1, Tables 
S1-4.1 and S1-4.2). Our analysis yielded ΦST = 0.036(P < 0.001) for genetic distance matrix, whereas 
ΦST = 0.1(P < 0.001) for distances based on folktale distributions. These results confirm the expected 
differential impact of intergroup boundaries between genetic and cultural variability and are consistent 
with previous results obtained for population structure on the transmission of cultural traits (23, 30).

We use this evidence to further investigate the separate effects of linguistic barriers on the flow of 
genetic and cultural information by focusing on two parameters (i.e., intensity and geographic buffer of 
the cultural barrier) (details are in Materials and Methods). We find that the parameter combinations that 
resulted in the highest correlation between genetic–geographic distances (intensity = 0.1; radius = 1,500 
km) and between folktale–geographic distances (intensity = 0.3; radius = 3,000 km) imply that linguistic 
barriers have a differential impact of these two kinds of information, and we use this parameter setting 
to generate two corrected distance matrices for genetics (geneticL) (Dataset S1, Table S1-5.1) and 
folktales (folktaleL) (Dataset S1, Table S1-5.2), respectively. By using raw and corrected distance 
matrices, we define alternative models as (i) biased cultural diffusion (folktaleL  ~
geographic), (ii) demic diffusion (folktale ~   genetic), and (iii) biased demic diffusion (folktaleL~  
geneticL).

Assessing Models of Folktale Transmission. We set out to test for deviations from the null 
model of cultural diffusion caused by IBD. We explore the relationship between our genetic, folktale, 
and geographic distance matrices using SpaceMix (28) (SI Appendix). We note that, when transformed 
into pseudospatial coordinates, folktale distances tend to match actual geographic coordinates better 
than genetic distances (Fig. 1C and SI Appendix, Fig. S1-3.1). The role of geography and ethnolinguistic 
barriers is also confirmed by a NeighborNet (31) based on folktale distances, showing a broad spatial 
clustering and proximity/reticulation between demes belonging to the same ethnolinguistic group (SI 
Appendix).

We then assess the goodness of fit of all of the alternative models at a global scale by comparing 
Pearson’s product–moment correlation (32), bias-corrected distance correlation (33), and partial distance 
correlation (34, 35) (Tables 1 and 2; details are in Materials and Methods and SI Appendix). It is evident 
how, after Bonferroni correction, all alternative models accounting for ethnolinguistic boundaries 
perform better than the models that do not consider them. With both product–moment correlation 
coefficient and bias-corrected distance correlation, the best model is the one representing cultural 
diffusion with linguistic barriers followed by demic processes constrained by linguistic barriers. With 
distance correlation, however, the difference between the two models is smaller than with standard 
correlation coefficient. When the dependence between variables is assessed controlling for a third 
variable through partial distance correlation, linguistic-biased cultural diffusion remains as good a 
predictor of folktale variability as IBD. This phenomenon could be due to the fact that, at a global scale, 
correlation between language-corrected genetic distance and geographic distance is higher (Fig. 1) and 
lowers the residual signal.



Table 1.

Variable association at a global level

Model cor P bcdCor P

Folktale    genetic 0.20 <0.001 0.20 <0.001

Folktale    geographic 0.19 <0.001 0.31 <0.001

Genetic    geographic 0.71 <0.001 0.84 <0.001

FolktaleL    geneticL 0.55 <0.001 0.55 <0.001

FolktaleL    geographic 0.64 <0.001 0.57 <0.001

GeneticL    geographic 0.76 <0.001 0.83 <0.001

Comparison between null model of cultural diffusion predicted by IBD (folktale  geographic) and alternative
models [i.e., demic diffusion (folktale  genetic), cultural diffusion biased by linguistic barriers (folktaleL 
geographic), and demic diffusion biased by linguistic barriers (folktaleL  geneticL)]. Values refer to Pearson’s
product–moment correlation (cor) and bias-corrected distance correlation (bcdCor) after Bonferroni correction.

Table 2.

