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ABSTRACT: The measurement of food intake biomarkers (FIBs) in
biofluids represents an objective tool for dietary assessment. FIBs of milk
and cheese still need more investigation due to the absence of candidate
markers. Thus, an acute intervention study has been performed to
sensitively and specifically identify candidate FIBs. Eleven healthy male
and female volunteers participated in the randomized, controlled
crossover study that tested a single intake of milk and cheese as test
products, and soy-based drink as a control. Urine samples were collected
at baseline and up to 24 h at distinct time intervals (0−1, 1−2, 2−4, 4−6,
6−12, and 12−24 h) and were analyzed using an untargeted
multiplatform approach (GC-MS and 1H NMR). Lactose, galactose, and
galactonate were identified exclusively after milk intake while for other
metabolites (allantoin, hippurate, galactitol, and galactono-1,5-lactone) a
significant increase has been observed. Urinary 3-phenyllactic acid was the only compound specifically reflecting cheese intake
although alanine, proline, and pyroglutamic acid were found at significantly higher levels after cheese consumption. In addition,
several novel candidate markers for soy drink were identified, such as pinitol and trigonelline. Together, these candidate FIBs of
dairy intake could serve as a basis for future validation studies under free-living conditions.
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■ INTRODUCTION

Food intake biomarkers (FIBs) are compounds measured in
human biological samples, which reflect the intake of specific
foods or food constituents.1 The measurement of FIBs in
human biofluids has been proposed as an objective tool to
determine intakes of selected food items or food groups,
complementing current dietary assessment tools such as food
frequency questionnaires or 24 h recalls.2,3 These traditional
assessment tools are susceptible to bias, such as underreporting
of dietary intake and inaccurate determination of portion size,4

that could be overcome by the use of FIBs, which do not rely
on self-reporting of food intake. Only a limited number of
foods have been associated with FIBs even though a broad
coverage of food items is crucial for future applications of
dietary assessment. Ultimately, if fully validated, these FIBs
could be used for studying the compliance of subjects in
nutrimetabolomics intervention studies. Moreover, the identi-
fication of an accurate and robust set of FIBs, as validation tool
for dietary assessments, has been strongly advocated by

epidemiologists to evaluate the nutritional effects of complex
diets in case of observational studies.5

FIBs can be either single compounds or combined
biomarkers, for instance proline betaine is considered a
biomarker of citrus fruit consumption6,7 while tartrate together
with ethylglucuronide have been proposed as paired biomarkers
of red wine consumption.8 The ideal FIB is highly specific to
one food item or food group, is not detected in the sample of
interest when the specific food item is not ingested and shows a
distinct dose- and time-dependent response after its intake.9

Moreover, it should not show susceptibility to interindividual
variations. For this reason, most optimal FIBs could be
nonmetabolized compounds, as they will be found in urine
also several hours after food intake and become suitable for
validation of dietary questionnaires.
In the past decade, an increasing number of short- and

medium-term dietary intervention studies have been carried out
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in order to identify FIBs that reflect the intake of selected food
items, days or weeks after their ingestion.10,11 These identified
FIBs then have to be further validated in cohort studies. The
assessment of the sensitivity and specificity of a compound for
discriminating between consumers and nonconsumers of the
associated food is a prerequisite to ultimately label it as
validated FIB.12

The consumption of milk and cheese has not yet been
characterized by fully validated FIBs even though they are of
public health relevance due to the substantial quantities
consumed in the Western diet. The main reason for this gap
in the field is the lack of specific candidate FIBs for these foods.
Intervention and observational studies have identified two
plasma fatty acids (C15 and C17), among other lipids, as
indicative of the intake of dairy products, in particular dairy
fat.13−15 However, studies in which milk and cheese are
investigated as separate entities are rare and the above findings
remain controversial due to the issue of specificity.16 Previous
medium-term intervention studies suggest that several non-
specific compounds are reflective of milk intake such as serum
short chain fatty acids,17 serum amino acids such as glutamine,
proline and aspartic acid18 and urinary citrate.19 Similarly,
Hjerpsted et al. showed that the presence of amino acid
metabolites in urine is indicative of cheese intake compared to
butter intake,20 such metabolites could be the products of
either fermentation or human metabolism. Zheng et al.
proposed urinary proline betaine and tyrosine as candidate
markers for cheese intake,19 a finding that has to be critically
evaluated in light of the proposed identification of proline
betaine as a marker of citrus fruit consumption.7

Acute intervention studies, which have the ability to
sensitively and specifically identify candidate biomarkers, have
not yet been performed with milk and cheese. Thus, in the
frame of the HDHL Joint Programming Initiative European
project “Food Biomarker Alliance” (FoodBAll) (foodmetabo-
lome.org), a randomized, controlled, crossover study has been
carried out in order to identify novel candidate FIBs for milk
and cheese intake compared to a soy-based drink in healthy
subjects. Even though soy drink was technically the control
food for milk and cheese, candidate markers for this product,
which is regularly consumed worldwide, also deserved
investigation within this study. Urine samples were collected
postprandially at intervals up to 24 h and were analyzed using a
multiplatform approach that applied untargeted GC-MS and
NMR in order to allow a thorough identification and broad
coverage of different groups of metabolites.

■ EXPERIMENTAL SECTION

Study Population

Eleven volunteers were included in the study. All participants
signed an informed consent form. The study was conducted
according to the guidelines laid down in the Declaration of
Helsinki, was approved by the Ethical Committee of the
Canton of Vaud (Switzerland) and was registered at
clinicaltrials.gov (NCT02705560).
Recruitment was carried out by poster campaign. Volunteers

were screened by a telephone interview and invited for a first
visit, during which health status, anthropometrics and dietary
habits were assessed. In order to exclude adverse effects due to
lactose intolerance during the study, volunteers completed a
pretest prior to enrolling in the study that required the
consumption of 600 mL milk after an overnight fast and signs

of lactose intolerance were assessed over the subsequent 2 h.
Inclusion criteria were good health, aged from 18 to 40 years,
BMI from 18 to 30 kg/m2, regular intake of dairy products and
no adverse effects after consumption of 600 mL milk during the
pretest. Participants were excluded according to the following
exclusion criteria: smoking, diagnosed health condition
(chronic or infectious disease), intake of medication (except
birth control pills that were permitted), intake of nutritional
supplements, pregnancy, lactation, antibiotics treatment within
6 months prior to study, food allergies or intolerances, special
diets (vegetarians, nonconsumers of soy), hemoglobin <120
μg/L, ferritin <30 μg/L, and unwillingness to follow dietary
restrictions or the controlled diet during the study days.
Volunteers were also excluded if they donated blood or
participated to another clinical study within 2 and 6 months
prior to study, respectively.
Study Design

The randomized, controlled, crossover study is part of the
FoodBAll project running a series of seven acute intervention
studies with a broad range of common foods. The design of this
study was therefore defined within the FoodBAll project and
individually adapted for each study center (Figure 1). During

the two-day run-in phase, volunteers followed a restricted diet
that required omitting all dairy products, products containing
dairy ingredients, fermented products, products from bovine
sources and soy products from their diet. Volunteers received
dietary advice to support application of the dietary restrictions
and kept a food dairy to support adherence with the advice. In
the evening prior to the day of the intervention, the volunteers
consumed a standardized meal at the study center (ad libitum)
and remained in the fasted state thereafter (minimum 12 h
fasting prior to the intervention). The following day the
volunteers were advised to urinate at home and drink two
glasses of water before coming to the center. Baseline urine was
collected at their arrival at the research center (0 h). Each
volunteer was assigned to the three different test products in
random order. After the consumption of the test product
(duration of consumption did not exceed 15 min), urine
samples were collected during the time intervals 0−1, 1−2, 2−
4, and 4−6 h at the study center. Urine from the time intervals
6−12 and 12−24 h was collected by the participants outside the
study center. Participants were not allowed to consume any
food or beverages except water (at max. 250 mL per h) during

Figure 1. Design of randomized, controlled, crossover study; test
products were administered in random order (A = milk, B = cheese, C
= soy drink), urine samples were collected before and after ingestion of
test product during defined intervals (yellow blocks) up to 24 h; 6 h
and 24 h pools were later prepared in the laboratory.
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the 6 h after intake of the test product, during which they
remained seated and were only permitted to do light work or
walk to the toilet. The volunteers consumed the same
standardized meal for lunch and dinner of the intervention
day. The lunch was consumed at the study center 6 h after
receiving the test product while the dinner was consumed
under free-living conditions.
The collected urine samples were stored at 4 °C until further

processed. The total volume of each interval collection was
recorded, samples were transferred into smaller tubes,
centrifuged at 1800g for 10 min at 4 °C, aliquoted, stored
overnight at −20 °C and transferred to −80 °C for long-time
storage.

Test Products and Standardized Meal

All test foods were isocaloric (1674 kJ/400 kcal) and
isovolumetric (600 mL); 100 g cheese was served along with
500 mL of still water. Pasteurised milk (3.9% fat, organic,
brand: Naturaplan) was bought at a local grocery store. One
round of hard cheese (Le Gruyer̀e AOP, 7 months ripening
time) was obtained from a local cheese maker. The soy drink
was composed of a pure soy drink (540 mL, ingredients: water,
soya beans, brand: Soy Line) and soy-based vegetable cream
(60 mL, ingredients: water, hydrogenated palm oil, glucose, soy
flour, emulsifiers (E 475, soya lecithin, E 472b and E 435),
thickeners (E 407, locust bean seeds and E 461), stabilizer (E
339) and salt) from the same brand. Test product compositions
per serving are presented in Table S-1. The standardized meal
was composed of chicken breast, white long grain rice,
margarine and salt. The meals were precooked in the study
kitchen, packaged into 1200 kcal portions and were served ad
libitum.

GC-MS

Preparation of Pools, Interval Samples, Test Product,
and QC Samples. GC-MS analyses were performed on urine
samples collected at baseline and during selected time intervals
(referred to as “interval samples”). In addition, two pooled
samples were prepared by mixing urine samples after the
ingestion of one food by one subject for up to 6 h (6 h pool)
and 24 h (24 h pool). For pooling, volumes were combined
proportionally to individual volumes of each interval collection.
Baseline samples were not included in 6 h and 24 h pools.
Interval samples were prepared with equal specific gravity

(1.0008) due to large differences in concentrations. The
prenormalization procedure has been discussed elsewhere21

and was applied with minor modifications. The specific gravity
of each urine sample was determined based on refractive index
analyses (refractometer RE40, Mettler Toledo, Switzerland).
For cheese analysis, 2.4 g of solid food was mixed with 20 mL

of Milli-Q water and the supernatant was collected after
centrifugation. All test product samples (100 μL) were
precipitated with cold methanol (300 μL) prior to derivatiza-
tion.
Quality control (QC) samples were prepared from interval

samples, 6 h pool, and 24 h pool urine samples as well as
cheese, milk and soy drink samples, by mixing all samples of
each sample type at equal volume.
Sample Analysis. Interval urine samples from each

volunteer (n = 21) were measured in a randomized order
within a single batch. The order of the batches (n = 11
corresponding to the 11 volunteers) was randomized too. In
case of pool samples, all 6 h pools (n = 33) were randomized
and analyzed within one batch followed by the analysis of

randomly ordered 24 h pools (n = 33). The test product
samples were randomized within one group. Each batch was
initiated with 2−5 QC of specific type of samples for
equilibration and blank samples at beginning and end of
sequence were included. After every fifth sample, a fresh QC
sample was injected.
The derivatization was performed in a batch-wise manner.

To 100 μL of each sample, 50 μL of internal standard (IStd)
solution (0.17 mg/mL) containing isotopically labeled D-
fructose (U-13C6, 99%, Cambridge Isotope Laboratories, Inc.,
UK) were added. Samples were further dried in SpeedVac at 25
°C for 2 h. The two-stage derivatization and further steps were
performed according to the HUSERMET protocol.22 Blanks
(100 μL Milli-Q water) were treated in the same way as other
samples.
Urine samples were analyzed on a GC-MS 7890B/MS5977A

(Agilent Technologies, Santa Clara, U.S.) and a CombiPAL
autosampler (CTC-Analytics AG, Zwingen, Switzerland). The
installed liner contained deactivated wool (4 × 6.5 × 78.5 mm,
Restek Corporation, Bellefonte, U.S). One μL of the sample
was injected in splitless mode until 1 min then split 1:20.
Helium was used as carrier gas at a flow rate of 0.9 mL/min.
The separation was performed on a DB-5ms fused silica
capillary column (60 m, 0.25 mm i.d., 0.25 μm film thickness)
supplied by Agilent Technologies, Basel, Switzerland. The oven
program was as follows: initial temperature 70 °C for 2 min,
increase up to 160 °C at a rate of 5 °C/min, increase to 300 °C
at a rate of 10 °C/min, which was held for 16 min, equilibration
time 1 min. MS detection mass ranged from 28.5 to 600 Da,
MS source temperature was 230 °C and MS Quad temperature
was 150 °C. Electron ionization was performed with 70 eV.
The total run time was 50 min for interval samples and 70 min
for pools (longer hold time of 36 min). For pools, an injector
temperature gradient was applied: initially 90 °C, heating rate
900 °C/min until 280 °C, cooled for 5 min at rate of 30 °C/
min and kept at 250 °C. GC-MS analyses of foods were
performed on a GCMS 7890A/MS 5975C (Agilent Tech-
nologies, Santa Clara, U.S.). GC-MS settings for food samples
were as those described above for the pooled urine samples.