Partial distance correlation at a global scale

Model pdCor P

Folktale    genetic, geographic -0.11 1.00

Folktale    geographic, genetic 0.26 <0.001

FolktaleL    geneticL, geographic 0.17 <0.001

FolktaleL    geographic, geneticL 0.25 <0.001

Results of partial distance correlation for null (folktale  geographic, genetic) and alternative models [i.e., demic
diffusion (folktale  genetic, geographic), cultural diffusion biased by linguistic barriers (folktaleL  geographic,
geneticL), and demic diffusion biased by linguistic barriers (folktaleL  geneticL, geographic)] after Bonferroni
correction.

Significant deviations from the null model of cultural diffusion predicted by IBD are further 
investigated over cumulative geographic distance by comparing Pearson’s correlation coefficients ( Fig. 
2 and SI Appendix, Table S1-7.1). Above 4,000 km, language-biased cultural diffusion presents with 
the highest fit at all bins followed by language-biased demic diffusion. Under 4,000 km, folktale 
distance exhibits stronger dependence from genetic distance than from geographic distance. This 
relationship is particularly visible under 2,000 km, where the effect of linguistic barriers is the same for 
genetic and cultural variability.



Fig. 2. Comparison of the null model of cultural diffusion dictated by IBD (folktale ~ geographic; light 

blue) against all alternative models: demic diffusion (folktale ~ genetic; red), language-biased cultural 

diffusion (folktaleL ~  geographic; purple), and language-biased demic diffusion (folktaleL   ~ 
geneticL; yellow) over cumulative geographic distance. Product–moment correlation coefficients are 

calculated at each geographic bin (size = 2,000 km), with original distance matrices up to 12,000 km.

All results allow us to reject the null model of plain cultural diffusion predicted by IBD and suggest 
instead that, of all alternative models, the one involving cultural diffusion mitigated by linguistic 
barriers could be the most plausible one. In addition, as previously pointed out (Fig. 1), results 
consistently confirm that small geographic scale offers a more efficient disentanglement between 
possible uncoupled effects of genetic and geographic distances over cultural variables—even after 
correcting for potential ethnolinguistic barriers.

Uniform Body of Knowledge or Individual Units? Our results show that, when considering the 
folktales contained in our dataset as a uniform corpus, the null model dictated by IBD could be rejected. 
Previous results (23), however, have shown that individual tales or smaller groups of tales may be 
transmitted across populations as partially independent evolutionary units. If a given cultural trait is not 
transmitted through population movement and replacement, populations that share it should not exhibit 
significantly lower genetic distance than populations that do not exhibit it (8). To single out folktales 
that markedly contradict such null hypothesis, we compare the distribution of pairwise genetic distances



corrected for ethnolinguistic boundaries among populations sharing a given tale against distances of the 
remaining pairs of populations using the Mann–Whitney–Wilcoxon test. We focus on 308 folktales that 
are present in at least five populations and run two separate tests, the first considering all pairs of 
populations (Dataset S1, Table S1-6.1) and a second considering only those within a conservative 
geographic range of 6,000 km (Fig. 1A and Dataset S1, Table S1-6.2). After Bonferroni correction, 15 
of 308 analyzed folktales (4.9%) (Dataset S1, Tables S1-7.1 and S1-7.2) present with significantly 
lower than expected pairwise genetic distance, hence allowing us to reject our null hypothesis and 
suggesting that these tales may indeed have spread during events of demic diffusion biased by 
ethnolinguistic barriers.

Folktale Dispersal and Focal Areas. For a subset of the analyzed folktales, we identify focal 
areas, representing potential areas of origin and defined as locations that maximize the decay of a given 
folktale abundance over geographic distance measured with Pearson’s correlation coefficient (Dataset 
S1, Table S1-8.1). Focal areas were generated for the 19 most widespread folktales, which follow four 
main trends (SI Appendix). Some of these tales possibly started to be diffused mostly via cultural 
transmission from Eastern Europe, with subsequent radial diffusion across Eurasia and Africa [such as 
Aarne Thompson Uther catalog 155 (ATU155): “The Ungrateful Snake Returned to Captivity” in SI 
Appendix, Fig. S1-8-I 1 or ATU313: “The Magic Flight” in Fig. 3], whereas others probably started 
their journey from Caucasus (SI Appendix, Fig. S1-8-I 6–8). Examples of the latter are ATU400: “The 
Man on a Quest for His Lost Wife,” ATU480: “The Kind and Unkind Girls,” ATU531: “The Clever 
Horse,” and ATU560: “The Magic Ring.” Some narrative plots might have originated in northern Asia
—such as the famous “Thumbling” (Tom Thumb) (SI Appendix, Fig. S1-8-I 18)—whereas a last group 
could have spread from Africa (SI Appendix, Fig. S1-8-I 17), such as in the case of ATU670:
“The Man Who Understands Animal Language.”