Data Processing, Candidate Marker Selection by
OPLS-DA, and Identification of Compounds. Agilent
data files acquired from GC-MS analysis were converted into
mzXmL files using ProteoWizard.23 Data files were further
processed in the R environment (version 3.2.2) using the
package eRah (version 1.0.4)24 performing preprocessing,
deconvolution, alignment, missing compound recovery and
compound identification. The following parameters were used
in this data processing: min.peak.width = 2.5, avoid.proces-
sing.mz = c(28.5:69,73:75,147:149), min.spectra.cor = 0.90,
max.time.dist = 2(pools)/2.5(interval samples), mz.range =
70:600. A minimum criteria of 5 samples was applied for the
missing compound recovery step. For the first identification of
the compounds, the Golm Metabolome Database (GMD)25

was used.
Multivariate analysis using SIMCA-P software (V.14.0,

Umetrics, Umea, Sweden) was performed on the deconvoluted
data. The data was mean-centered and UV scaled. Principal
component analysis (PCA) was used to detect strong outliers,
which are defined as observations clearly falling outside
Hotelling’s T2 tolerance ellipse (95% confidence interval) in
the score plot. Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS-DA) was used on the 6 h and 24
h pools to differentiate two groups: milk vs cheese/soy drink,
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cheese vs milk/soy drink and soy drink vs milk/cheese.
Discriminating compounds were selected on loading plot
(separated features from rest of features) being the ones with
highest Variable Importance in Projection (VIP) values. For the
selection of cheese markers, an additional OPLS-DA analysis
was conducted on interval samples 0−1, 1−2, 2−4, and 4−6 h
and using IStd D-Fructose Peak 1 normalized responses. Only
models with predictive ability parameter Q2 > 0.3 were
considered. As this limit falls below the recommended value
of 0.5, permutation tests (n = 999) were performed to rule out
random separation, which is recommended in such cases.26 In
case of stereoisomeric forms of selected discriminating features
the peak with higher response was further evaluated.
Discriminating features with identical retention time (RT)
and showing significant correlations (r2 > 0.7, Pearson
correlation) were considered as one compound whose spectra
was split into multiple IDs during deconvolution.
Each candidate marker was attributed to the level of its

identification.27 Level 1: compounds were identified by
comparison to a pure reference (based on spectral data and
retention indices (RI)) (Figures S-3 to S-15). Level 2:
identification was based on spectral database (match factor
>80%). Level 3: only compound groups were known, e.g.
specific ions and RT regions of disaccharides. Level 4: unknown
compound.
Targeted Evaluation of Candidate Markers. All markers

selected based on deconvoluted data were further evaluated
using a targeted approach in order to optimize integration.
Using RI, quantifier and qualifier ion retrieved from
deconvoluted data (Table S-3), the suggested markers from
the OPLS-DA models were analyzed in MassHunter
Quantitative Analysis (Agilent Technologies, Santa Clara,
U.S.) in 6 h pools, 24 h pools and QC samples. The peak
integration was checked in each sample individually. Responses
from the quantifier ion of marker compounds were normalized
with the response of the quantifier ion of IStd D-Fructose Peak
1 (ion 279). Univariate analysis using Kruskal−Wallis test was
performed in R to confirm significant difference of suggested
marker between the foods. p-values < 0.05 were considered as
significant. For multiple comparison, Conover-Inman test
(library Conover in R) was performed. QC samples were
used to determine coefficient of variance (CV) of each
significant candidate biomarker (Table S-3). Significant
candidate markers were then categorized into (1) specific
markers (above detection limit after the intake of only one of
the three foods in 6 h or 24 h pool) or (2) nonspecific markers
(above detection limit after intake of more than one out of the
three foods but a significant difference was observed between
the foods in 6 h or 24 h pool). If a marker was significant in
both pools, the pool in which it was more significant was used
for further analysis. Statistically significant markers in pools
were then further evaluated in interval samples using the
targeted method described above and responses normalized to
the IStd and corrected for dilution of the samples were
calculated as follows: corrected normalized response [a.u.] =
response from analysis (normalized with IStd) × dilution factor
× volume of interval. A hypothetical excretion rate was
calculated for each significant markers in each interval sample
by dividing the corrected normalized response by the duration
of the collection interval [h].

NMR

Sample Preparation and Analysis. Urine aliquots were
stored at −80 °C until their use for the NMR analysis. 630 μL
of urine sample were centrifuged to remove debris, then 540 μL
of supernatant were placed in a clean Eppendorf containing 60
μL of D2O-based phosphate buffer containing also trimethyl-
silyl propionate (TSP) as IStd and sodium azide (NaN3) as an
antibacterial agent. A total of 590 μL of the mixture was
transferred into 5 × 178 mm (7″) 5 mm, outer diameter NMR
tubes (for Bruker Match holder). 1H NMR spectra were
recorded at 298 K with an AVANCE spectrometer (Bruker
BioSpin, Karlsruhe, Germany) operating at a proton frequency
of 600.13 MHz, equipped with an autosampler with 60 holders.
The HOD residual signal was suppressed by applying the
NOESYGPPR1D sequence (a standard pulse sequence
included in the Bruker library) incorporating the first increment
of the NOESY pulse sequence and a spoil gradient. Each
spectrum was acquired using 32 K data points over a 7211.54
Hz spectral width (12 ppm) and summing up 128 transients. A
90° pulse of 12.5 μs was set up. A delay of 5 s between
transients, extending the acquisition time of 2.27 s, was chosen
to provide a recycle time 5 times longer than the longitudinal
relaxation time of the protons under investigation, expected to
be not longer than 1.4 s. The data were Fourier transformed
and phase and baseline corrections were automatically applied
using TopSpin version 3.0 (Bruker BioSpin, Karlsruhe,
Germany). Signals were assigned by comparing their chemical
shift and multiplicity with Chenomx software data bank
(version 8.1, Edmonton, Canada).

Analysis of Spectra. Spectra were exported in ASCII file
format and then imported into R software (version 3.3.2).
Chemical shift referencing was performed by imposing the TSP
signal to 0.00 ppm. The spectral regions including only noise
(e.g., the spectrum edges below 0.5 and above 10 ppm), as well
as the data points which are strongly affected by the residual
water (between 4.95 and 4.7 ppm) and the urea signals (5.45−
6.1 ppm) were removed prior to data analysis. Normalization
was carried out using the PQN algorithm.28

For each subject, spectra from samples at the following time
points were summed, integrating each point of the selected
spectra for each individual, in order to mimic a 6 h urine pool
(0−1, 1−2, 2−4, and 4−6 h) and a 24 h pool (0−1, 1−2, 2−4,
4−6, 6−12, and 12−24 h). Only samples with 4 and 6 time
points respectively were kept. These spectral matrices were
then imported in MatLab (R2014b, MathWorks). In total 95
signals, significantly above the baseline (S/N > 3), were
selected, then their integral areas were measured.
These integrals were then imported into R, where OPLS-DA

was carried out through the “biocLite” package (https://www.
bioconductor.org/) using mean centering and unit variance
scaling. Treatments were compared 1 by 2, i.e., milk vs soy
drink/cheese, cheese vs soy drink/milk, soy drink vs milk/
cheese; also comparisons with a 1 by 1 pairwise design were
carried out to test other possible classifying models with the
same set of foods. A thousand permutations were employed for
all models. Signals characterizing most of the variance of the
model were then selected: the loadings with greater values than
the standard deviation were identified. These signals, most
significant for the discrimination, were then analyzed through
univariate statistical analysis by means of Kruskal−Wallis with
pairwise comparison (through the command “kruskal” in the R
package “agricolae”).
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For the QC of samples, 3 spectra (one for each sample
group) were acquired at three different times. Each of those
spectra was then preprocessed by three different operators
three times each. The integral of selected biomarkers for the
three food were measured on each spectrum. Thus, 27 different
measures for the metabolites were made for each of the three
selected spectra.

Intersubject Variability

For both analytical methods, percentage CV of metabolites in
QC was calculated, together with intersubject percentage CV in

pools and their ratio was calculated. As suggested by Dunn et
al., if this factor is greater than >1.5 the metabolic feature is
likely to contain biological information.29

■ RESULTS

Study Population Characteristics and Test Product
Composition

All 11 volunteers, five women and six men, completed the
study; details of the study population characteristics are
presented in Table S-2. There was one missing urine sample

Figure 2. Boxplots of identified compounds assessed by GC-MS that are significantly different in 6 h pools or in 24 h pools after milk (A), cheese
(B), and soy drink (C) intake. The y-axis values are IStd normalized responses of the quantifier ion of each FIB in the respective pool. Compounds
are classified into specific (galactose, lactose, 3-phenyllactic acid, D-pinitol, maltol) and nonspecific (galactitol, galactono-1,5-lactone, L-alanine,
sucrose, catechol, guaiacol); p-value based on Kruskal−Wallis test, different letters indicate significant differences between foods based on Conover−
Inman test.
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(after milk intake, 6−12 h). The three test products consumed
were isocaloric while they differed in the macronutrient
composition (Table S-1) with cheese being highest in fat (33

g/100 g) and protein (26 g/100 g) among the three products.
The full-fat milk contained 27.5 g of lactose at the volume
served (600 mL). Even though each volunteer received a new

Figure 3. Kinetics of selected discriminating compounds after milk (A), cheese (B), and soy drink (C) intake identified by GC-MS. Y-axis values
represent a hypothetical extraction rate of volume adjusted and IStd normalized responses of quantifier ions per duration of time interval for each
FIB.
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batch of pasteurized milk, the macronutrient amounts, dry
matter and ash of the milks (n = 11) only differed minimally
(CV < 3%). Among the sugars analyzed in soy drink, sucrose
was highest (5.6 g in 600 mL).

Candidate FIBs Identified by GC-MS

Marker Selection Based on OPLS-DA. In total,
respectively 2119, 507, and 662 features were detected after
analysis by GC-MS and deconvolution of urinary interval
samples, 6 h pools and 24 h pools. During the process of
derivatization, artifacts and multiple derivatization products of
one compound (multiple TMS derivatives or stereoisomers)
are formed, thus the actual number of compounds is lower than
the number of features indicated here. In the model based on
the interval samples, three outliers were removed based on the
PCA score plot. No outliers were identified for pool models
based on PCA. There was no need to filter the data as
goodness-of-fit parameter (R2) of all OPLS-DA models were
higher than 0.95 indicating that the models were not dominated
by a large amount of noise.
A summary of all OPLS-DA models (score plot, loading plot,

permutation plot and model parameters) used for marker
selection is presented in the Supporting Information (Figures
S-1 to S-2, Table S-4). In case of milk and soy drink, the 6 h or
24 h pool models were effective in identifying FIBs, the interval
samples were not investigated for FIBs but only for kinetics.
For milk and soy drink intake, 6 h pools models resulted in
better predictability (milk intake: Q2 = 0.566, soy drink intake:
Q2 = 0.556) than 24 h pools models (milk intake: Q2 = 0.43,
soy drink intake: Q2 = 0.325). For cheese intake, the models
using 6 h pools (Q2 = 0.426) and interval samples (Q2 = 0.729),
but not the 24 h pools, had Q2 > 0.3 with the interval sample
model having highest predictability. In all cases, R2 and Q2

exceeded the values generated by the corresponding
permutation tests.
Based on the model comparing 6 h pools after milk intake to

6 h pools after cheese and soy drink intake as one group, five
compounds, namely galactose, galactitol, lactose and galactono-
1,5-lactone (all level 1) and one unknown compound (M10),
were identified as the most discriminating metabolites and
therefore indicative of milk intake in the 6 h pool. Applying the
same analytical approach to the 24 h pool samples, two
compounds (galactose and galactitol) were indicative of milk
intake.
Five features that showed the greatest discrimination for

cheese intake were selected based on the 6 h pool model. Of
these features, three eluted very early in the chromatogram, a
region in which the most volatile compounds appear but also
where excess reagents elute, and thus could not be further
evaluated. Therefore, only two features remained - alanine
(level 1) and lactic acid (level 2). The additional model using
interval samples resulted in the selection of alanine (level 1) in
addition to 3-phenyllactic acid (level 1), pyroglutamic acid
(level 1) and 4-methylcatechol (level 1).
Models for the selection of markers reflective of soy drink

intake based on 6 h and 24 h pools yielded candidate markers,
some only being discriminative in one of the pools. D-Pinitol
and maltol were identified at level 1 and were markers in both
pools similarly to a sugar alcohol (S11, level 3), of unknown
identity. Sucrose (level 1), an inositol-like compound (level 2)
and three unknown disaccharide features (S12, S13, and S14)
were only suggested to be candidate markers based on 6 h pool
model. On the other hand, catechol (level 1), guaiacol (level 1)

and an unknown compound (S17) were exclusively indicative
of soy drink intake in the 24 h pool analysis.