Fig. 3. Possible focal area and dispersion pattern for tale ATU313 “The Magic Flight,” one the most 

popular folktales in this dataset, which may have been additionally spread through population 

movement and replacement. It is interesting to note how this tale reached locations that are far from its 

putative origin (such as Japan and southeastern Africa), whereas it was not retained by many 

populations located in between (gray dots).

DISCUSSION

Using Genetic Evidence to Infer Processes of Cultural Transmission. Our results resonate 
with broader questions in cultural evolutionary studies, particularly those concerning the mechanisms of 
cultural transmission over time and space. They show that the use of newly generated, whole-genome 
sequences offers a unique opportunity for an unbiased assessment of patterns of cultural variation in the 
ethnographic and archaeological records. Genetic variability has been already interpreted in the past as a 
direct proxy of the movement of human groups over time and space, and as such, it has been used as a 
potential marker of demic mechanisms (8, 17).

We show the effect of ethnolinguistic barriers on both genetic and cultural population structure. By 
introducing an empirical approach, we find that ethnolinguistic identity has a potentially independent 
and differential impact on genetic and cultural information. More specifically, our results suggest that



linguistic barriers may be twice as effective on the diffusion of cultural traits than on population 
movement and that the decay over geographic distance of such effect is almost two times slower for 
culture than for genetic information. Nevertheless, this work very explicitly generates a cautionary tale 
concerning the use of genomic evidence for investigating such events at a cross-continental or global 
scale, where geographic clines in genetic variability are the result of different processes that can hardly 
be disentangled and that may present with considerable temporal mismatch with more recent cultural 
processes.

Cultural Evolutionary Mechanisms of Folktale Transmission. Folktales are a prime example 
of a universal form of cultural expression linked to various vectors of propagation over generations and 
across geographic and ethnolinguistic barriers that allows us to address questions of cultural 
evolutionary processes at a cross-cultural and -continental scale. Our results provide insights on the 
processes driving the spread of folkloric narratives that go beyond previous studies that were limited to a 
single language family (3).

By correcting for the presence of ethnolinguistic barriers, we find that the null model of cultural 
diffusion predicted by IBD alone cannot explain the observed distribution of folktales across Eurasia. 
Instead, beyond ~ 4,000 km, cultural diffusion biased by linguistic barriers exhibits the highest 
correlation at all geographic bins. At small geographic bins (< 4,000km), population movements and 
linguistic barriers may be more relevant than geographic proximity, pointing once again at the possible 
importance of small-scale processes of cultural transmission for testing more specific hypotheses when 
using genetic evidence. In addition, processes other than simple cultural diffusion may be more relevant 
for a smaller group of tales shared by pairs of populations that are genetically closer than populations 
not exhibiting those tales. Looking for smaller packages of tales or individual tales and their variants can 
be useful to shed light on the formation process of this vast body of popular knowledge. The long-range 
patterns detected by our analyses may complement this picture by suggesting a more ancient origin of 
some of these folktales (SI Appendix) (36–39). On a broader level, these results can be used in the future 
to infer directional trends of cultural dispersal as well as to test for the emergence of systematic social 
biases [such as prestige bias, conformism/anticonformism, heterophily, and content-dependent biases (5, 
23, 30)] or cultural barriers different from linguistic ones, which have a chronology that may be 
independently ascertained.

MATERIALS AND METHODS

Dataset Description. Folktale data were sourced from the ATU (27). This dataset comprises animal 
tales (ATU1–299) and tales of magic (ATU300–749). Of 198 societies in which the tales were recorded, 
73 matched available genetic data (Dataset S1, Table S1-1). Of these groups, 33 populations exhibiting 
at least five folktales were selected (Fig. 1B and Dataset S1, Table S1-2.2). Each population is described 
by a string listing the presence (one) or absence (zero) of any of the included 596 folktales.