Targeted Evaluation of the Candidate FIBs. The
response of the compounds preselected on the basis of
OPLS-DA were further evaluated by a targeted approach in
the pools and subjected to univariate analysis (Table S-4). The
responses of significant specific and nonspecific candidate
markers, identified at level 1, for milk, cheese or soy intake in
either 6 h or 24 h pools are depicted in Figure 2 (level 3 and 4
compounds are shown in Figure S-16).
Out of the compounds preselected by OPLS-DA that are

reflective of milk intake, all showed significant univariate
differences between the three groups. Among these markers,
only galactose and lactose were specific for milk intake given
that they were below detection limit after the ingestion of the
two other products. Galactitol and galactono-1,5-lactone were
detected in pooled samples taken after cheese and soy drink
intake, however, the levels after milk intake were significantly
higher. In the 6 h pools, cheese intake was characterized by
significantly higher levels of alanine and 3-phenyllactic acid, the
latter being specific to cheese intake. Lactic acid, pyroglutamic
acid and 4-methylcatechol, which were selected as candidates
with the OPLS-DA approach, were not significant with this
targeted evaluation. All compounds preselected by OPLS-DA
for soy drink intake were significantly higher by univariate
analysis after soy drink intake. However, only D-pinitol and
maltol were specific to soy drink among the three foods. All
other marker candidates also appeared after the intake of the
other two foods but at significantly lower levels.

Kinetic Analysis of the Candidate FIBs. The kinetics of
selected significant candidate FIBs are shown in Figure 3.
Among candidate FIBs for milk, galactose showed the highest
excretion rate during 0−1 h while lactose and galactitol reached
highest excretion rate 1−2 h and galactono-1,5-lactone 2−4 h
after ingestion. By 6 h, these compounds were only present at
very low levels in urine. 3-Phenyllactic acid, the specific
candidate FIB for cheese intake, reached a maximum excretion
rate at 1−2 h while by 4−6 h the excretion rate was already
minimal. On the other hand, a clear postprandial response was
observed for alanine after the intake all three foods but the
excretion rate tended to be higher after cheese intake during 1−
24 h. For soy drink the candidate FIBs, D-pinitol and maltol
were excreted at maximum rate during 1−2 h and 2−4 h,
respectively, but their levels were also elevated in urine samples
collected during 6−12 h. A different excretion pattern was
found for catechol and guaiacol after soy drink intake; their
levels increased only after 4 h.

Candidate FIBs Identified by NMR

Spectral Analysis and Targeted Evaluation of Candi-
date Markers. The 6 h pool spectral data set consisted of 33
spectra: 11 for milk, 11 for soy drink and 11 for the cheese
intervention. In total 95 bins containing signals with S/N > 3
were selected: 34 metabolites, some with multiple signals, were
identified, 41 signals remained unassigned (Table S-6). OPLS-
DA comparing treatments 1 by 2 on the set of 95 bins resulted
in Q2 values of, respectively, 0.812 (milk vs cheese/soy drink),
0.762 (cheese vs milk/soy drink) and 0.766 (soy drink vs milk/
cheese), proving a very good predictability (Figure S-17). A
total of 56 variables (bins) had OPLS-DA loadings with values
greater than the standard deviation. These signals, most
promising for the discrimination, were then analyzed through
univariate statistical analysis by means of Kruskal−Wallis test
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with pairwise comparison. As a result, 31 signals were
statistically different with p < 0.05 and among these, 22 had a
p-value lower than 0.01. Eight signals appeared to relate to
candidate biomarkers for cheese intake, 13 for milk and 14 for
soy drink. These features are listed in Table S-5. In Figure 4,
boxplots of the compounds with significant difference in the 6 h
pool are shown.

The same analysis was applied by using the 1 by 1
comparison approach. A total of 58 variables were emerging
by multivariate approach as discriminating among treatments,
where further 2 variables were found with respect to the
previous approach, although unassigned. However, these two
extra variables were found with p > 0.05 to the Kruskal−Wallis
test, thus irrelevant as biomarker candidates.

Figure 4. Boxplots of compounds with significant difference in the 6 h pool after intake of milk (A), cheese (B), and soy drink (C) assessed by
NMR.
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The 24 h urine pool was then analyzed, in order to verify
whether additional candidate markers, with a slower kinetics,
could be identified. The new data set consisted of a total of 32
spectra, including 10 spectra for the milk intervention, 11
spectra for the soy drink intervention and 11 spectra for the
cheese intervention. One sample for milk intervention was
missing in one of the subjects, thus precluding the investigation
with the inclusion of that subject. In this case, OPLS-DA
calculated had Q2 values of, respectively, 0.732 (milk vs cheese/
soy drink), 0.707 (cheese vs milk/soy drink), and 0.757 (soy
drink vs milk/cheese), proving again a good predictability
(Figure S-17). Compared to the 6 h pool, the lower Q2 values
of the 24 h pool indicate that the most discriminating
metabolites are metabolized within the first 6 h of the ingestion
of the food products. The 60 most discriminating signals
obtained from OPLS-DA were then analyzed by univariate
statistical analysis (Kruskal−Wallis test with pairwise compar-
ison), and 26 metabolites were identified as statistically
different with p < 0.05. Also in this case, results from the two
OPLS-DA approaches were not very different: 61 signals were
identified with the 1 by 2 approach and 60 with the 1 by 1
approach. It is worth noting here that 58 signals were common
to both sets, while the 5 signals differing between the two
methods, i.e., 2-aminobutyrate, N-phenylacetylglycine, U28 (1
by 2), and acetate and creatine (1 by 1), were not significant
markers for specific foods according to the Kruskal−Wallis test.
Among these metabolites, 17 had a p-value lower than 0.01.
These signals mostly confirmed the finding of the 6 h urine
pool, though the p-values were less significant as most
candidate markers had fast excretion kinetics. These signals
are also listed in Table S-5, allowing a comparison of the 6 h
and 24 h pools.
Evaluation of Candidate Markers. Candidate biomarkers

for milk intake, from both the 6 h and the 24 h pool, mainly
corresponded to the typical sugars contained in milk, i.e. lactose
and galactose. Not all signals originating from lactose and
galactose were discriminative in both pools, evidently because
of their kinetic of excretion but also because of a possible
overlap with signals from the standardized meals taken 6 h after
ingestion of the test meals. Interestingly a signal, which was
assigned to galactonate was significantly increased in both pools
only after milk intake. Also hippuric acid increased after milk
ingestion, although this increase was statistically significant only
for one of its signals falling in the sugar region of the spectrum,
the other signals probably being affected by overlap with signals
belonging to other metabolites. A singlet between 2.05 and 2.07
ppm, which could be assigned to an N-acetyl glycoprotein,30

increased in four samples after milk ingestion. Compared to soy
drink, many signals in this region were statistically increased in
the 6 h pool after ingestion of the dairy products (data not
shown), although only the singlet showed a statistically
significant increase after milk consumption. The signal from
allantoin at 5.39 ppm is also significantly increased after milk
intake. A clear singlet is also increased in the 6 h urine pool
after milk intake at 1.218 ppm. In this region, signals from the
aliphatic moieties of molecules such as amino acids and fatty
acids are observed. Dimethylamine, with a signal at 2.72 ppm is
present in higher concentrations in the 6 h urine pool after
consumption of dairy products. However, it is also present in
high concentrations after soy drink intake. Two unassigned
singlets, at 1.218 and 3.36 ppm were statistically discriminant
for milk intake, although the first one only for the 6 h pool,
while the second one for both pools.

Regarding cheese intake, the main candidate markers found
were amino acids and organic acids. Among the amino acids,
alanine was the most significant marker being at higher
concentration after cheese consumption. Proline was also
statistically increased after cheese intake compared to the other
two products in the 6 h pool. The main organic acid showing
the potential of being biomarker for cheese consumption was
pyroglutamic acid. The assigned metabolites significantly
increased after soy drink intake were pyridoxine, trigonelline
and trans-aconitic acid. Finally, unassigned signals characteristic
of aromatic molecules (8.5−7 ppm) were discriminative for soy
drink intake.

Intersubject Variability and Occurrence in Test Foods
of Specific Candidate FIBs. The intersubject variability of the
identified FIBs defined as specific in this study is illustrated in
Table 1 in the form of the CVs of the candidate FIBs within the

6 h pool. Intersubject variability has only been listed for
identified compounds and for which the intersubject variability
was higher than the technical variability obtained by replicate
analysis of QC samples. Lactose (GC-MS, NMR) was thus
excluded from the table as its technical variability with the
current untargeted methods was higher than the intersubject
variability; also galactonate (selected by NMR) has been
excluded for the same reason. Table 1 also shows whether the
candidate FIBs were present in their respective test products.

■ DISCUSSION

Candidate FIBs for Milk

Various metabolites derived from lactose were highly
discriminating for milk intake. In particular, galactose and
lactose were identified as specific candidate FIB for milk by
both NMR and GC-MS methods while galactonate was
detected by NMR. Even though galactitol and galactono-1,5-
lactone were detected by GC-MS in urine after cheese and soy
drink intake, these molecules might also be interesting markers
of regular milk intake. Indeed, although they are detected under
fasting conditions, they are clearly increased after milk intake.
The presence of these compounds in urine has already been
shown, including specifically lactose,31 galactose,31 galacto-
nate,32 galactitol,33 and galactonolactone.34 The presence of the
last two compounds in urine was related to galactosemia, a

Table 1. Intersubject Variability and Occurrence in Test
Product of Specific Candidate Markers within This Studya

Compound
CV %

(intersubject)
CV %
(QC)

CV(intersubject)/
CV(QC)

Metabolite
detected in
food matrix

GC-MS
Galactose 61 4 13.8 Milk
3-Phenyllactic
acid

109 48 2.3 Cheese

D-Pinitol 29 4 7.0 Soy drink
Maltol 41 10 3.9 Soy drink

NMR
Galactose 36 7 5
N-Acetyl
Glycoprotein

10 1 6.8 Milk

Pyridoxine 26 2 14.1 (overlap
with other
signals)

aThe coefficients of variation (CVs) are shown for the markers
measured by GC-MS (upper panel) and NMR (lower panel).
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condition of galactokinase deficiency. Of note, in a very recent
study, galactonate has been proposed as biomarker for dairy
products intake.35 Based on our study, we conclude that
galactonate should not be considered as marker of dairy intake
in general, as this metabolite was observed after milk but not
cheese intake in our study.
It is not surprising that most discriminating markers for milk

intake relate to lactose metabolism. During this test the
volunteers received an unusually high amount of lactose in a
single intake. Intestinal lactase is likely not able to efficiently
metabolize such excessive amounts of lactose and non-
hydrolyzed lactose was thus partially absorbed and excreted
intact in urine. Part of the galactose molecule, hydrolyzed from
lactose, would be expected to be metabolized in the Leloir
pathway, which enzymatically converts it into UDP-glucose in
the liver. This pathway depends upon the action of four
enzymes, galactokinase being the rate-limiting enzyme.36 If
galactose is not metabolized efficiently, such as in case of excess
galactose, the sugar will be catabolised by alternate pathways
either to be converted to galactitol by NADPH-dependent
aldose reductase or to galactonate catalyzed by galactose
dehydrogenase.37 The first intermediate product in the
catabolism from galactose to galactonate is its lactone form,
which occurs as 1,4- or 1,5-lactone in solution.38,39 Therefore,
at the amounts ingested in this study, our data indicates that
galactose is metabolized via a range of biochemical processes
including (i) metabolism by the Leloir pathway, (ii) reduction
to galactitol, (iii) oxidation to galactonolactone (identified by
GC-MS) and, further, to galactonate (identified by NMR) or
(iv) excretion in nonmetabolized form. Whether these
compounds would still be formed if the ingested amounts of
lactose were lower remains uncertain. However, lower blood
and urinary galactose concentrations would certainly be
expected as galactose would be more completely metabolized
by these pathways. In addition, as the formation of these
compounds is based on enzymatic catalysis, it is highly likely
that their metabolic fate is prone to high interindividual
variation, a phenomena that is highlighted by the distinct CV
measured in our study for galactose.
Looking at these candidate FIBs for milk intake from a