Genetic, Folktale, and Geographic Distances. Genetic distances were estimated by the average 
pairwise distances between two genomes, one from each population, including both coding and 
noncoding regions to avoid ascertainment biases. Genetic distance for (i, j) pairs of populations 
represented by more than one genome was calculated as the average of all possible (i, j) pairs of 
genomes. As a consequence, the diagonal of the genetic distance matrix was not constrained to be zero 
(Dataset S1, Table S1-3.2). Folktale distance between population pairs was calculated as asymmetric 
Jaccard distance (40) (Dataset S1, Table S1-3.3). Geographic distance was calculated as pairwise great 
circle distance with a waypoint located in the Sinai Peninsula to constrain movement of African demes 
[through the package gdistance in R (41)]. Coordinates (longitude and latitude in decimal degrees)
(Dataset S1, Tables S1-9.1 and S1-9.2) identify the assumed center of the area occupied by a given 
folkloric tradition as defined by the ATU index.

Transformation of Dissimilarities into Euclidean Distances. To perform bias-corrected and 
partial distance correlation, folktale, genetic, and geographic distances were transformed into their exact 
Euclidean representations (33, 42). The original folktale and genetic distance matrices were scaled 
through classic multidimensional scaling using the function cmdscale in R and following the procedure
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for exact representation (34). Euclidean distances were computed from the obtained number of 
descriptors (n – 2) using the function dist in R (Dataset S1, Tables S1-10.1 and S1-10.2). Euclidean 
representation of geographic distance (Dataset S1, Table S1-10.3) was instead obtained by reprojecting 
the original set of coordinates on a plane using two-point equidistant projection through the functions 
tpeqd in the package mapmisc (43) and spTransform in the package sp in R (44, 45). Euclidean distance 
between the new set of coordinates was computed using the function rdist in the package fields in R
(46).

AMOVA. To implement AMOVA (29) in our analysis, each population was assigned to an 
ethnolinguistic group derived from Ethnologue (https://www.ethnologue.com; Dataset S1, Table

S1-4.1), and we used the function amova in the package pegas (47) in R. Significance values are 
obtained through permutation (1,000 iterations).

Variable and Model Comparison. The relationship between original and biased folktale, genetic, 
and geographic pairwise distance matrices was quantitatively assessed at global scale and cumulative 
geographic scales. Measures were obtained through (i) Pearson’s product–moment correlation 
coefficient using the function cor.test in R, (ii) bias-corrected distance correlation (33) using the 
function dcor.ttest in the package energy in R (48), and (iii) partial distance correlation using the 
function pdcor.test in the package energy in R. In parallel, SpaceMix (28) was used to compute folktale 
and genetic pseudocoordinates, which were compared with actual geographic coordinates to explore 
inferred processes of admixture.

Estimating the Effect of Ethnolinguistic Barriers on Genetic and Folktale Distance. We 
assumed that, if existent, a linguistic barrier would act on pairs of populations that belong to different 
linguistic families and live within a d geographic distance and artificially increase the actual genetic

(Dgen) or folktale (Dfolk) distance by an intensity factor f. We also assumed that parameters d and f

may be different when looking at genetic (d ,f ) and folktale (d ,fF F) distances. We assessed the

correlation between geographic and genetic or folktale distances at increasing spatial bins before and
after correcting for putative linguistic barriers. Particularly, we chose as best pairs of (d ,fG G) and (d ,fF F)

those that maximized the above-mentioned correlations. Notably, f  = 0 or fG F = 0 (i.e., absence of

linguistic barriers) had an equal chance of being picked up as the best values for our parameters. We
instead reported (1,500, 0.1) and (3,000, 0.3) as best pairs of genetic and folktale parameters,
respectively. To obtain unbiased genetic (Dgen′) and folktale (Dfolk′) distances, we, therefore, corrected
for the effect of linguistic barriers, so that, for populations (i, j), Dgen′ij = Dgenij × (1 − fG) if dij dG

and if d dF. 

R scripts and related commands used to generate all of the results
described in the paper are available at doi.org/10.5281/zenodo.821360. Folktale and geographic data as 
well as genetic distances are also available in Dataset S1. Genetic data used to run SpaceMix are taken 
from ref. 24 (www.ebc.ee/free_data).
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