broader point of view, it should be noted that these molecules
are ultimately not fully specific for milk intake as, for instance,
yogurt, sour milk and cream also contain lactose, although
admittedly at lower levels than in milk. In addition, galactose in
free form is also found in fruits and vegetables, although at
levels lower than 40 mg/100g.40 These foods might not
confound the intake of dairy products since they are around 50
times lower than in milk (after hydrolysis of lactose).
Consequently, although free galactose and its catabolised
forms might be promising candidate FIBs for milk intake and
other lactose-containing dairy products, their dose−response
still needs to be investigated to precisely apply the marker as a
FIB.
Allantoin was also demonstrated by NMR to be significantly

increased after the intake of milk. This metabolite is the end
product of purine metabolism in ruminants and is also found in
cow’s milk.41 In humans, uric acid, and not allantoin, is the end
product of purine metabolism.42 Consequently, this metabolite
might indeed quantitatively differentiate high milk consumers
from nonconsumers. Hippurate, a milk marker of grazing
grassland pasture for cows,43 was also found in higher
concentrations after milk intake, although only one of its
numerous spectral signals were discriminant of milk con-

sumption. Hippurate was recently proposed as a marker of
cheese intake by Zheng et al. (2015)19 but in our work this
metabolite was not increased after cheese intake. The
production of hippurate is, however, dependent on the gut
microbiota activity and Bertram et al. (2007)17 reported
decreased levels of hippurate after a milk intervention.
Clarifying the potential of this metabolite as a FIB for the
intake of dairy products would thus request an analysis of the
composition of the microbiota. Another interesting signal that
was specifically related to milk consumption was identified as
N-acetyl glycoprotein (NAG). This molecule has been reported
to discriminate lactovegetarian from omnivores.30 However, a
study by Van Dorsten et al. (2006),44 linked it to the
consumption of black and green tea, in a study on the
consumption of caffeine. Thus, it is not clear whether this
molecule can be exclusively linked to milk intake. Another
metabolite that appeared to be a milk biomarker, based on
NMR, was dimethylamine. Pairwise comparison suggested that
this metabolite could be a biomarker of dairy intake (Table S-
5); however after a visual inspection of the spectra, it was noted
that for some samples from the soy drink intervention there
were high levels of this metabolite. For this reason it is not
possible to designate this metabolite the role of dairy intake
biomarker.

Candidate FIBs for Cheese

FIBs to discriminate cheese and milk intake may be expected to
be of microbial origin or formed during the process of cheese
production and ripening. The amino acid derivative, 3-
phenyllactic acid was the only specific FIB for cheese in this
study. 3-phenyllactic acid derives from phenylalanine metabo-
lism and its urinary levels are generally low.45 This molecule is
produced from a wide range of species of lactic acid bacteria
(LAB).46 Thus, its occurrence in urine after food intake may
not only be attributed to the intake of cheese as a wide range of
foods undergoes fermentation by lactic acid bacteria including
nondairy products such as sourdough.47 In addition, 3-
phenyllactic acid is also used as biological preservative in the
food industry due to its antimicrobial activity48 and is
commonly found in honey.49 3-Phenyllactic acid was detected
in the cheese tested in this study (Le Gruyer̀e AOP). To our
knowledge differences in 3-phenyllactic acid concentrations in
various types of cheese have not yet been studied so that it
cannot be concluded that this compound would occur in urine
after the intake of all types of cheese, although its high potential
as FIB remains.
Due to the well-described proteolytic activity of LAB during

cheese ripening, changes in the postprandial concentration of
free amino acids are expected. In addition to alanine, which was
identified as a nonspecific candidate marker of cheese intake by
both analytical methods, proline was significantly increased
after cheese intake in the NMR data. This amino acid is a
typically found in Swiss cheese, and its concentration increases
during ripening strongly impacting on the flavor of Gruyer̀e.50

Pedersen et al. found higher concentrations of proline in
human serum after the consumption of a fermented yogurt
product.18 However, as amino acids are ubiquitously present in
many foods and released during digestion, they cannot be
regarded as FIB for cheese intake. Furthermore, it is unclear
whether these two amino acids were increased in urine due to
their higher bioavailability in the cheese matrix or simply
because protein content was highest in cheese.
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Another amino acid that was significantly increased after
cheese intake was pyroglutamate (identified by NMR in urine
samples). A trend for an increase in this metabolite was also
shown by GC-MS. Pyroglutamate is present in cheese and has
been proposed as a marker of cheese ripening.51,52 Indeed,
Ochi et al. reported pyroglutamic acid to contribute to the “rich
flavour” of ripened cheeses.51 The production of this metabolite
is highly dependent on the starter bacteria used to ferment
milk.52 Pyroglutamate identified in the urine samples might
thus directly originate from the cheese and be excreted
nonmetabolized. It could thus be considered as a potential
biomarker of cheese intake. As GC-MS only found a slight
increase in pyroglutamate concentration after cheese intake,
more studies are necessary to confirm its validity as a cheese
biomarker.

Candidate FIBs for the Soy Drink

The control product consisted of 90% soy drink and 10% added
soy based vegetable cream. The markers found for this product
thus refer to this mixture but most likely derive from the soy
drink. D-Pinitol and maltol were both specific to soy drink
intake. D-Pinitol is a cyclic polyol, a family of compounds
abundant in soybeans. D-Pinitol is also found in other edible
plants from the Fabaceae family such as clover, locust tree and
carob,53 although these products are consumed at much lower
quantities than soy products. The second compound, maltol, is
used as flavor enhancer in bakery products but is known to
occur in foods such as soybeans, coffee and chicory.54 In our
study, both compounds were highly discriminating of soy drink
intake. Urinary sucrose was also discriminative for soy drink
intake but, since it is ubiquitously present in food and beverages
at much higher concentration, it should be excluded from a list
of candidate markers for soy drink intake. The same argument
is valid for the inositol-like compound identified in our study
since inositol is ubiquitously present in fruits, beans, grains and
nuts.55

Catechol, one of the late urinary markers, may derive from
the microbial degradation of aromatic compounds.56,57 It can
only be assumed that catechol found after soy drink intake
derives from vanillic acid, as this hydrobenzoic acid is present in
soy.58 However, the concentration of catechol in urine has
previously been shown to decrease when the intake of plant-
derived foods was reduced.59 Thus, the presence of this
compound in urine is most certainly not restricted to soy drink
intake. Guaiacol showed exactly the same excretion pattern as
catechol. It is a known intermediate compound in the microbial
conversion of vanillic acid to catechol.57 Thus, the appearance
of both compounds in the late postprandial phase can most
likely be attributed to their microbial formation in the gut.
The main candidate FIBs identified by NMR for soy drink

intake were trigonelline, pyridoxine and trans-aconitate.
Trigonelline is present in soybeans.60 However, this metabolite
is also a typical compound that accumulates in legumes and
coffee seeds and that has been already linked to coffee intake.61

Pyridoxine (vitamin B6) also showed increased urinary
concentrations after soy drink intake. Soy products are a
good source of this vitamin although soy-derived products may
have significantly lower concentrations compared to soy-
beans.62 Trans-aconitate has been found by NMR in the
urine of soy drink consumers. This planted-derived organic acid
is not only present in soybean but also in wheat63 and, thus,
cannot be considered as a fully specific soy drink marker.
Acetoacetate was also discriminative of soy drink intake using

the Kruskal−Wallis analysis of the NMR spectra. The
concentration of this molecule increased in samples after the
soy drink and the cheese intervention, although at respectively
lower levels in the latter. Acetoacetate concentration was
reportedly higher in plasma after a soy intervention64 compared
to a control diet. The authors correlated this increase to a shift
in lipid metabolism. In spite of this, acetoacetate cannot be
completely considered as biomarker for a specific food intake,
due to the fact that it appears in both cheese and soy drink.
Moreover, the relevance of this molecule as FIB is questionable
because not all its signals were discriminant by univariate
statistical analysis. Finally, a series of unassigned NMR signals
and GC-MS peaks could be ascribed to isoflavone-like
molecules. In particular, a doublet found at 6.86 ppm, in the
NMR spectra was tentatively assigned to daidzein, one of the
most studied isoflavones found in soy products. However,
additional work is necessary to robustly assign these
compounds to well-defined isoflavone metabolites and to
propose them as FIBs for soy drink intake.

Intersubject Variability and Occurrence of FIBs in Products

All of the level 1 identified specific candidate FIBs (lactose,
galactose, 3-phenyllactic acid, D-pinitol and maltol) were
already detected by GC-MS in the test product for which
they were assigned as markers. Free galactose was found in milk
but given the large quantity of urinary galactose, it is surmised
that much of the metabolite that was detected in urine must
have been formed during hydrolysis of lactose at the intestinal
brush border. Thus, four out of five specific candidate FIBs
found by GC-MS (lactose, 3-phenyllactic acid, D-pinitol and
maltol) were most likely nonmetabolized or not fully
metabolized compounds, thus, being detected after the intake
of specific food. In the case of NMR, galactose was not detected
in the product. For mono- and disaccharides, anomeric signals
are selected for identification and quantification taking
advantage of their diagnostic power. However, by inspecting
the NMR spectrum, the galactose anomeric signal in milk was
faint and partially overlapped with other minor saccharides’
signals so that it was decided not to consider it as
unambiguously assigned.
The intersubject variability of the specific compounds was

within or even below reported ranges for urinary metabolites.31

As shown by Bouatra et al. (2013)31 most metabolites in urine
varied by about 50% while some vary by up to 350%. The CVs
measured for each metabolite in the urinary samples originate
primarily from two sources, interindividual variability and
analytical variability. Intersubject variability can be due to
differences in genetics, lifestyle including dietary habits, and the
composition of the gut microbiota. These factors not only
change the metabolism of nutrients quantitatively but also
qualitatively by modulating the relative use of different
pathways taken during food digestion and metabolism.65

Taken together, our data indicate that the urinary concen-
trations of the specific FIBs within this study are specific to
each individual. The intersubject variability in the metabolic
processing of these candidate FIBs should thus be taken into
consideration for their validation. In addition, targeted analyses
with improved CV would be needed, in particular with
metabolites with high CV, such as lactose.

Strengths and Limitations of the Study

Our study highlights the synergistic power of a multiplatform
(GC-MS and NMR) nutrimetabolomic approach for either
confirming the results for metabolites detected by both
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techniques or for identifying additional candidate FIBs that are
better evaluated on either one of the platforms. Moreover, the
different characteristics of the two techniques (i.e., high
sensitivity for GC-MS, high precision and repetitiveness for
NMR) combined with the identification of the same molecules
by both methods supported the robustness of the results.
Gender as well as BMI have an effect on the human

metabolome.66,67 However, as FIBs should be independent
from gender and BMI, our study deliberately included both
genders with a broad BMI range. Moreover, the male subjects
had higher BMIs (23.2 ± 1.3 kg/m2) than female subjects (20.9
± 1.1 kg/m2), which prevented us from separating the effects of
BMI from the effects of gender.
GC-MS analysis compared the urine samples after intake of

each food to the grouped samples after intake of the two other
foods, i.e. in a 1 by 2 pairwise design. Besides the 1 by 2
pairwise design, the NMR analysis compared each possible
combination of foods also in a 1 by 1 pairwise design, resulting
with any different significant biomarker between the two
methods.
A large quantity of each food that was tested in order to favor

the identification of candidate FIBs, which could subsequently
be validated in real life conditions. One limitation of this
approach for milk is that the candidate FIBs could arise from
the excess intake of lactose and thus an overload of the
pathways related to the metabolism of this sugar, in particular
galactose metabolism. Therefore, further studies are needed to
demonstrate that lactose-related candidate FIBs can also be
found in urine when less milk is consumed. In addition, the use
of lactose and lactose-derived metabolites as exposure markers
for milk is faced with the uncertainties related to the large
variability in the content of lactose and galactose present in
other dairy products. Consequently, these markers might finally
be FIBs for the intake of lactose-containing products rather
than only milk.

■ CONCLUSION

None of the urinary biomarkers for milk and cheese intake
previously reported have been confirmed by this study. In this
study, some urinary candidate FIBs were specific for one food
compared to the other two foods and showed clear time-
responses fulfilling some criteria of an ideal FIB. However,
these molecules will most certainly not be specific in
comparison to a broader range of foods. In addition, the
relevance of these compounds as FIBs for milk, cheese and soy
based foods should be assessed in observational studies under
noncontrolled conditions and within a broader dietary context.
Further, dose−response studies should be performed to further
validate the compounds identified in this study for their use as
FIBs. Such studies will require a quantitative assessment of
these molecules within the urine matrix using targeted analysis.
In this study, markers for milk and cheese intake were excreted
within 6 h. The pooling of urine up to 6 h would thus be
sufficient to detect these dairy FIBs in contrast to the plant-
based control, for which late urinary markers also appeared.
Finally, combining compounds based on a structured definition
of the foods of interest, e.g. combining markers of milk with
markers of fermentation to identify markers of cheese intake,
might be a promising strategy that would also confirm
adherence of consumers to the broader dietary guidelines
that often relate to food groups rather than single foods.
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